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A b s t r a c t .  When a testing problem has nuisance parameters, the uniformly 
most powerful (UMP) tests do not generally exist. Exceptional examples were 
given by Dubey (1962, Skand. Aktuarietidskr., 45, 25-38; 1963, Skand. Aktua- 
rietidskr., 46, 1-24) and Takeuchi (1968, Ann. Math. Statist., 40, 1838-1839) 
for the exponential distributions. What  is essential for proving the existence 
of UMP tests lies in a special relationship between null hypothesis and the 
alternative. Assuming a similar relationship between them, a similar kind of 
result can be shown under more general situation. 
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1. Introduction 

On a one-sided testing problem as follows 

H 0 : ~ = 0  versus H I : ~ < 0 ,  

about the probability density function 

f(x) = T -1 exp{-(x  - 0)/~-}, ~9 < x < co, 7 > 0, 

Dubey (1962, 1963) and Takeuchi (1968) have constructed UMP tests even though 
there is the nuisance parameter 7. This result is essentially a consequence of 
the well-known lack of memory property of the exponential distribution. Such a 
peculiarity holds true in more general situations. Section 2 characterizes UMP 
tests and shows the existence of a very simple UMP test. Section 3 examines the 
uniform distribution as another example. Note that  Kabe and Laurent (1981) 
have constructed the UMP tests in the family of tests whose power functions are 
independent of the nuisance parameters, while those of our UMP tests, of course, 
depend upon them. 
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2. Main result 

Let S be a sample space and # a measure on it. Let O be a parameter space 
and, for 8 E O, f (x;8)  be the density function with respect to #. The testing 
problem considered is 

H0 : 8 E O0 versus H1 : 8 E O1, 

where Oo and O1 are disjoint subsets of O. Let S(8) be a support of f (  -; 8), and 
let So be the union of S(8) for 8 E 0o. We assume that  So is measurable, and let 

c(8) = f s  f(x;  8)dp(x). 
o 

The following assumption about the hypotheses plays an important role in this 
paper. 

ASSUMPTION. For any 8 E O1~ if c(8) > 0 then there exists 8o E Oo such 
that 

f (x;  0o) = (c(8))-l f(x;  8)Iso(x), 

where I8o(') be the indicator function of So. Namely, the conditional density of 
f (  .; 8) on So belongs to the class corresponding to the null hypothesis. 

Let Ool be the collection of 0o E 00 that  satisfies the condition in the As- 
sumption for some 0 E O1, and let Oo0 be its complement in Oo. From the 
Assumption, the family of the conditional (on So) distributions with a parameter 
in {0 E O1 : C(8) ~> 0} is equivalent to the one in Ool. Therefore, though condi- 
tionally on So, the tests must satisfy the level conditions even for the alternatives, 
which strongly restricts the behavior of the power function on O1. 

THEOREM 2.1. Under the Assumption, the test function 

a 'when x C So 
O * ( x ) = 1 otherwise 

is UMP with the level a, and has the power 1 - (1 - a)c(O) in 0 E O1. In general, 
the UMP test ¢ with a level a is characterized by the following 

(2.1) f ¢(x)f(x;O)dp(x) <_ ~ for o E Ooo, 

(2.2) / ~ ( x ) f ( x ;  O)dp(x) = a for O E 0ol and 

(2.3) 0 ( x ) = l  (a.e. f ( .  ;O) for O E 01) on S~. 

PROOF. Let ¢ be any test function with the level c~, and let 0 E O1. There 
are two cases, c(O) = 0 and > 0. If c(O) = 0, then e* is better than ~ at 0, because 



THE UNIFORMLY MOST POWERFUL TESTS 143 

the power of ¢* is 1 at 0. In this case, the best test must satisfy the condition 
(2.3). On the other hand, if c(O) > 0 then the Assumption yields 

/ O(x)f(x; O)dp(x) = ~g O(x)f(x; O)dp(x) + ~o ¢(x)f(x; O)dp(x) 

< c(O) 
o 

_< (1  - c ( 0 ) )  + c~c(O) = 1 - (1  - c ~ ) c ( 0 ) .  

It is clear that the maximum power 1 - (1 - a)c(O) is attained by ¢*, hence 
¢* is UMP, that is, there exists at least one UMP test. The equalities in the 
above inequalities hold true only when ¢ satisfies the conditions (2.2) and (2.3). 
Considering the level condition, these results prove the assertion. 

Remark 1. The ¢* is a randomized test function. Practical statisticians who 
do not like randomization might set a to 0, but they become to lose the power 
c c(O). 

Remark 2. From Theorem 2.1, the power functions of these UMP tests take 
same value in 0 E O01 U O1, while they may differ in 0 E O00 up to a maximum of 
a. Since the power of ¢* is constant a in 0 E O00, the power comparison (e.g. by 
admissibility) on Oo might produce a better test than ¢* if O00 is not empty. 

Remark 3. Theorem 2.1 is applicable to testing problems with nuisance pa- 
rameters, such as testing the location of an exponential distribution with a nuisance 
scale. We usually need a random sample of size more than one to estimate the 
nuisance parameters, but the test ¢* may be based on a sample of size one. Hence, 
¢* is UMP even when the values of the nuisance parameters are allowed to differ 
from one observation to another. 

3. An example: test on uniform distributions 

Let Xl , . . .  ,x n be a random sample of size n from the uniform distribution 
on the interval 0 = (01,02). For any testing problem considered below, let ¢~ 
be the set consisting of the tests satisfying the conditions of Theorem 2.1. If the 
Assumption is satisfied, the set q5 becomes the collection of all UMP tests. Let 
MAX and MIN be the maximum and the minimum of the sample, respectively. 
The pair MAX and MIN is sufficient for 0. We use the term "unique" for a test in 
the sense that the test of interest is unique among the tests defined only through 
the sufficient statistics. 

The one-sided testing problems 

(3.1) 
(3.2) 

H0 : 01 = 0 and 02 = 1 versus 

g 0 : 01 = 0 and 02 _< 1 versus 

Hl : 01-- 0 and 02 > 1 ,  

H1:01  = 0 a n d 0 2 > 1 ,  
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clearly satisfy the Assumption, hence Theorem 2.1 holds true (see Lehmann (1986), 
p. 111, Problem 1). Since the null hypothesis H0 of (3.1) is simple, any test in O~ 
is admissible for testing (3.1). For testing (3.2), the test ¢1 in (I)~, defined by 

1 when MAX > (1 - oL) 1In 
¢1(x) = 0 otherwise 

is uniquely admissible as a function of the sufficient statistic MAX. On the other 
hand, the two-sided testing problem 

(3.3) Ho : 01 = 0 and 02 = 1 versus H1 : 01 = 0 and 02 ¢ 1, 

does not satisfy the Assumption, hence the tests in (I)~ are not necessarily UMP, 
but the test ¢ 2  in (I)a, defined by 

1 when M A X > I  or < a  1/n 
¢2(x) = 0 otherwise 

is admissible and uniquely UMP (see Lehmann (1986)). 
Now consider testing problems when 02 is regarded as a nuisance parameter. 

The one-sided testing problems 

(3.4) Ho :01 = 0  versus /-/1:01 < 0 ,  

(3.5) H 0 : 0 1  ~ 0 versus H1:01 < 0, 

also satisfy the Assumption. For both testing (3.4) and (3.5), the tests in ~ are 
all UMP and particularly ¢* is the same. The tests in Oa are also admissible for 
testing (3.4), but this is not true for testing (3.5). The unique admissible test 
¢3(x) in (I)~ is given by 

1 
Ca(x) = 0 

when MIN/MAX < 1 - (1 - ~)1/(n-1) or MIN < 0 
otherwise. 

The critical point is determined by the fact that the distribution of MIN/MAX 
under 01 = 0 is equal to the one of MIN based on a random sample of size n - 1 
from the uniform distribution on (0, 1). 

Next, consider the two-sided testing problem 

(3.6) /40 : 01 -- 0 versus H1 : 01 ~ 0, 

which does not satisfy the Assumption, hence tests in (I)a are not necessarily UMP. 
It is easy to see that the test ¢4 in (I)~, defined by 

1 when MIN/MAX > 1 - O~ 1/(n-l) or MIN < 0 
¢4(x) = 0 otherwise, 

is UMP unbiased, but we will show that the UMP tests do not exist. 
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For any s > 0, let C~ = {x E R n " MAX < s and MIN > s(1 - o~(1/n))}. 

The indicator function Ics is a level a test and has power 1 for 0 = (01,02) = 
(s(1 - al/~), s). If there exists a UMP test, say 4)', with level a for (3.6) then we 
have q5 t > Ics. Sinces  > 0 i s  free, 4)' should be 1 o n  {x C R n : MIN/MAX > 
1-al/n}. But this region has probability a 1-1/n for any 0 in H0, which contradicts 
the level condition of ¢5 ~. 

On the other hand, for the two-sided testing problem such as 

(3.7) H0 : 01 _> 0 and 02 < 1 versus H1 ; 01 < 0 and 02 > 1, 

the test ¢* is UMP, since the Assumption is satisfied. 
In general, when a family of distributions is parametrized by the left (or right) 

extreme point of the support of a distribution, the one-sided testing problems 
like (3.3) and (3.4) about the end point of the support of distributions usually 
satisfy the Assumption. Other examples include the geometric, discrete uniform, 
trapezoidal and triangular distributions. 
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