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Abstract .  A monotone empirical Bayes procedure is proposed for testing 
Ho : 0 > 00 against H1 : 0 < 00, where 0 is the parameter of a geometric 
distribution. The asymptotic optimality of the test procedure is established 
and the associated convergence rate is shown to be of order O(exp(-cn)) for 
some positive constant c, where n is the number of accumulated past experience 
(observations) at hand. 

Key words and phrases: Bayes, empirical Bayes, hypothesis testing, geometric, 
antitonic and isotonic regression, asymptotic optimality, convergence rate. 

I. Introduction 

The empirical Bayes approach to statistical decision is typically appropriate 
when the same decision problem is faced repeatedly and independently. It is 
reasonable in such situations to formulate the component problem in the sequence 
as a Bayes decision problem with respect to an unknown prior distribution on the 
parameter space and then improve the decision rule at each stage based on the 
accumulated observations. This approach is due to Robbins (1956, 1964, 1983). 

Many empirical Bayes rules have been shown to be asymptotically optimal in 
the sense that  the risk for the n-th decision problem converges to the optimal Bayes 
risk which would have been obtained if the prior distribution was fully known and 
the Bayes rule with respect to this prior was used. However, the practical signif- 
icance of the asymptotic optimality depends on the convergence rate with which 
the risks for the successive decision problems approach the optimal Bayes risk. Re- 
cently, Liang (1988) studied the convergence rate of a sequence of empirical Bayes 
rules for two-action decision problems when the distributions of the observations 
belong to a discrete exponential family. His treatment of this problem is different 
from that of Johns and Van Ryzin (1971). In the present paper, our approach is 
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similar to that of Liang (1988) except that we use a different smoothing technique 
to obtain a sequence of monotone decision rules. Our smoothing technique is more 
logical in the special case of a geometric model than that of Liang (1988) for the 
discrete exponential family in general. This is due to the fact that in the geometric 
model the marginal density f(x) in (1.5) is monotonically decreasing in x and our 
smoothing makes the estimator fn(x) reflect this property; see also Remark 2.1. 

Let X be a random observation with probability function 

(1.1) f (x[O)--Ox(1-O) ,  x = 0 , 1 , 2  . . . .  , 0 < 0 < 1 .  

We consider testing H0 : 0 _> 00 against H1 : 0 < 00, where 00 C (0, 1) is known. 
Let i denote the action of deciding in favor of Hi, i = 0, 1. Corresponding to the 
true value 0 of the parameter and action i, let the loss be 

(1.2) L(O, i) = (1 - i)(Oo - 0)I(o.oo)(0) + i(O - 0o)[[0o,1)(0), 

where IA(') denotes the indicator function of the set A. The two terms in (1.2) 
are, respectively, the loss due to action 0(1) when Hi(H0)  is true. It is assumed 
that 0 is the value of a random variable O having an unknown prior distribution 
G(0). 

A decision rule d is a mapping d : x ~ [0, 1], where x is the observed value of 
X and the value d(x) is the probability of taking action 0 given that X = x. Let 
D be the class of all decision rules, and r(G, d) denote the Bayes risk associated 
with each rule d C D. Then r(G) = infaeD r(G, d) is the minimum Bayes risk in 
the class D. 

The Bayes risk associated with any rule d can be expressed in the form: 

oo 

(1.3) r(G, d) = Z [ 0 0  - ~(x)]d(x)f(x) + C, 
x : 0  

where 

(1.4) ~(x) = f (x  + 1)/f(x) ,  

(1.5) f(x) = f (x  10)da(O) and 

~-~01 (1.6) C = (0 - Oo)f(x I O)dG(O). 
x=O Oo 

Note that f(x) is the marginal probability function of X, and ~(x) is the posterior 
mean of 0 given X = x. Further, C is a constant independent of the rule d. From 
(1.3), a Bayes decision rule dG is easily seen to be 

1 if ~(x) _> 00, 
(1.7) de(x) = 0 otherwise. 

Since the prior G is unknown, we use the empirical Bayes approach. We 
propose (Section 2) a sequence of empirical Bayes rules {dn} for the testing problem 
and establish (Section 3) its asymptotic optimality along with its convergence rate. 
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2. The proposed empirical Bayes rule 

Let (Xj, O j ) ,  j = 1, 2 , . . . ,  be a sequence of pairs of random variables, where 
the Xj are observable but  the Oj are not. Conditional on Oj = 0, Xj has proba- 
bility function f (x  I O) in (1.1). It is assumed that  the Oj are lid having unknown 
distr ibution G. Therefore, the pairs ( X j , O j )  are lid. Let X~ = ( X 1 , . . . , X ~ )  
denote the n past  observations and let X~+I -= X denote the current observable 
whose observed value is x. 

Now, for each x = 0, 1 , 2 , . . . ,  let 

n y 

1 E I{=}(Xj) and Fn(y) = E fn ( x ) "  (2.1)  A ( x )  = 
j = l  x=0 

Since fn(X) is the empirical frequency est imator  of f(x), we have fn(X) --* f(x) 
with probabil i ty one. However, fn(x) does not possess the monotonically decreas- 
ing proper ty  that  f(x) has. In order to smooth  our est imator,  let {fn(X)} be the 
antitonic regression of {fn(x)} with equal weights for x = 0, 1 , . . . ,  Mn + 1, where 
M~ = max(x1 , . . .  ,Xn) -- 1. We take i f(x) = f~(x)  = 0 for x > M~ + 1, and let 

* Y * X Fn (Y) = ~-~==0 f*(  )" The following properties of f~ (x) and F* (y) easily follow: 
(1) if(x) is nonincreasing in x with ~'~°°__ 0 f~(x) = 1, (2) F*(y) > Fn(y) for all y, 

* - = ~ = = o  f ( x ) .  and (3) SUpy_> 0 [ F ~ ( y ) -  F(y)[  _< SUpy_> 0 [F~(y) F(y)[, where F(y) Y 
(For details regarding isotonic (antitonic) regression, see Barlow et al. (1972). A 
proof  of Proper ty  (3) is on pp. 70-72.) 

Now let ~ ( x )  = f~(x + 1)/f~(x), x = 0, 1 , . . . ,  Mn. It is intuitively appealing 
to use ~n(X) to est imate ~(x) ---- f(x + 1)/f(x). However, ~(x)  is increasing in 
x (which can easily be verified), and ~n(X) may not exhibit  this property. So 
we consider an isotonic smoothing of {~n(x)}; tha t  is, we let {~n(X)} be the 
isotonic regression of {pn ( / )}  for x = 0, 1 , . . . ,  Mn with weights f~(x). Also, let 

= all y > i n .  
Some important  properties of ~* are: 
(A1) ~*(x)  is nondecreasing in x. 
(A2) If we let ~,~(y) Y • u • • = ~ = = 0  ~(x) f~(x)  for ~--~z=0 ~(x) f*(x)  and ~bn(y ) = 

y = 0, 1 , . . . , M n ,  then ¢~(y)  _< ~b~(y) for all y = 0, 1 , . . . , M ~ .  
(A3) By Theorem 2.1 of Purl  and Singh (1990), 

= o<mi n (i)], 

~*(x)  = mAn [(~n(i) - ¢* (x  - 1))/(F*(i) - F*(x - 1))], 
x<i<Mn 

x -- 1, 2 , . . . , M ~ .  
(A4) Wn(Y) Y * = ~-~-==o f*(x + 1) = F*(y + 1) - F*(0).  

Remark 2.1. The smoothing technique of Liang (1988) uses 

11 0<i<x I n ( i )  + ' 
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where (~n is a positive value such that  5n = o(1) and is arbitrarily chosen. Our 
smoothing technique does not involve such sequence. Further, ~L(x) tends to 
overestimate ~(x) because of the use of max and consequently to overaccept H0. 
This, as well as the nonpreservation by fn(x) of the monotonicity referred to in 
Section 1, makes our present smoothing technique preferable. 

We now define our empirical Bayes rule as: 

{ 1 if ~ ( x )  > 00, 
(2.2) d*(x) = 0 otherwise. 

Remark 2.2. Since ~ ( x )  is nondecreasing in x, it follows that  for x < y, 
d~(x) <_ d*(y); in other words, the rule d*(x) is monotone. 

3. Asymptotic optimality 

In order to establish the asymptotic optimality of the empirical Bayes rules 
d* { ~}, we need a few preliminary definitions and results. 

The expected Bayes risk of any empirical Bayes procedure d~ for our testing 
problem is given by: 

oo 

(3.1) r(G, dn) = ~-~[00 - p(x)]E[dn(x)]f(x) + C 
x = O  

where the expectation is taken with respect to (X1 , . . . ,  Xn) and C is given in (1.6). 
Since r(G) = r(G, dG) is the minimum Bayes risk, A(G, d n ) -  r(G, d,~)-r(G) > 0 
for all n. Thus, the difference A(G, dn) is a natural measure of the optimality of 
the empirical Bayes rule dn. 

d Oo DEFINITION 3.1. A sequence of empirical Bayes decision rules { ,~}n=l is 
said to be asymptotic optimal at least of order c~ n relative to the (unknown) prior 
distribution G if A(G, dn) <_ O(o~n) as n --* oc, where {an} is a sequence of 
positive numbers such that  l imn_.~ an = 0. 

Now, let A(Oo) = {x I~(x) > 00} and B(Oo) = {x I~(x) < 00}. Define 

M = ~ min A(Oo) if A(Oo) ¢ O, (3.2) 
L c~ otherwise, 

and 
{  (0o) 0, 

(3.3) m = otherwise, 

where 0 denotes the empty set. By the increasing property of ~, rn < M; also, 
m < M if A(Oo) ~ ~. ~r the rmore ,  

(3.4) x < m  (y_>M) if and only if ~ ( x ) < 0 0  (~ (y )>00) .  
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For our purpose, we may assume tha t  A(00) ~ ~ so tha t  m < M < c~. 
Before we proceed to s tate  and prove our main theorem regarding the asymp- 

totic optimali ty of the empirical Bayes rule d~, we obtain some intermediate results 
which are given below as lemmas. 

LEMMA 3.1. For y >>_ M, 

H(y) - [F(M) - F(y + 1)] - Oo[F(M - 1) - F(y)] 

is nonincreasing in y; and H(M) is negative. 

PROOF. H(y+ l ) - g ( y )  = Oof(y+ l ) -  f ( y+  2) = f ( y +  l)[Oo-~(y+ l)] < 0 
by the definition of M,  which proves the first part.  H(M) = Oof(M) - f ( M +  1) = 
f(M)[Oo - ~(M)] < 0. 

LEMMA 3.2. For 0 << y <_ m, 

L(y) --- IF(Y) - F ( y  + 1)] - 00[F(y - 1) - F(y)] 

is decreasing in y, and L(m) is positive, where F ( - 1 )  ~ 0. 

PROOF. n ( y )  = O o f ( y )  - f ( y  + 1) -- f ( y ) [Oo  - ~(y)] > 0 by the definition 
of m; in particular, L(m) > 0. Since f(y) and [00 - ~(y)] are both  positive and 
decreasing in y, so is L(y). 

LEMMA 3.3. If Mn > M, then for M < y < Mn, 

¢ , ( y )  - ¢ * ( M  - 1) _> F*(y + 1) - F*(M). 

PROOF. By Proper ty  (A2) of ~*, Ca(Y)- ¢ * ( M - 1 )  > Ca ( Y) -  C n ( M - 1 )  = 

Y Y * , = E x = .  F; (y + F; (M). E~=M ~n(X)fn(X) f*(x + 1) = 1) - 

LEMMA 3.4. Let T1 = m i n { ( f ( M  + 1) - Oof(M))2/8, - log F ( M ) } ,  where M, 
defined in (3.2), is assumed to be finite. Then 

P { ~ * ( M )  < 00} _< O(exp(--Tln)). 

PROOF. Let X(n) = m a x ( X 1 , . . . , X n ) .  Then 

P{~o*(M) < 0o} 

= P { ~ * ( M )  < 0o and X(n) <_ M} + P { ~ * ( M )  < 0o and X(n) > M} 

= P1 + P2, say. 

Obviously, P1 _< [F(M)] n = e nl°g F(M). Using Proper ty  (A3) of ~*, 
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P2 -- P ~  MminM [(~bn(Y) - Cn(M - 1))/(F*(y) - F*(M - 1))] < Oo 
I, - y -  

) 
and M _< Mn 

< P ~  rain [(F*(y + 1) - F*(M))/(F*(y)  - F*(M - 1))] < 0o 
l, M <y<_M,~ 

and M < M s } ,  

by Lemma 3.3 

= P{[F*(y + 1) - F*(M)]  - O0[F*(y) - F*(M - 1)] < 0 

for some M < y < Mn} 

<_ P{T(y  + 1) - T(M)  - OoT(y) + OoT(M - 1) < H(y) for some y > M},  

where T(y) = F*(y) - F(y) and H(y) is given in Lemma 3.1 

< P{T(y  + 1) - T(M)  - OoT(y) + OoT(M - 1) < H(M)  for some y > M},  

by Lemma 3.1 
f 

P ~ T ( y  + 1) < - -  
[ 

H(M)  - H ( M )  - H ( M )  
-< 4 or T(M)  > 4 or OoT(y) > 

H(M)  for some y > M / or O o T ( M -  1) < ~ 
2 

-H(M)4 } , noting tha t  0 < 00 < 1 and H(M)  < 0 

-H(M)4 } 

/sup LFn(y)- F(y)I > -raM) } P 
- ( y > o  4 

_< dexp - 2 n  , using Lemma 2.1 of Schuster (1969) 

= d e x p { - n ( f ( M  + 1) - Oof(M))2/8}, where d is some positive constant. 

( 
< P l  sup t T ( y ) I > - -  

Ly>_M-1 

< P ~sup IF,~(y) - F(y)l  > - -  
I ,y~0 

Combining the orders of P1 and/:>2, we get the desired result. 

LEMMA 3.5. Let T2 = min{f2(m)[Oo - -~ (m)]2 /8~- logF(m)} ,  where m, 
defined in (3.3), is assumed to be finite. Then 

P { ~ n ( m )  >__ 00} <_ O(exp( -v2n) ) .  

PROOF. P { ~ * ( m )  >_ 00} = P { ~*( m )  > 00 and X(~) < m} + P{~*(ra )  > 
00 and X(~) > m} -- Q1 + Q2, say. Obviously, Q1 <- [F(m)] n = enl°gF(m) If 
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y)n(m) _> 00, then by properties of isotonic regression, (fn(Y) >- Oo for some y < m. 
Thus 

Q2 <_ 
_< 

_< 

P{qon(y) > 00 for some y _< m and X(n) > m} 

P { f * ( y  + 1) - Oof*(y) > 0 for some y _< m} 

P{[F*(y + 1) - F,:(y)] - Oo[F*(y) - F*(y - 1)] _> 0 for some y _< m} 

P{T(y  + 1) - T(y) - OoT(y) + OoT(y - 1) _> L(y) for some y < m}, 

where T(y) is as defined earlier with T ( - 1 )  = 0, and 

L(y) is given in Lemma 3.2 

P { T ( y  + 1) - T(y) - OoT(y) + OoT(y - 1) _> f(m)[Oo - (f(m)] 

for some y <_ m}, 

by Lemma 3.2. 

Now, proceeding as in Lemma 3.4, we get Q2 <_ dexp{-nf2(m)(Oo - (f(m))2/8}. 
Combining the orders of Q1 and Q2, we obtain the desired result. 

We now state and prove our main theorem dealing with the asymptotic opti- 
mality of the test procedure d;.  

THEOREM 3.1. Let {d*.} be the sequence of empirical Bayes test procedures 
defined in (2.2). Then, for M < c~, r(G, d~) - r(G) < O(exp(-cn))  for some 
positive constant c. 

PROOF. We first note that 

?r$ 

r(G, d*~) - r(G) -- E[Oo - (f(x)]P{(f*(x) > Oo}f(x) 
x : O  

oo 

+ [ ( f ( x )  - OolP{(f;(x) < OoIf(x) 
x = M  

< blP{(f*(m) >_ 00} + b2P{(f*(M) < 00}, 

* V " m  ro using the nondecreasing property of (f,~, and letting bl = z__,x=0[ o - ( f (x ) ] f (x )  and 
b2 = ~ , ~ M [ ( f ( x ) -  Oo]f(z). Also, bl and b2 are nonnegative constants because 
of (3.4). Using the asymptotic behavior of P{(f~(m) _> 00} and P{(f~(M) < 00} 
obtained in Lemmas 3.4 and 3.5, the theorem is established with c = rain(T1, r2). 
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