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Abstract .  In the present note, asymptotic expansions for conditional and un- 
conditional distributions of the score vector are derived. Our aim is to consider 
these expansions in the light of differential geometry, particularly the theory of 
derivative strings. Expansions for the distributions of the maximum likelihood 
estimator are obtained from those for the score vector via transformation, with 
a view to interpreting from the standpoint of differential geometry the various 
terms entering the expansions. 
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i .  Introduction 

Asymptotic expansions for the distributions of the maximum likelihood esti- 
mator and the likelihood ratio statistic, with a view to the interpretability from the 
standpoint of differential geometry of the various terms entering the expansions, 
have been discussed inter alia by Amari and Kumon (1983), Barndorff-Nielsen 
(1986b, 1988) and McCullagh and Cox (1986). On applied as well as theoreti- 
cal grounds, the terms of main interest are those of order O(1), O(n -1/2) and 
O(n -1) under ordinary repeated sampling with sample size n. However, not all 
of these terms have been given a differential geometric interpretation nor have all 
the relevant types of expansion--conditional and unconditional--been considered. 
The aim of this paper is to complete the picture by considering the expansions in 
the light of the recently developed theory of derivative strings (Barndorff-Nielsen 
(1986a), Barndorff-Nielsen and Blmsild (1987a, 1987b)), and by addressing also 
the closely related question of asymptotic expansions for the distribution of the 
score vector. 

* The present work was carried out at the Department of Theoretical Statistics, University 
of Aarhus~ Denmark, with support from the Danish-French Cultural Exchange Programme. 
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In fact, the score vector is a natural  s tar t ing point for a discussion of problems 
of the present type because of its intrinsic geometric nature,  when considered as 
a differential or as a covariant vector. It turns  out tha t  in the expansions for the 
score vector to be derived below the "variant" aspect of its dis tr ibut ion is wholly 
subsumed in the leading normal term, more precisely in the determinant  of the 
variance matrix,  while all o ther  terms are invariant and involve certain tensors, 
the nature  of which will be discussed in Section 5. 

Expansions for the distr ibution of the maximum likelihood est imator  may be 
obta ined from those for the score vector via t ransformation,  and this procedure 
provides an automat ic  separat ion of the terms into variant terms and invariant 
terms. We shall also comment  on the nature  of the variant terms, as seen from 
the theory  of derivative strings. 

The conditional distr ibutions to be discussed are relative to an exact or ap- 
proximate  ancillary. We use the terms expected and observed geometries in the 
sense of Barndorff-Nielsen (1986b). 

Section 2 contains some background material .  Sections 3 and 4 present the 
various expansions for the score vector and the maximum likelihood est imator ,  
respectively, and in Section 5 we discuss the na ture  of the various variant and 
invariant terms. Some concluding remarks are collected in Section 6. 

2. Some background material 

2.1 Likelihood quantities 
Let A/I = {X ,p(~;  x), ~} be a statistical model, where X is the sample space, 

the parameter  space and p(w; x) is the probabil i ty  density function for the da t a  
x, with respect to some dominat ing measure # on X and parametr ized  by a d- 
dimensional parameter  w. Let & be the maximum likelihood es t imator  of w. Let 
w = ( w i , . . . ,  02 d) and  5~ = ( & ] , . . . ,  &d) be the coordinates of w and &, respectively, 
for which arb i t rary  components  are denoted by the letters r, s, t, . . . .  

For a given observed value x, we denote  by l: 

(2.1) ~v E ~ --* l(~z; x) = logp(w; x) 

the log-likelihood function of the model. It is assumed to be a smooth  function in 

Par t ia l  derivatives of I with respect to the coordinates a~ ~ of w are wri t ten as: 

(2.2) l~l...~p(~;x)---O~,-1...O~rpl(w;x ), r l , . . . , r p = l , . . . , d ,  p > _ l ,  

and briefly as l~l...~pw, or l~ 1 .... . The  score vector for the model is then given by 

(2.3) l , (w;x)  = (l~(w;x))~=l ..... d, 

wri t ten briefly as l, (w) or l,. 
The  joint cumulants  of the log-likelihood derivatives are denoted as 

K~ = E( l~) (=  0), 

(2.4) Kr,s = Cure(l,., Is), K~s = Cum(l~s), 

K,-,s,t -- Cum(l~, l~, lt), Kr,st = Cum(l~, lst) . . . .  
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The following is discussed in detail in Barndorff-Nielsen (1986b): From the 
viewpoint of conditional inference we shall assume that a k-dimensional sufficient 
statistic t and a ( k -  d)-auxiliary statistic a are given such that the correspondence 
between (&, a) and t is a smooth bijection. Note, however, that we do not assume 
that t necessarily constitutes a dimensional reduction of the original data x. In 
fact, it is sometimes natural to let t = x, for instance in the case of the typical 
location-scale model. In applications, the statistic a is supposed to be ancillary, 
i.e. exactly or approximately distribution constant, and then inference on 5~ may 
be carried out in the conditional model for & given a. In this framework, without 
loss of generality, the log-likelihood function may be rewritten as l(w; &, a), and we 
may then differentiate I partially with respect to the coordinates ha* of & as well as 
with respect to the coordinates w ~ of w. We define the so-called mixed derivatives 
o f / b y  setting for any rl , . . . ,rp;  Sl , . . . ,sq in {1 , . . . ,d} :  

(2.5) l r l . . . rp;Sl . . . sq  (~O; ~), a )  = ~ o ~  " " " O~a'pO&*1" " " OCo*~ l ( w ;  &,  a ) .  

In particular, the observed information matrix j is given by 

(2.6) jrs(w;&,a) = -/rs(W;&,a), r , s  e {1 , . . . , d} .  

Furthermore, for any symbol indicating a function of w and of (&, a) we write a 
bar / through the symbol to indicate that we make the substitution & --+ w. For 
example, we define Yrl...rp;*l...*q (W; a), or Y~l..-rp;~l...,q for short, by 

(2.7) Y r l . . . r p ; S l . . . S q ( ~ ; a )  = [ r l . . . r p ; S , . . . s q ( ~ ; ~ , a ) ,  

and the matrix ~ by 

(2.8) a) = a). 

Notice that, by the definition of &, we have 

(2.9) J/r = 0 

which yields, by differentiation 

(2.10) J/r, + J/r;, = 0 

and thus, 

(2.11) I t ,  = Yr;," 

By differentiating (2.10), one gets 

(2.12) )'rst + J/rs;t + J/rt;~ + Yr;~t ---- O. 
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2.2 Geometrical structures 
Under a differential geometric viewpoint, the statistical model M may be set 

up as a differentiable manifold and, for this purpose, two parallel constructions 
have been made. The first approach consists in equipping Ad with an "expected" 
geometrical structure and is particularly useful in connection with Edgeworth ex- 
pansions for the maximum likelihood estimator under curved exponential models 
(see Amari and Kumon (1983), Amari (1985)). The second approach, based on the 
conditional inference standpoint, has been developed by Barndorff-Nielsen (1986b, 
1988). In this framework the model is rigged with an "observed" geometrical struc- 
ture and this construction requires mixed derivatives of the log-model function, as 
defined by (2.5) and (2.7). We now recall briefly these two structures. 

The expected geometrical structure 
Here, the metric tensor is the expected information matrix i, defined by 

c~ 

i~  = E(l~l~), r,s = 1 . . . .  ,d, and a family of a-connections F, the expected ~- 

connections, is determined by the Christoffel symbols Ft~ given by Ft~ = it~F~su 
and 

1 - - o ~  
(2.13) F~st = E(l~slt) + - - ~ T r ~ t ,  c~ real, 

where [i ~s] denotes the inverse matrix of i and 

(2.14) Trot = E(lrlflt), 

the so-called expected skewness tensor, is a covariant tensor of rank 3. Here and 
in the following, we adopt the Einstein summation convention. 

The observed geometrical structure 
First the model is equipped with a metric tensor given by the matrix ~. Then 

a collection of connections, the observed m-connections on A4, is defined by 

(2.15) ~rs .tu = ~ ~rs~, ~ real, 

with 

(2.16) 
1 - - ( ~ _  , 

where 

(2.17) = - ( L s ,  + 

is a covariant tensor of rank 3, analogous to the skewness tensor T~t and referred 
to as the observed skewness tensor. The symbol [ ] indicates a sum of similar 
terms (here 3) corresponding to appropriate permutation of the indices. 

We are mostly interested in the particular cases: 

1 - 1  

(2.18) F~st = Y~s;t, ~ ~ t  = J(t;~, 
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which constitute the first terms of the following geometrical objects which appear 
in the various expansions we are concerned with. 

Let 

(2.19) 

(2.20) 

[ ; ~  . . . 8 ~ = ~ r r ' ~ ~ 1 [ . l ~ ~ ; r , t ~ 1 , 

It is shown in Barndorff-Nielsen (1986a) that the sets of arrays ~1 ;r = { L l . . . s , , t  > 

1} and ]~-1 = { Y~l...s~, t _> 1} are special instances of geometrical objects referred 

to as connection strings. Notice that {y;~ ;~ ~ , ~/~ls~ } and { ~/~1, ~/~2 } characterize 
respectively the (1)- and (-1)-observed connections (see also Barndorff-Nielsen 
and Blmsild (1987a, 1987b, 1988) for general settings). 

Now let w0 be an arbitrary point of A/[ and let (C a) be the coordinate system 
around w0 given by 

(2.21) 
! 

ca((..d) = ~aa (020) ya,((.DO;O.))" 

Then, in this particular coordinate system, the observed connection string ]~-1 
reduces to 

F~ (p) = 6~ and F a bl...b~(P)=0 t >  1 

(cf. Murray and Rice (1987), Blmsild (1990)). 
Using such a parametrization for the statistical model will lead to some sim- 

plifications in the expansion for the maximum likelihood estimator, as will appear 
from the following. 

Finally, given any connection F, by repeated covariant differentiation of F r 8182 
relative to F, a special connection string referred to as the "canonical connection 
string generated by F" may be defined (cf. Barndorff-Nielsen and Bl~esild (1987a)). 

The (1)- and ( -  1)-connection strings ]~1 and ]~-1 and the canonical connection 
strings generated by the connections ~1 and ~-1,  respectively, will be considered 
in Section 5. 

2.3 Exponential models 
We shall be concerned with a core, i.e. full and steep, exponential model S of 

order k, in the sense of Barndorff-Nielsen (1988), with model function p(O; x) = 
exp(0, x -  K(0)),  where K(O) denotes the cumulant function of a given dominating 
measure p and where the parameter 0 and the statistic x are k-dimensional vectors, 
0 = (0i)i=l ..... k and x = (xi)i=l ..... k. Let m = K~(O) = Ee(x). The domain of 
values of m is denoted by T = KI(O), where O is the domain of the parameter 0. 

The mean value m provides an alternative parametrization of S. We shall 
denote by H the inverse of K r, i.e 0 -- H(m) .'. ~. m ---- K'(O). 

By restricting 0 to be a smooth function of a d-dimensional parameter w 
(d < k), that  is 0 = ~(w), such that the domain 12 of values of w is open and 
~'(w) is of rank d for any w in ~, we obtain a curved subfamily Az[ of S whose 
model function is p(w; x) = exp(~(w) • x - K(~(w))). We denote by 7/(w) the mean 
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value m expressed as a function of a;, i.e. m = ~(o~) = K'(~(w)) .  Geometrically 
speaking, the model S may be viewed as a k-dimensional manifold and the model 
3~t as a d-dimensional submanifold of S. We shall assume that Ad is a regular 
submanifold in ,3. 

The model S is equipped with a Riemannian metric tensor gij given by 

9~j(o) = Oo, Oo, K(O) = K~j(O), 

or equivalently, in the m-representation of 8, by a metric tensor 9ij (rn) where gij 
denotes the matrix H t. 

c~ 

Then, a family of a-connections Fija is defined by 

Fijk(O)a _ ~-1 - aOo~OoJOo~K(O ) _ 1 -_2 aKi jk(O) .  

In the submodel 3,1 the log-likelihood function is denoted by 

(2.22) l(w; x) = ~(~) . z - K(~(aJ)), 

and the score vector I. = (lr)~=a ..... d is 

(2.2a) t,.(~; x) = ~}~(~){x~ - K i ( ~ ( ~ ) ) ) ,  

where r/i(w). Moreover, the ~}r(w) = O ~ i ( w )  and Ki( ; (w) )  = Oo, K(¢(w))  = 
second order partial derivatives of I with respect to 0~ are 

(2.24) l~,(w;x) i = ¢ / ~ ( ~ ) { x ~  - ~ :~ ( ; (~ ) ) }  - 4 } ~ ( ~ ) ~ ( ~ ) K ~ ( 4 ( ~ ) ) .  

The model A/I may he equipped with a metric tensor g~ given by 

(2.25) 9 ~ ( ~ )  = ~ } r ( ~ ) ; ~ ( ~ ) g i J ( ; ( ~ ) )  

and with a family of a-connections F~ t  given by 

c~ i 02 J c~ r ~ ( ~ )  = ~}~(~)¢~(~)9~j (~(~)) + ~/~( )~/~(~)~(~)r~sk (¢(~)). 

This geometrical structure is that naturally induced on 34 when ,~ is equipped 
c~ 

with the metric gij and the family Fijk. 
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2.4 Ancillary statistics for core exponential families 
Prom the viewpoint of conditionality, the basis for inference on w is the condi- 

t ional distr ibution of the maximum likelihood estimator & of w given an ancillary 
statistic a. 

We shall recall briefly how an ancillary statistic a may be introduced (see 
Amari  (1985) and Barndorff-Nielsen (1983, 1987, 1988) for further specifications) 
for the model M .  

First, notice tha t  for the core exponential model 8 and for an observed value x, 
the maximum likelihood estimator 0 of 0 is given by 0 = Kt(x) and the maximum 
likelihood est imator rh of m is given by rh = x. For the model .£4, the maximum 
likelihood est imator & of w must satisfy the likelihood equations 

(2.26) l, 0 i.e. K~(4(w))} 0, r 1, , d. ; . . . . . .  

For any given w in ~t, the d vectors ¢/l(w),.. . ,;/d(W), where i / r (  ) = 
i 02 (C/ r ( ) ) i=x  ..... k, r ---- 1 , . . . ,  d span the tangent  space T ~ 4  of A/[ at w. 

We may define a (k - d)-dimensional submanifold A(w) by sett ing 

(2.27) = e - e 

Let us consider the family A -- {A(w), w Ef t} .  
Then, a coordinate system v = (vl)l=l ..... k-d is introduced in each A(w) such 

tha t  the origin v = 0 locates the point ~(w) in M and such tha t  (w, v) may be 
regarded as a local coordinate system of S around AJ. Let the smooth transfor- 
mat ion from (w, v) to m be denoted by m = A(w, v) which reduces to m = r/(w) 
at any point (w, 0). 

Let us consider for a while the function A : (w, v) ~ m -- A(w, v), with 
m E A(w). 

We denote by B , 1 , . . . ,  B,k-d the k - d vectors spanning (T~M±). 
Then 

( 2 . 2 8 )  v)  = ov,Ai( , v)  --  

Furthermore,  

(2.29) ¢}r(w)B~l(w)=0,  r = l , . . . , d ;  l = l , . . . , k - d .  

In terms of maximum likelihood estimators, first notice tha t  from (2.26) and (2.27) 
we have x = rh C A(&) and then we may represent the point x in terms of the new 
coordinate system as x = rh = A(&, a) where the auxiliary statistic a is depending 
on the family A. 

The statistic (&,a) forms a sufficient statistic and the first log-likelihood 
derivatives may be writ ten as 

I~(w; &, a) = ¢~(w){Ai(&, a) - 7/i(w)}, 

= (/~,(w){A~(w, a) - qi(w)} - (/~(w)Ai/, (w). 
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If we take partial derivatives of l, with respect to & we get 

(2.30) = ~lr(w)Ail,(W, a). 

When S is locally parametrized by (w,v), the corresponding metric tensor 9a~ 
evaluated at (co, 0) is given by 

(2.31) 

where the indices a, ~ relate to the coordinates of (w, v). Formula (2.31) reduces 
to 

(2.32) = 

for the M-part ,  to 

(2.33) grl(~) = 0 

for the mixed part, by the use of (2.29), and to 

(2.34) glk (W) = Ai/l (w)Aj/k (w)g ij (w) 

for the A-part. The matrix 9~k(co) is the metric of A(co) at v = 0 and it may be 
assumed that the coordinate system v in any A(co) is such that 

(2.35) 9Zk (w) = constant 

is valid for all co, at v = O. 

3. Expansions for the score vector 

In this section we derive asymptotic expansions for the distribution of the 
score vector in the following frameworks: 

1) Approximation to the marginal distribution of the score vector. 
2) Approximation to the conditional distribution of the score vector for a 

given ancillary statistic a, under curved exponential models. 
3) Approximation to the conditional distribution of the score vector for a 

given ancillary statistic a, by the use of the p*-formula. 
In the two first cases the model ~4 is equipped with the expected geometrical 
structure while the use of the p*-formula corresponds naturally to the model ~4 
being equipped with the observed geometrical structure. 

The three resulting expansions appear as formulas (3.4), (3.15) and (3.22) 
below. 
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3.1 Marginal expansion for  the score vector 
In this subsection we apply the Edgeworth approximation of order two to 

the marginal distribution p(1,; w) of the score vector (see, for example, Skovgaard 
(1986) for precise settings concerning multivariate Edgeworth expansions). 

We need to introduce the Hermite polynomials H(/ , ;  i) corresponding to the 
score vector l,, the covariance matrix of which is i. We shall use a contravariant 
version of the first polynomials H,  i.e. 

(3.1) 

H r ( l , ; i ) = l  r, H ' S ( l , ; i ) = l ~ l ~ - i  rs, 

HrSt(l , ;  i) = lrl~l t - l~ iSt[3], . . . , 

Hr~tu'~(1,;  i) -- l~l~Itl~'lVW - l~l~ltlUi~[15] + l~lSitui~w[45] 

-i~situivw[15] 

where 

(3.2) 
! 

l ' (w)  = i "~ l , , (w) ,  r = 1 , . . . , d  

denote the components of the contravariant version l* of the score vector. 
The symbol [ ] indicates a sum of similar terms obtained by appropriate 

permutations (see, for example, Barndorff-Nielsen and Cox (1989) for a general 
definition and properties of Hermite polynomials). 

The Edgeworth approximation of order two to the (unconditional) distribution 
of the score vector is given by 

(3.3) p[2][l,;w] = ~d( l , ; i ) {1  + QI(I,)  + Q2(I,)} 

where 

Ql(1,)  = ~K~,s,t(1,)H~*t(l ,;  i), 

Q2(1,) = 1K~,~, t ,u( l , )H~StU(l ,  1 rstuvw ;i) + ~-~Kr,s, tKu,v, , ,H (l,; i). 

Under ordinary repeated sampling of size n we have, in wide generality, 

(3.4) p( l , ;w)  = ~d( l , ; i ) {1  + QI(/ ,)  + Q2(1,)} + O(n  -3/2) 

where Ql(1.)  is of order n -U2  and Q2(I,) is of order n -1. 
The only part of this expansion which is not invariant under reparametrization 

is contained in the normal density function. 
To see this, note first that the Hermite polynomials H(x;  g), where x is any 

quantity, are affine (or Cartesian) tensors. In the particular case where x = I. it 
is easy to show that the Hermite polynomials behave as covariant tensors in the 
w-argument. Further, the cumulants of l. behave as contravariant tensors in w. 
Thus the correction terms in the Edgeworth expansion are invariant quantities; in 
particular, Ql( l . )  and Q2(l . )  are both invariant under reparametrization of the 
model M .  
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3.2 Conditional expansion for the score vector under curved exponential families, 
using expected geometry 

Let w be the true parameter  value and let us consider inference on w under 
ordinary repeated sampling with sample size n. In the case when repeated ob- 
servations are allowed, the geometrical structure of the parametric space is quite 
similar to the geometrical s tructure we defined above in Subsections 2.3 and 2.4 
and then we shall use the same notations. 

By using Taylor expansions, Amari (1985) showed tha t  the statistic T = 
(& - c o ,  a), where the statistic a is defined as an affine ancillary statistic, is asymp- 
totically normally distributed with covariance matr ix g~Z. 

Our aim is to follow the same procedure as Amari, tha t  is first to obtain 
expansions for the distributions of the statistics X = (l,, a), and a and finally to 
derive from these expansions an expansion for the conditional distribution of l,  
given a. 

Let us first examine the local t ransformation 

(3.5) (©, a) ~ X = O(&, a) = (l., a) 

where l. = l. (w; &, a). 
We denote by X~ the generic component of X which is rewrit ten as 

(3.6) Xr = Ir or Xl = a z. 

Notice tha t  (co, a) ~ (0, a) since/.(co; w, a) = O. 
The Jaeobian matrix of the t ransformation between X and (&, a) is given by 

(3.7) &9  = ~ / /~  

with 

(3.8) 

Jr,(&, a) = ir;,(co; &, a), 
grk(&, a) Oa~lr(co;(o,a) i ^ = = ~/r (co)&/k(co, a), 

& ( C ~ , a )  = Oa,a k = ~5~. 

The function A has been defined in Subsection 2.4. At the point (w, 0) these 
matrices reduce to 

(3.9) 

I t ,  = Jr,(w,O) = g,.s(w), 

Irk = Jrk(w, O) = ¢)r(co)Ai/k(co, O) = O, 

Ikz = & ( c o ,  0) = ~ .  

Thus YaZ is invertible and hence the t ransformation • is one-to-one around (w, 0). 
In order to obtain an Edgeworth expansion for the joint distr ibution of (/,,  a) 

we expand X = ~(&, a) around (w, 0). 
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Then 

(~.10) 

i.e. 

x .  -- ¢~ (~ ,0 )  + ¢~/,(~,O)T' 
+ - ~ / ~ 7 ( w , O ) T ~ T  ~ + ~ / ~ 7 e T ~ T ~ T  ~ + . . .  

From (3.10) it is easily seen that  the asymptotic covariance matrix t of X given 
by 

(3.11) ~a~ --- I ~ , [ ~ , g  ~'~' 

which may be decomposed into 

(3.12) ~ = g~,  ~k = 0, tkt  = gk l .  

Then, under mild regularity conditions, we may write the Edgeworth expansion of 
the distribution p(x; w) of X as 

(3.13) 

where 

p(3/; w) = ~k(X; ~){1 + QI(X) + Q2(X)} + O(n -3/2) 

Ql(x) = ~K~,f3,-~H~Z'~(X), 

and where the K-quantities denote the joint cumulants of ~: and the H-quantities 
denote the contravariant version of the Hermite polynomials in X with respect to 
the matrix ~. The terms Q1 and Q2 are respectively of order n -1/2 and n -1.  

By integrating (3.13) with respect to I. one obtains 

p(a; w) = ~k-d(a; gkl){1 + ~51(a) + ~2(a)} + O(~ -3/2) (3.14) 

where 

(ol(a) = 114 Hklmla ~ -6 k , l ,m  I )I 

1 T 7  T . ~  t , , rTklmk' l~m~l  ", ~2(a) = 1Kk,l,m,nHk~m"(a) + ~ k , l , m ~ k  ,l ,m ~ (a). 

p(L ;~  l a) - p (x ;~)  p(a; w) - ~d(l.; gT~) × 

Now, since 

1 + Q I ( ~ )  +Q2(x)  
1+ ~l(a) +~2(a) 
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one obtains the following expansion for the conditional distribution of the score 
vector, using the expected geometry, 

(3.15) p ( 1 , ; w [ a ) = ~ d ( l . ; g ~ ) { l  + C l ( X ) + C 2 ( x ) } + O ( n  -3/2) 

where 

and 

1 
3K H ~k~ "~ CI(X) = {Kr, s,tHrSt(l*) + 3Kr,k,lHr~(X) + r,s,k [X)~ 

6 

C2()~) l {K~,/3,.r,eH~Z're(X ) ktran = - Kk,t,m,nH (a)} 

_ / (  ~ , 

1 K H k l m l a ~ f K  , , , H  k ' t 'm '~  ~ + -~ ~,t,m ~ )l k ,t ,m (a) - K~,~,.~H~f~'~(X)}. 

It may be noticed that  alternatively, at least in principle, we could apply 
the Edgeworth approximation of order two directly to the conditional distribution 
p(l*;w I a) of the score vector I. given the ancillary statistic a. Thus, if we let 

K~;.(I. ]a), K~,~,t(1. l a), K.,~,,,~(l. ]a) 

denote the first conditional cumulants of the score vector, we obtain the following 
expression 

(3.16) p(l . ;w l a) 

= ~d( l . ;K, . . ( l .  l a)) 

× { l + l K r s t ( 1 . o  , ,  l a)Hr~t(1.;K~s(1., l a)) 

1 
+ -~K~,.,t,u(l. [a)HrSt~(1.;Kr,~(l. [a)) 

+ 1Kr,~,t(1,  l a)K~,v,~(l, l a)HrSt~w(1.;K~,~(l,  l a))} 

+ O(n-a/2). 

Usually the cumulants and conditional cumulants entering (3.15) and (3.16) 
are not known explicitly and therefore they can only be found by approximation. 
See for example McCullagh (1987), for more precise settings. 

3.3 Conditional expansion for the score vector, using observed geometry 
In this subsection we shall derive an asymptotic expansion for the conditional 

distribution of l. given an ancillary statistic a. 
The starting point is an asymptotic expansion for the conditional distribution 

p(&; w I a) of the maximum likelihood estimator &, for fixed value of the ancillary 
a, which was obtained in Barndorff-Nielsen (1986b). 
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This expansion may be wri t ten as 

(3.17) P(&;w l a) = p * ( ~ ; ~  la){1 + 

= ~d(& -- w; j ' - l ){1  + A1 + Ae + 0(n-3/2)}. 

The terms A1 and A2 are given by 

1 6rst 2 

1 [_3(6t  ~ A2 = 24 - [ tu ) {2 fS (grs tu  + [rst;u q- [rsu;t + [rs;tu) 

+ (6 - 1 I [3]){ + sly,,,  + 

2 

where [31, [~a] indicate appropria te  permutat ions  of the indices, 6 t = (d~ - a~) t, 
6 ~'~ = 6 r6~ , . . . ,  A1 being of order O(n  -1/2) and A2 being of order O(n  -1) under 
ordinary repeated sampling. 

We shall derive from (3.17) a similar expansion for the score vector. In fact, 
given the ancillary statistic a, the maximum likelihood est imator  & is in one-to- 
one correspondence with l. ,  at least locally around w, and the Jacobian of the 
t ransformat ion from & to l. is ll.=.l where l . ; . (w;&,a)  = [/~;~(w;&,a)]~,.~=l ..... d. 
When  c? is close enough to the true parameter  w, it is quite reasonable to consider 
/.;. as invertible because for & ~ a~ we have / . ; .  -~ j' which is invertible in great 
generality. 

Hence we obtain from (3.17): 

(3.18) p(1.;w l a)  = - w ; I -1 ) (1  + A 1  + A 2  + O ( n - a / 2 ) ) } .  

The next step consists in finding an asymptot ic  expansion for 6 = & - aJ in 
terms of l* = ~(-1/.. 

By  Taylor expanding l~(w, &) in its second argument  & around w, we obtain 

I V 6 stu 1 ~;~t(w)6s t + + " "  (3.19) /~(w;&) = y~(w) + yr;~(w)6 ~ + ~ ~ r~;~t~ 

which may be rewrit ten as 

1 1 ~ 6uvw . 

On solving for 6 ~ one gets: 

(3.21) 6~ = l~ 1 1/r l~ ~ _ l{y~  _ 3V~ vt ~1~.~ 
- -2 ~ '  6 u v w  r u t  t v w J  ~ - 4 -  " • • 
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with 1 u~' = l'Ul v, l m'w = UlVl w . . .  
By inserting (3.21) in each term of (3.18) and Taylor expanding, we obtain, 

after some algebra, an expansion ofp(l.; co I a) in terms of l*. The last step consists 
in collecting terms into invariant terms. Details of all these calculations are given 
in the Appendix.  The result is the following: 

Under ordinary repeated sampling and with relative error of order O(n -3/2) 

(3.22) p( l , ;w I a) = ~Od(l,; ~0{1 + BI + B2 + 0(n-3/2)}  

with B1 = (1/6)grst~rst and 

1 

1 rs tu  1 r s t u v w  

B1 and B2 being of order O(n -1/2) and O(n  -1) respectively. Here the  g-quant i t ies  
denote the contravariant version of the Hermite polynomials defined in terms of l, 
and ~(. The other quantities are covariant tensors given by 

(3.23) T,-,t = -(X,-st + Y,-s;t[3]), 

(3.24) ~i,~;t~, = ~/,,;t, - Y,,;. f ~ ; t J  vw, 

( 1 ) 
(3.25) Trst~ = - )/~st~ + Yrst;~[ 4] + ~(Yr~;t~ + Yr~;w~Ft~jw[6]) • 

We shall discuss these various quantities in Section 5. 

4. Expansions for the maximum likelihood estimator 

4.1 Expansions for the maximum likelihood estimator under curved exponential 
families 

For completeness, we mention here that  a detailed s tudy of the unconditional 
and conditional expansions for the maximum likelihood estimator,  under curved 
exponential  families and using the expected geometrical s tructure,  has been made 
in Amari (1985) and Amari and Kumon  (1983). 

4.2 Conditional expansion for the maximum likelihood estimator, using the 
expected geometrical structure 

From the viewpoint of invariance and geometrical interpretation, it is relevant 
to derive the conditional expansion for the maximum likelihood est imator  & via the 
conditional expansion for the score vector. As mentioned in Subsection 2.5, using 
the (locally) one-to-one transformation 1. --~ & yields an asymptot ic  expansion 
for the distr ibution of the maximmn likelihood estimator,  which is divided in two 
parts, a variant and an invariant. 

In Barndorff-Nielsen (1986b), 5 = & - ~ is modified into the bias corrected 
form as 8 ~ = © - w - Pl,  where the bias term #1 is given by 

1 c~r st  1 1 _I/~c~ I s t  
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and is of order n -1. 
Now, making the one-to-one transformation I. -~ &, one obtains from (3.22) 

(4.2) l a) 

= II,;,l~a(z,; D{1 + B1 + B2 + 0(n-3 /2)}  

= ~ d ( 6 ' ;  j-~)(~d(l,; j')/9~d(¢5'; J'-~))l/*;* 1{1 + B~ + B2 + "  "} 

where 

~Oa(1,; ])/qOd(6'; ] - l )  = []l-a exp { ~(t5 ''~ - l"*)],~ } . 

Next, we derive expansions for exp{ (1/2)(6 'r~ - 1 ~ ) l r s  } and 11.;. l I / -  1[ by inserting 
(3.22) in these two expressions. The explicit forms of these expansions are given in 
the Appendix. The last step consists again in Taylor expanding and then collecting 
terms of the same order. 

Finally one obtains the following expansion for the bias-corrected maximum 
likelihood estimator: 

(4.3) p ( S t ; w l a ) = ~ a d ( 8 ' ; ~ - I ) { I + B I + B 2 + . . . } { I + C I + C 2 +  . . . }  

where C1 = - ( 1 / 2 ) ~ t ; ~ 4  TM is of order n -1/2, and 

1 V Cl r~t~ - -  [ 3 ] ~ r s l  TM) 
C2 = -- ~ t r ;s tu~  

iv  v + ~ , t ;~  , ~ ; ~ , °  + + 4 l ~ ] ~ u t / I t ~  

_ 41tvfw~Ir~ _ it,~ffwt/I"~ + l ~ W ]  TM 

_ 2l,,Wff~] TM + 41s"]t~f  ~ _ 4l 'wl t~f f  ") 

/.I r l  

is of order n -1. 
The symbol [ ] indicates here a sum of 3 similar terms obtained by permuting 

the indices r, s, t. 
It may be noted that I rstu - [3]ff~/TM is a contravariant tensor of rank 4 in 

w. Also, the factor in C2 multiplied by the quantity Ytxs Yu;vw is a contravariant 
tensor of rank 6. 

The expansion we have obtained involves the product of two expansions, the 
first of which (with terms B1, B2, . . . )  is invariant. The second is related to the 
observed ( -  1)-connection. 

Thus, if we use the special coordinate system given in (2.21) as a parametriza- 
--1 --1 

tion for the model, the quantities ]7 / i ~st, ]7 r~tu,"" can be made to vanish. With 
this choice of parametrization, the expansion for & reduces to 

(4.4) p(5';w I a) = ~d(5 ' ;1-1){1+/31 + B2 + ' - . } ,  

since in such a coordinate system one has 

and 
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5. Interpretation of terms 

The aim of this section is to discuss the geometrical aspects of the different 
terms involved in the various expansions we have been considering. 

In the expansion (3.4) for the score vector all the correction terms are com- 
posed of tensors, as has been already pointed out in Subsection 3.1. 

In the case when we consider a curved exponential model, the expansion (3.15) 
for the score vector obtained by using the expected geometry has not been inter- 
preted yet. 

In the expansion (3.22), using the observed geometry, other types of tensors 
are considered. 

First the observed skewness tensor ~rst given by (2.17), which is analogous to 
the expected skewness tensor T~.st. 

Two other tensors, Tr.stu and ~s;tu, given in formulas (3.25) and (3.24), appear 
in the expansion. 

The tensor ~rstu was introduced by Barndorff-Nielsen (1986b). It is obtained 
from the tensor T~st by covariant differentiation with respect to the (1)-observed 

1 

connection y' and by symmetrization, namely ~stu = (1/4)(]~lu(~'~.st)[4] • The }i- 
tensor was introduced by Barndorff-Nielsen (1986a) in a paper discussing strings 
and tensorial combinants. In that paper, the ~I-tensor is derived from the observed 
(1)-connection strings by a construction referred to as "intertwining" of strings. 

The }i-tensor may be related to the observed (1)- and (-1)-connection strings 
in different ways and in particular to the observed (1) and ( -1)  Riemannian cur- 
vature tensors. 

1 1 

First, consider ~ and let us introduce the curvature tensor ~t~.st,~ associated 
1 

with F- 
By definition, 

(5.1) 
1 1 1 1 1 1 1 

v • v 

Since 

and 

one obtains 

1 

1 1 

y y 
r v U  .st  --~ r v ; u  8 t ; w  ' 

1 

+ Y.st;   - 

By using the equation ~/~.st + Yr.s;t + ~/~t;.s + ~/~:.st = 0, one finally gets 

( 5 . 2 )   trstu =  st;ru -  rt; u- 
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- 1  - 1  

In the same way, considering F and ]~ ~t~, one finds 

- 1  

( 5 . 3 )  = - 

There is a similar relationship for corresponding expected quantities from curved 
exponential families 1 R~stu = Hst;ru - H~t;su where Hst;~u is the inner product  of 

lk - l t  the (1) and ( -1)  imbedding curvature tensors, i.e. H~t;~ = H~t H ~  qkl where 
H~t k and H~-~' are the components of the imbedding curvature for the (1)- and 
(-1)-connection, respectively (see Amari (1985)). This interpretation can be ex- 
tended beyond curved exponential family models by using Amari's idea of local 
exponential family, see Amari et al. (1987); see also Vos (1989). Because of the 
structure of the ~i-tensor, it is not obvious that  a similar interpretation of the 
~i-tensor may be derived for the observed curved exponential approximation. A 
clearly geometric meaning of the ~i-tensor is still missing. 

However, it is possible to relate the ~i-tensor to the observed (1)- and ( -1)-  
connection strings also in the following way. 

Since 

~lrs;tu -~ Yrst;u 

1 1 1 
V " = + 

1 1 1 
W V " 

we have, denoting covariant differentiation relative to ~ and with respect to w t by 

(5.4) 
1 1 

~rs ; tu  -~ ~ t ( ~ V s ) ~ v u  --  Yrst;u 

1 1 
; -  . 

= - L 3Jw 

We get a similar expression for the observed (-1)-connection, namely 

Therefore formula (5.4) expresses the ~-tensor as the difference between ]~ (y;~:) 
1 

which belongs to the canonical string generated by ~ and the corresponding term 
1 

in the connection string ]~. Except for this, we could not find any satisfying 
geometrical interpretation of this ~i-tensor. 

One has an analogous result for the ~-tensor expressed in terms of the observed 
( -  1)-connection. 

We may notice that  for (k ,k )  exponential models one has •rst -- Kr,s,t, 
T~stu = Kr,s,t,~ and ~i~s;t u = 0. The conditional expansions for the score vec- 
tor, given in (3.16) and (3.22), are quite similar. We may relate the observed 
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tensors T~st and T,-~tu - (1/2)~i~;t~[6] to the cumulants of order 3 and 4 in (3.16), 
respectively (for (k, k) exponential families these observed tensors reduce to the 
observed cumulants of order 3 and 4). The extra term in (3.22) which is now found 
in (3.16) should be ascribed to the different geometrical structure involved. 

Finally we shall comment on the variant part of the expansion (4.3) obtained 
for the conditional distribution of the maximum likelihood estimator. 

The correction term of order n-1/2 contains the Hermite polynomial Ill TM (l,; ~) 
- 1  

and the term Yt;~8 = ~' ~st" In the correction term of order n -1 we collected terms 
in order to emphasize the various terms Y~;st, ~/~;~t~ entering it and which belong to 
the (-1)-connection string. The remaining terms are not explained yet. In Amari 
and Kumon (1983), they give an expansion for the conditional distribution of the 
maximum likelihood estimator with correction terms of order n -1/2 and n -1. It 
may be noted that only the correction term of order n-U2 is given a geometrical 
interpretation. 

6. Concluding remarks 

The score vector appears to be a main tool in constructions of expansions that 
can be expressed in terms of invariant and geometrical quantities. Nevertheless 
the last expansion obtained in (4.3) is not quite satisfactory, since all the terms 
contained have not yet been given a clear geometrical interpretation. The question 
is how to build a procedure, based on the intrinsic geometrical properties of the 
score vector and the theory of strings, giving a geometrical interpretation. 

Another point concerns the link between the order of the correction terms ap- 
pearing in the expansions obtained above and the corresponding tensors contained 
in these correction terms. It appears that for approximations with error of order 
n -1 the tensors required are the metric tensor and the skewness tensor, in both 
the expected case and the observed case. If we consider correction terms of order 
n -1 other tensors appear, namely the ~i and ~ s t u  tensors, which are again related 
to the observed geometrical structure defined on the model. Thus, these tensors 
seem to be fundamental geometrical objects but in a sense which has not been 
fully elucidated yet. 
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Appendix 

PROOF OF FORMULA (3.22). From (3.18) and (3.21) we obtain the following 
expansions: 

1) ((Iz.; .I)/(lll)  = 1 - L . j  

"s "~'w 1,' 1,1tu + I  I + .  
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Here we use the differentiation formulas: 0~loglA I = aJiOraij  and O,.a ij = 
- a i k a l J O r a k  l where A ~- [aij] is any positive definite mat r ix  and A -1 = [aiJ]. 

2) exp{ 1 ~.~. "1 exp{ l l "*  ~ 

1 g U st 1 1/ 1 Ir 1 rstu 
x 1 + ~t~;~t  - g t , ; r s t t ~  ~ 

1 V V I rstuvw } q- -g it;st ,u;vw 4- O(rz-3/2) " 

3) A1 = 
2 1 ~s ~/"st (}/,',;t + ~ Yrst) - ~ J  (L,;~ + L,0z* + 

1 rs tu 
"{- 4 { 1  l (Yrs;r q- Yrsr)Yt2  

g r lrstu 
- (2L~, + / , ; , t a D , , ~  + o(n-3/~)}. 

4) The  t e rm A2, of order n -1,  in (3.17) is rewri t ten in terms of l " . . .  , just  
by making the subst i tut ions 8 r -+ F,  5r, ~ Us . . . .  Finally we obtain 

p( l , ;~  l a) = ~d(l,; ~){1 + B1 + th  + . . . }  

where 

1 Us t / 2 B1 = - ~trSlt(~rs;t  + ~rst)-k-~ L ~rs;t-b ~ ~rst)  

is of order rt -1/2 under ordinary repeated sampling of size n, and 

B2 ~ (ltu . tu . rs = - - ~ ){2t  (L~.~ + L.,;~ + Y.~;~ + Y~,~,,) 

+ ( z f ~ F  TM - f~fl~)(L~;~ + L~3(Lw;.  + L,~,,)} 

+ ~t"~(L~;~ - + L~-)Y~. + f~z~"L;~-5.  

1 rs tu vw 

1 (Ust ~ { + ~ - f~F ' [3] )  (3L~,~ + s l y , ; .  + 6L~;..) 
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2 

1 rstu .vw l l r s t u  .vw 

1 irst u 

+ + 2 + 2 l/ t )  ~( lrstuvw- f's[tu]vw[I5]) (~vw;~ ~v~o~) (Y~s;t 
/ 

l=v  

is of order n-1. 
The last step consists in collecting terms such that geometrical quantities 

appear. 
For B1 it is easily seen that 

B1 ~- ~ g r s t (  z*; ~)Trs t"  

For the terms of order n -1 the calculations are longer but the expression of 
B2 finally reduces to 

1 

1 rstuvw 
+ ~ %~,T~v~. 

PROOF OF FORMULA (4.3). 

(~d(1,;~)/(~d(5';~-l)))= Ij',-i exp {~(5  ' ' ~ -  I'~)~,~}. 

Introducing the expansion (3.21) for ti in this expression and developing leads to 

(~d(l.;l)/(Sa(5';]-l))) = IJ'l-l{1 + A i + A; + . . . }  

where 
All - _  1 V l TM 1 ¥ frs f l  

is of order n -1/: and 

A ~ =  - 111 1 ~stu 
-6 tr;stu ~ 

+ ~ w ~ ( 4 L ; ~ v y w ; j  vw + L: ,~G;~d w - L ~ L ; v d  w) 

+ l l~u1"~Y(-2L; , s  G;,~ + L; ,~L;w) 

1 V lrstuv w 1 V V ~rs]tu]vw 
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is of order n -1. 
Using the same method  for I/,;,ll~(1-1 we get I/,;,11[I - ]  = 1 + A~' + A~ ' + . . -  

where A~' .,.s t n - l~2  = [ l Yt;r8 is of order and 

l ltu rs ,w 

is of order n-~.  
Inserting these two expressions in formula (4.2), developing and collecting 

terms yields the final result (4.3). 
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