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Abstrac t .  Our aim is to investigate a way to characterize the elements of a 
statistical manifold (the metric and the family of connections) using invariance 
properties suggested by Le Cam's theory of experiments. We distinguish the 
case where the statistical manifold is flat. Then, there naturally exists an 
entropy and it is proven that experiment invariance is equivalent to entropy 
invariance. If the statistical manifold is not flat, we introduce a notion of local 
invariance of selected order associated to the asymptotic (on n observations, n 
tending to infinity) expansion of the power of the Neymann Pearson test in a 
contiguous neighborough of some point. This invariance provides a substantial 
number of morphisms. This was not always true for the entropy invariance: 
particularly, the case of Gaussian experiments is investigated where it can be 
proven that entropy invariance does not characterize a metric or a family of 
connections. 

Key ~zords and phrases: Statistical manifold, Amari connections, comparison 
of experiments, likelihood expansions, asymptotic properties of tests. 

I. Introduction 

In the very last few years, many authors have pointed out the importance of the 
differential geometrical tools in Statistics (Chentsov (1972), Efron (1975), Amari 
(1982, 1983, 1985, 1987), Amari and Kumon (1983), Millar (1983), Barndorf- 
Nielsen et al. (1986) and Barndorf-Nielsen (1987)). 

It seems that  the natural frame in this context is the notion of statistical 
manifold (Lauritzen (1984) and Le Cam (1986)) i.e. a Riemannian manifold with 
a pair of dual torsion free connections. This is equivalent to consider a triple 
( E , g , T ) ,  where E is a manifold, g a Riemannian metric, and T a symmetric 
covariant tensor of order 3. Indeed, it is worthwhile to consider most of the 
introduced geometrical tools in this framework (Amari's connections, Barndorff- 
Nielsen's expected geometry, family of connections associated to a C-estimator 
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(Eguchi) or quasi-maximum likelihood estimators (Lauritzen (1984)). 
Considering a particular triple (E, g, T) where E is a family of probabilities, 

a fundamental  problem raising then, is what is remaining of a statistical prob- 
lem after a reduction to the statistical manifold. This problem has obviously two 
faces: the first one consists in investigating the kind of morphisms that  may be 
statistically important  for a geometry to be invariant with. The second part is, 
of course, given a class of morphisms (statistically interesting), "what are the sta- 
tistical manifolds that  are invariant under this class and more precisely, when is 
a geometry uniquely determined, or, in other words, what class of morphisms is 
determining the geometry?" For the first part, our approach found its motivation 
in the work of Chentsov (1972). In a decision theory framework, Chentsov con- 
structed a geometry where two experiments E1 and E2 are equivalent if you can 
pass from one to the other through two Markov kernels. This is perfectly natural 
from a decision point of view, since, in this case, for every chosen loss function, 
and every decision made upon El ,  there is a decision made upon E2 with the same 
risk function, and conversely. 

It is proven in Section 3 that ,  in linear exponential families, the Markov mor- 
phisms can be characterized in terms of invariance of the entropy function. Hence, 
the notion has a natural extension in a general flat manifold, where E needs not 
to be a probability measure space. Another aspect of this class of morphisms 
is that  it can be relatively small: it is shown, in Section 5, that ,  although they 
happen to determine the geometry in simple cases (for instance when the entropy 
is quadratic (Proposition 5.1)), in the general case, this is not true (Proposition 
5.2). This is one of the reasons why this class has been extended in Section 4, con- 
sidering morphisms that  are asymptotically preserving the Neyman-Pearson test 
power function respectively at the first and second orders. The essential result 
of this section is that  those approximate Markov morphisms can be characterized 
as those leaving invariant respectively the geometries (E, F)  (the classical Fisher 
Riemannian geometry) and (E, F, T) (the Amari 's geometry). Here again, the no- 
tion has a natural extension in a general statistical monifold. But, this time, the 
manifold needs not to be flat. 

2. Definitions and notations 

2.1 The experiment E 
We consider a measurable space (fl, A) with a family of probabilities Pe defined 

on (fl, A), 8 varying in an open connected subset O of •k. The family E = {Pe, 8 E 
O} is assumed to satisfy the following conditions: 

1) For every 8 in O, Pe is absolutely continuous with respect to a given a- 
finite measure #. We shall denote by p(., 8) the Radon-Nikodym derivative of Pe 
with respect to #: 

p(x, 8) -- dPe (x) 

2) p(x, .) is in C3(O) for #-almost all x in 12. 
3) If 0~ denotes the differentiation 0/08~, and l(-, 8) -- logp(-, 8), then the 

functions Oil(., 8) (i = 1 , . . . ,  k) are in L2(dpe) and are linearly independent. This 
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shows that F~j(O) = Ee[Oj(x,O)Ojl(x,O)] is finite for every i , j  = 1 , . . . , k  and 0 
in O. In particular, the Fisher matrix F(O) = (Fij(O))l<i<k,l<j<_k is (strictly) 
positive-definite for every 0 in f). 

4) The mapping 0 --* F(O) is of class C 1(O) and the quantities: 

T jk(O) = EoOJ( , O)O l(z, O)Okt(x, O) 
r jk(O) = EoO, O)Okl( , O) 

and 

are finite, with 

2EoOiOjOkl(x, O) = O~Fjk(O) + OjFik(O) + OkFij(O) + Tijk(O) 

for every i , j  = 1 , . . . , k  and 0 in e .  
5) If Ro(', h) denotes the remainder of the Taylor expansion of logp(x, 0 + 

h) - logp(x ,  0) up to order 3, we assume that Ihl3Ro( ., h) is uniformly bounded by 
a function ¢ which has moments up to order 3 for each 0 in O. 

Following Amari's formulation (1985), under the previous assumptions, the 
family E is sufficiently smooth to permit the introduction of a k-dimensional man- 
ifold structure on the statistical model, with 0 E O playing the role of a coordinate 
system. 

Rao (1945) has proven that the Fisher-Rao metric F(O) defines a Riemannian 
structure on E letting Fo (Oi, Oj) = Fij (0) where 0i denotes 0/00~ the natural basis 
vector of the tangent space at the point 0 and Fo(Oi, Oj) the inner product of the 

Ot 

two vectors in the metric F(O). Amari (1985) introduced the a-coxmections V, 
with T(Oi, Oj, Ok)lO = Tijk(O), and if T(E) is the set of vector fields of E, 

VX, Y, Z • T(E), 
c~ 0 

F ( V x Y ,  Z) = F ( V x Y ,  Z) - ~T(X ,  Y, Z) 
2 

0 
where V is the Riemannian connection associated with F. 

A particularly interesting example for the experiment is the following linear 
exponential family. Let B(R)  be the Borelian a-algebra on R. 

DEFINITION 1. A statistical experiment is a linear exponential family if and 
only if there exist k measurable mappings: Sj : (f~, A) --. (R, B(R)) ,  such that: 
VO • O, p(x, O) = exp((0, S(x)) - h(0)} where S = ($1, . . . ,  Sk), (0, S) = Y~ 0~Si, 
and exp h(0) = f~ exp(0, S(x))d#(x). 

We shall take O to be the interior of the domain of definition of h and assume 
that it is convex. 
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2.2 Statistical manifolds 
Let us consider a statistical manifold (Lauritzen (1984)) e.g. a triple (E, 9, R), 

where E is a Riemannian manifold, g is the metric and R is a covariant symmetric 

tensor of order 3. It is equivalent to consider ( E , g , V , a  • R), where the V are 
constituting the family of torsion free connections associated to (E, g, R) through 
the following formula: 

c~ 0 

g(V xY, Z) = g(V xY, Z) - (a/2)R( X, Y, Z), VX, ]I, Z • T(E). 

0 

V is the Riemannian connection associated with g. 
At this stage, E does not need to be a family of probabilities, but if E is 

an experiment most of the geometrical tools may be relevantly considered in this 
framework (Amari's connections (1985), Barndorff-Nielsen's expected geometry 
(1987), family of connections associated with a C-estimator (Eguchi (1983)), quasi- 
likelihood (Lauritzen (1987))). 

One says that  (E, g, V, c~ • R) is the likelihood statistical manifold associated 

to an experiment E if g is the Fisher metric (Rao (1945)) and V are the Amari 
connections (1985). In the particular case of the linear exponential family experi- 
ment, the likelihood statistical manifold associated with the family E is such that ,  
in ~-coordinate: 

Fe(O{,%) = Fi (O) = O jh(O), 

T(Oi, %, Ok)[o = T jk(O) : O kh(O ). 

2.3 Invariances of metrics and connections in manifolds 
Let E ~ = {Po, 0 E 0 r} be a regular submanifold of E and ¢ be a mapping 

defined on E'  such that  ¢ is a diffeomorphism on its image. Let ~ be the associated 
diffeomorphism defined on O' by ¢(P0) = Pv(o). Let us introduce the following 
notations: for X,  vector field of T(Er): X ¢ is the induced vector field i.e. the 
vector field such that  for every C a function k on ¢(E~): 

X*k(.)l¢(p~) = Xk(¢(.))lp~, Vfo • E'. 

g¢ is the induced metric i.e.: 

9( X¢, Y¢)I¢(P~) = g¢( X¢, Y¢)IP~, VP~ • E'. 

V ¢ is the induced affine connection i.e.: 

Vx~Y¢l¢(pe) = VC~Y¢Npo, VPo • E'. 

Let us recall the following definition (cf. for example Wolf (1967) and Spivak 
(1979)). 
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DEFINITION 2. Let ¢ defined as above. One says that ¢ is an isometry for 
the metric g (resp. an affine diffeomorphism for the connection V) or that g (resp. 
~7) is invariant under ¢ if and only if, for every X and Y vector fields on E I, 

(2.1) g(X,Y) = gO(XO, Y ~) 

(resp. 

(2.2) V x Y  = 

Remarks. 
1) The essential meaning of this invariance is that ¢ preserves the curve length 

(resp. maps geodesics into geodesics). 
2) In coordinate (01,. . . ,0k), choosing X = 0i, Y -- 05, ~ = (~ l , . . . ,~k) ,  

then 

0ta t 0 

l 
g¢( X¢, Y¢)lPo = (tD~]o g(-)]¢(0) D~lo)ij 

and (2.1) is equivalent to: 

(2.1') tug(-)lo u = tutD~lo g(-)Jv(o) D~lo u 

Vu e R~/ ~ u'O~ • To(E'), VO • O, 

where D~ is the Jacobian matrix of ~, tD~o is its transposed, and g ( - )  denotes 
the matrix composed by the g(Ol, Om)lPo (also denoted glm(0)). 

3) Let g~ be any metric on the statistical experiment which is invariant with 
respect to ¢, then (2.2) is equivalent to gt(VCCY ¢, Z ¢) = g~(VxY, Z) for every X 
and Y vector fields on Eq So that, if Fiil denotes g(Vo, Oj, Oz), (2.2) is equivalent 
to:  

(2.2') 0 2 ~  } ,,~o,3,,~ 0 C  0~ ~ 0~mr~m(~(0)) + 0~ ~ 

i j l  -- ul u2uaF~jz (0) 
~/'Ul,U2,?~3 E Rk/?~iOi E To(E'), VO E O. 

DEFINITION 2'. A metric g (resp. an affine connection V) on a manifold E 
is said to be locally (at the point 0 °) invariant under a morphism ¢ defined as 
above on E ~ if ¢ is a local isometry (resp. a local affine diffeomorphism) i.e. if (2.1) 
(resp. (2.2)) is true at the point 0 °. 
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3. Markov morphisms in experiments and entropy morphisms in flat statistical 
manifolds 

3.1 Markov morphisms 
Let us recall some classical tools of the statistical decision theory (cf. Millar 

(1983), Le Cam (1986)): 
i) Let (12, A), ( ~ ,  A ~) be two measurable spaces. ~r: 12 x f~ ~ R is a Markov 

kernel from (f~, A) to (f~', A') if: 

Vw E ~t, 

VB E A ~, 

r(w, .) is a probability measure on (~', A') 

r( . ,  B) is A-measurable. 

If P is a probability measure on (fl, A) and ~ a Markov kernel, let us denote by 
lrP the probability measure on (fl~, A~): f iv(w, .)alP(w). 

ii) Let E = {Po, 0 E O} (resp. {Qo, 0 E O}) be an experiment on (fl, A) 
(resp. ( ~ ,  At)) indexed by O, E and E ~ are said to be equivalent if there exist a 
Markov kernel ~ from (~, A) to (~T, A'), and a Markov kernel ~r' from (IT, X )  to 
(12, A), such that  V0 E O, Po = ~r~Qo, Qo = rPo. This notion is natural from a 
decision point of view, since, in this case, for every chosen loss function and every 
finite decision made upon E, there is a finite decision made upon E p with the same 

risk, and conversely. 

DEFINITION 3. Let E1 = {Po, 0 E T1} be a regular submanifold of E = 
(Po, 0 E O} of dimension r (r > 0). A diffeomorphism ¢ :  Po ~ ¢(Po) = P~(o) E 
E, from E1 to E2 -- {Pv(o), 0 E T1} is called a Markov morphism of the experiment 
E if the 2 sub-experiments E1 and E2 axe equivalent. 

3.2 Entropy morphisms in fiat statistical manifolds 
Let us recall tha t  (E, g, R) is said to be fiat if it is flat for one of the c~- 

connections (say a0). This notion is equivalent to the existence of a canonical 
system of coordinates v (where the ao-geodesics axe straight lines) and an entropy 
function h such that  g and R are derived from h through the formulas: 

gij = g(Oi, Oj) = Oijh, 

R jk = R(O , Oj, Ok) = O jkh, = 0/0T,) 
Amari (1985). 

For instance, the likelihood statistical manifold associated to a linear exponential 
family is fiat, with a0 = +1, T = O. In this case, the following morphisms appear 
to be particularly relevant: let E p be an r-dimensional regular submanifold of E 
(r > 0). E ~ will be assumed to be s0-convex (i.e. convex in T-coordinate). 

DEFINITION 4. Let ¢ be a morphism defined on E p, ¢ is said to be an entropy 
morphism of the fiat statistical manifold E if and only if: 

1) ¢ is afiine in T coordinate. 
2) The mapping h o ¢ - h is affine in T coordinate over E r. 
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3.3 Markov morphisms in linear exponential families 
The following proposition gives a characterization of Markov morphisms in 

linear exponential families. 

PROPOSITION 3.1. If E is a linear exponential family, 4 a Markov morphism 
defined on an  r-dimensional submanifold El = {Pe ,  8 E T ' ) ,  then: 

1)  4 can be extended as a Markov morphism to C(E') corresponding to the 
convex hull of TI i n  8 : C ( E 1 )  = {Pe ,  8 E C ( T 1 ) )  

2)  4 is  an entropy morphism of the likelihood statistical manifold associated 
with El i.e.: 

a)  cp is an a f ine  mapping: 

cp(8) = A0 + b, V8 E C ( T 1 )  

P)  the mapping 8 + h(cp(8)) - h(8)  is afine i.e. VO I a I 1, V81,82 E C ( T f ) ,  

The proof of Proposition 3.1 is based on the following lemma (Chentsov (1972), 
IV, Section 18, Lemma 18.7). 

LEMMA 3.1. If a pair of mutually absolutely continuous probability distribu- 
tions on X ,  A, {Po, P I )  is Markov equivalent to a pair {RQ, R 1 )  on Y ,  B, i.e. 
two Markov kernels .rrl2 and n2l exist, such that, 

then the equivalence may be extended to the two Hellinger arcs, 2.e.: i f  Pa (resp. 
R,) is the probability distribution with density with respect to the measure Po (resp. 
RQ),  

1-a 1-a (3 exp h(a) (resp. ( )  exp ~ ( a ) )  

where 

-1 

resp. exp H(a) = [/ (2) 
dRQ] ) 
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PROOF OF PROPOSITION 2.1. We must  have: V0 _< a <_ 1, \/81,82 E T': if 
O~01 -~- (1 -- a)02 E T '  then ~(a81 + (1 - a)82) = a~(01)  + (1 - a)~a(02), using 
Lemma 3.1, otherwise, ~ can be extended through the previous formula, i.e. 
becomes affine on C(T ' ) :  ~(0) = A0 + b. It is not difficult to see that  if ~ was a 
diffeomorphism from T'  to T", it still is from C(T') to C(T"). 

(3.1) is equivalent to (3.2) since h(a)  = h(a01 + (1 - a)02) - ah(01) - (1 - 
a)h(02),  and the proof  is complete. [] 

Let us take two familiar examples (Gaussian translation families and Gaussian 
families with unknown mean and unknown variance) and examine in bo th  cases 
the Markov morphisms. 

PROPOSITION 3.2. For E = { g ( 8 ,  f o l ) , 0  E Rk}, where Fo is afixedposi- 
tire definite matrix, then the set of Markov morphisms are the following: ~(0) = 
AO + b, where A is partially Fo unitary i.e. A fixed subspace V of R k exists such 
that: 

txtAFoAx = txFox, Vx E V. 

Remarks. 
1) The expression "partially" uni tary is referring to the space V where the 

equali ty of the two quadrat ic  forms F0 and tAFoA is true. 
2) V is the vector space in R k spanned by all the directions of segments 

contained in the convex hull C(T'). 
3) The proof  of Proposi t ion 3.2 is easily performed using Proposi t ion 3.1: let 

us observe tha t  (3.1) is t rue if and only if, for any straight line ~/: [0, 1] ~ C(T'), 
we have: 

d 2 
dt 2 [h(~(~/(t))) - h(~(t))] = 0 

which turns out  to be  the condition of Proposi t ion 3.2 

Let us now use the previous proposit ion to investigate an example: 

PROPOSITION 3.3. For E = { N ( # , a 2 ) ,  ( # , a  2) E R x R+},  the Markov mor- 
phisms consist in the following mappings: (in coordinate (#, a2)) ~cd : (it, a 2) -~ 
((c# + d)/c 2, a2/c2),  for any constants c, d, c ~ O. 

PROOF OF PROPOSITION 3.3. In this proof, we shall always use the natural  
coordinate system: 

1 0 = (81, 82) 81 = ~ ,  02 = 
(T--~, 

let us observe that  cod is 8 linear since, in 8 coordinate ¢ writes: 

~o~d(01, 82) = c81 + d02, ~o~(01,82) = c202. 

First  we shall show tha t  the  morphisms ~o considered in the  proposit ion are actually 
Markov morphisms: this is of the upmost  simplicity since it is clear tha t  each ~o cd 
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can be associated with the following two Markov kernels: xn (x ,  dy) is the Dirac 
measure on c - i x  + dc -2 and 7r21(x, dy) is the Dirac measure on cx - dc -1. We 
shall, now, prove the converse. 

By proposition 3.1, we have only two kinds of Markov morphisms to consider: 
those that  are defined on a line segment in 8 and those defined on open sets of 0.  
Only the first ones will cause some difficulties. 

The proof will be made in three steps: First, it will be proven that, if a Markov 
morphism ~o is defined on a set consisting of a line segment parallel to one of the 
axis, then ~ is of the form described in the proposition. Secondly, it will be shown 
that,  if ~ is a Markov morphism defined only on a line segment in 8 ,  then there 
is another Markov morphism ~, strongly connected with % which is defined on a 
line segment parallel to one of the axis. Thirdly we shall prove, because of the 
relationship between ~o and ~, that ~o is the form described in the proposition. 

i) Assume that  ~o(0) = A0 + 0 °, with 

A =  ( a l l  a21) 00__ [ 0 i ~  
\ a l ~  a22 ' \ 0 2 )  

is a Markov morphism defined on T' that contains a line segment parallel to the 
second axis (resp. the first), say the one connecting the points (0i, 02), (01, 0~) 
((01,02), (0~,02) resp.). We observe that (3.1) becomes: V0 < a < 1: 

0~ 
(3 .3 )  - +  (05 - 05 

0 5  

- alog02 + (1 - ~)~-9i - (1 - a) log02 

a (a1101 +  105 + 0  ° 0 )1) 5 

(al O1 + a550'  + 0 ° + - 

+ log(a1201 + a220~2 + 0 ° + ~[a22(02 - 0~)]) 

(aiiOi + a5102 + @)5 
a . . . . . .  a log(a120i + a2202 + 0o2) (anO1 + a~202 + 002) 

+ (i - ~) (anOi + a210' 2 + 0°) 2 
(a1201 Jr a220t2 Jr 002) 

- ( 1  - c~)1og(a1201 Jr a220' 2 Jr 00). 

First, let us remark that, because of the functions involved in (3.3) the equality is 
true not only for 0 < ~ < 1, but on the definition range of (3.3). If we let in (3.3) 
c~ tend to -0~/(02 - 0~), then LHS tends to -co .  This implies that it must do 
R H S  i.e. 00 -4-a1201 ---- 0. Rewriting (3.3) and let again a tend to -0~/(02 -0~) ,  we 
obtain a2202 = (anOi +0°)  2 i.e. on the segment [(01,02), (81,0~)], ~ coincides with 
the morphism indicated in Proposition 3.3 associated with the following values: 

C ---- a i i  + - -  010 d - -  a21 ,  if 0i # 0, 
81 ' 

i/2 
c = a 2 5  , d = a 2 i ,  i f 0 i = 0 .  
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An analogous evaluation (a tends to infinity), in the case of a segment parallel to 
the first axis proves that a121 = a22 + 8o/82. This implies that also in this case 

coincide on the considered segment with a morphism of the form described in 
Proposition 3.3, with c = a11, d = a21 + O°/t2. It is easy to see that if T'  contains 
an open set in R 2, the two previous statements agree together as well as with the 
form indicated in Proposition 3.3. 

ii) Suppose now that an arbitrary Markov morphism ~ is defined on a set T'  
containing a segment of line [8, 0'] which is not parallel to the axis. It is then easy 
to establish that ~ o ~ d  is a Markov morphism defined at least on (Ted)-1[0,0'] 

for a chosen pair (c, d). As (¢pcd)-I is easily found to be equal to ~ c-1,-dc-a,  to 
obtain the second step of the proof we must show that every segment [8, 0'] may 
be mapped into a segment parallel to one of the axis: this may be accomplished 
by choosing for example: dc -2  = (81 - 8~)/(0,2, - 0'2). 

iii) By the first step, ~ o ~cd is some ~c d. If ~(0) = A0 + b, then ~ o ~cd = 
A C 8  + b, where C is the matrix associated with T~a. Thus it follows that b = 0 
and A C  has the same form as C, therefore A has the same form as C i.e. ~ is also 
some ~cd. This concludes the third step. [] 

We will not go further on with examples. Let us only mention that  Proposition 
3.2 can also be used to prove the classical Chentsov's result e.g. in multinomial 
experiments the Markov morphisms are the morphisms obtained by permutations 
of the atoms (Chentsov (1972)). 

Our conclusion of this section is that  the Markov morphisms together with 
the entropy morphisms certainly are natural and genuine to consider but may 
eventually form a very sparse collection depending on the considered family E 
(even then reduced to one point-- the identity--in Poisson or Inverse Gaussian 
distribution families for example). 

4. Approximate Markov morphisms and morphisms leaving a statistical manifold 
locally invariant 

4.1 Approx ima te  Markov  raorphisms 
As we saw in the previous section, one of the major interests of Markov equiv- 

alence of two experiments E and E ~ is that  for every loss function and every finite 
decision on E there exists a finite decision on E '  with the same risk (Le Cam 
(1986)). Another consequence is the following: let /3(0, 0', ~) be the best test 
power one can obtain by testing 8 against O ~ at the level a. If ¢ is the Markov 
morphism associated with E'  = {Pe, 0 E T ~} and E '~ -- {P~(e), 0 E T t } 

~(0, 8', ~) =/3(~(0), ~(8'), (~), V0, O' e T' 

(Torgersen (1970)). As we previously indicated the differential geometrical argu- 
ments are especially powerful for the first and second order approximations. This 
suggests the introduction of the following asymptotic point of view: suppose that 
we have now n iid observations of our model available. Let /3,~(0,0',~) be the 
power of likelihood-ratio test of 0 against 0', based on the n iid observations at 
the level ~. 
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DEFINITION 5. Let k be an integer greater than or equal to 1. ~ is an 
approximate Markov morphism of order k (amk) of the experiment E at the point 
~0 if: 

1) ~ is defined on E', an r-dimensional regular submanifold of O (r > 0), 
containing Peo, E ~ = {Pe, 8 C T'} and sufficiently regular. 

2) Vu such that  8o + u/n 1/2 belongs to T', 

lim n(k-1)/2[~n(80, ~0 + u~ nl/2, (~) - f~n(~(00), ~(~0 + u/nl/2), ~)] = 0. 
?%---+00 

Remarks. The sequence of classes of approximate Markov morphisms of order 
k is a decreasing sequence. It is a consequence of Torgersen (1970) that Markov 
morphisms are amk for every k. Amk could be useful, generalizing this approach, 
to determine what sort of tensors should be kept in mind at order k. But in this 
paper we restrict to k = 1 and 2. 

4.2 Morphisms leaving a statistical manifold locally invariant 
Let now (E, g, R) be a general statistical manifold. 

DEFINITION 6. ¢ is a local statistical morphism of order 1 (lsl) of the sta- 
tistical manifold (E, g, R) if: 

1) ¢ is defined and sufficiently regular on E ~ an r-dimensional submanifold of 
E (r > 0) containing 8 °. 

2) g is invariant under ¢ at the point 8 °. 

DEFINITION 7. ¢ is a local statistical morphism of order 2 (ls2) of the sta- 
tistical manifold (E, g, R) if: 

1) ¢ is an lsl. 

2) V is invariant under ¢ at the point 8 °, for every a. 

Remarks. Obviously, condition 2) of Definition 7 may be replaced by the two 
following conditions: 

o 
1) The Riemannian connection V associated to the metric g is ¢ invariant at 

the point 80 . 
2) The tensor R is ¢ invariant at the point 8 ° i.e. VX, Y, Z vector fields of 

T(E'), 
Z+)10o = R(X,  Y, Z)10o. 

4.3 Characterization and examples of approximate Markov morphisms 
Let us remind the reader that  whether ¢ is an amk or an lsk its definition 

depends on a particular point 8 ° and a particular r-dimensional manifold contain- 
ing this point. The following theorem makes the link between the two preceeding 
definitions. 

THEOREM 4.1. Let E be an experiment, and ¢ a su]j~ciently smooth mapping 
defined in a regular submanifold of E, E I on a neighborhood of 8o, 
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i) ¢ is an aml if and only if ¢ is an lsl associated to the likelihood statistical 
manifold of E. 

ii) ¢ is an am2 if and only if ¢ is an Is2 associated to the likelihood statistical 
manifold of E. 

The results of Theorem 4.1 directly follow from the following lemma describing 
the behavior of fl~ in terms of the previous geometric quantities. 

LEMMA 4.1. Under the hypothesis quoted above, for qo sufficiently smooth 
the following holds: 

f~,~((p(tg°), ~p(O ° + un-V2))  

= N(N-X(c~) + llu.~ll) 
1/3 

- n- l12~(N- l (~)  + Ilu.<zll){( V ~,.~u.v, u.<;)/211u.~ll 
- 1  1 

+ ( v  - v , , .~ .~o,  u.~o)N-l(~)lll~.~oll ~) + o(n-li~). 
Where u = ~(ul , . . . ,  u k) is a fixed point in R k, ~l and N denote respectively the 
density and the repartition functions of the normal law with zero mean and vari- 
ance equal to 1. u.¢ denotes the vector field uiOiCJ(gj and the scalar product and 

c~ 

norm are those associated with the Fisher metric, whereas V is the (~-connection 
introduced by Amari (1982). Both of them are taken at the point ~(0°). 

PROOF OF LEMMA 4.1. We follow a classical way in Edgeworth expansions: 
cf., for example Akahira and Takeuchi (1981), where the same expansions are given 
in the one dimensional case with ¢ identity. Let Tn = ~=l[ logp(X i ,  qo(O°))- 
logp(Xi, ~(dgl))], 0' = 0 ° + un -1/2. By expanding around 0 °, we obtain the fol- 
lowing: 

1/3 
E~(oo)Tn = Hu.~][2/2 + ( V ~,.~u.qo, u.~)/2n 1/2 + o(n-1/2), 

1 
E~(oo)(T n - E~(oo)Tn) 2 = I1~.~11 ~ + ( v , . ~ u . ~ ,  u.qo)/n 1/2 + 0(n-1/2), 

1 - 1  
E~(eo)(T~ - E~(oo)T,~) 3 = (V - Vu.~u.~p, u.qo)/2n 1/2 + 0(n-1/2). 

The same expansions can be obtained near 0 ~. By observing that: 

0 0 
Fjz(~(O')) = F~(~(0°)) + {(V,.~0,, 0j)l~(oo) + (V,.~0~, 0,)l~(eo)}/n 1/2 

+ o(n-1/2), 

- 1 / 3  
E~(o,)Tn = -I1~.~11 I~(0o)/2 - (  V ~ .~ .~ ,  ~.~)1~0o)/2,1/~ + o(n -1/~) 

and dropping the subscript/70 in RHS, 

- 1  
E~(o,)(Tn - E~(o,)Tn) 2 = Ilu.~ll ~ + ( v ~ . ~ . ~ ,  u.qo)/n 1/2 + o(n-1/2), 

1 - 1  
E~(e,)(T~ - E~(e,)Tn) 3 = ( V -  V~.~u.~, u.qo)/2n 1/2 + o(n-1/2). 
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It follows from Edgeworth expansion of Tn (cf. Akahira and Takeuchi (1981)) that 

P~(eo)(T,~ <_ c~) = P~(eo)((T~ -11~.~l12/2)/llu.<pll _< a~) 
1/3 

= g(an)  - rl(an)n-1/2{( V u.~u.~o, u.~o)/211u.~oll 
1 

+ a~(V~.,~.~,  ~.v)/211~.vll ~ 
1 - 1  

+ ( ~  - 1 ) ( ~ -  v ~ . , ~ . ~ ,  ~.v)/6tl~.vll 3} + o(n-1/2), 
where a~ = {c~ - Ilu.~oll2/2}/Nu.~oll. In order to obtain P~(eo)(Tn <_ c,) = a + 
o(n-1/2), an must be chosen such that: 

1 / 3  1 

a~ - N-~(~)  = {( V ~.~u.~, u.~)/211u.~ll + N- l (a) (V~.~u.~ ,  u.~)/211u.~ll 2 
1 - 1  

+ ( g - i ( a )  2 - 1)(V - V:.+u.~o, u.+)/611u.~oll ~} + o(n-~l:). 
The same calculations applied to P+(o')(Tn <_ c~) conclude the proof. [] 

The first thing to observe is that  lsl are relatively easy to construct as can be 
seen in the following corollary: 

COROLLARY 4.1. Let ¢ be defined, in 0 coordinate on a neighborhood of Poo 
included in a submanifold of E, E'  in E,  by ~o(0) = A(O - 0 °) + 01, then, if A is 
a fixed matrix in R k partially unitary: 

tx tAg(-) le~Ax = txg(-)looX, Vx E Too(E'), 

¢ is an Is1. 

Notice that, here again, the word partially unitary is referring to the subspace 
where the two norms are equal. Let us observe that the ls2 also are forming a 
substantial set: let us give an example. For the sake of simplicity let us choose a 
system of coordinate 0 such that g ( - ) le  o is the identity matrix, and in this system, 
let us consider the following mapping: 

%b(0) = A(0 - 8 °) + 0 ° + V(01 - 0°)5/2 

¢ is defined in a neighborhood of 0 ° in the following affine space: 

T ' =  0 ° + A  , ) ,E  R . 

A is a matrix (ao) such that a 0 = 0 if (i , j)  ~ (1, 1), al l  = -1 ,  V is a vector of 
0 

R k  ¢ is obviously an lsl. If 2"111 = 0, then ¢ is also an ls2 for V 1 = -2Fn1(0o):  

Relation (2.2') with ul = A1 , u 2  = Jr2 , u 3  = +~3 writes: 

~l~3{(-6~)( -6~)( -67 ' ) r sm~(00)  + ys(-6[)g , , (ao)} = ~ l~ .~3rm(e0)  
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c~ c~ 

(where/f~ is the Kronecker symbol) i.e. A1A2Aa{-Fl11(00)-V ~ } = A~A2AaF11~ (00), 
which is verified for Tll l  = 0, and V 1 = -2Fl11(0o). 

5. Invariance under entropy morphisms in flat statistical manifolds 

In this section, we consider (E, g, R) a fiat statistical manifold (let h denote 
the associate entropy function) and investigate the invariance properties of metrics 
and connections under the associate entropy morphisms. It will be proven that  

the metric g and the connections V are invariant under the entropy morphisms, 
but the converse is not true (i.e. even in simple cases there exists metrics and 

C~ 

connections different from g and V that  are invariant). 
Since in Section 3, we characterized the Markov morphisms of linear expo- 

nential families as the entropy morphisms of the associate likelihood statistical 
manifold, the statistical meaning of this section is important.  Moreover, the ex- 
amples and counterexamples we consider are always cases where (E, g, R) is the 
likelihood statistical manifold of a linear exponential family. 

DEFINITION 8. A metric g' (resp. a connection ~7~) on E is said to be entropy 
invariant if and only if it is invariant under every entropy morphism of the flat 
statistical manifold (E, g, R). 

THEOREM 5.1. In a fiat statistical manifold (E, g, R),  the metric g and every 
a-connection are entropy invariant. 

The proof is immediate, differentiating twice (resp. once again) the condition 
2 of Definition 4. Moreover in certain cases the only entropy morphism is the iden- 
tity. In those cases the result is not entirely surprising. We shall now investigate 
the converse: suppose that  g' (resp. V') is some entropy invariant metric (resp. 
connection) on E, is it true that  necessarily g' = Ag for some constant A > 0 (resp. 

V' = V for some constant a)? For this purpose, we investigate two examples: one 
where the property is true, a second where it is not. 

Example 1. (E  = R k, g = F0, constant, T = 0) is a fiat manifold correspond- 
ing to the entropy function h(O) = tÙFoO. This example is, of course corresponding 
to the classical statistical experiment E = {N(O, F o l ) ,  0 E Rk}. 

PROPOSITION 5.1. I f  the entropy funct ion is a quadratic form, then if  g' 
(resp. V') is some entropy invariant metric (resp. connection) on E,  necessarily 

0 

gl = )~g for  some constant A (resp. V = ~Y). 

PROOF OF PROPOSITION 5.1. For the sake of simplicity, let us take h(O) = 
~-~=1 02. In this case, it has been proven (Section 3) that  the following ~ defined 
on an affine space parallel to a subspace V of R k by ~o(0) = AO+b with A such that  
Vx E V t x t A A x  = t xx  are Markov morphisms. Then choosing ~o(0) = A(O-Oo)+Oo, 
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V = R k, A or thonormal  leads to the  fact tha t  g' must  verify, in 0 coordinate: 

tAgoo(-)A = goo(-); hence go0(-)  = A(Oo)Id, for A(0o) • R +. 

Choosing then ~(0) = 0 - 0o + 01 implies A(00) = A(01). Let us now turn  to the 
connection V. Let us observe that  for those ¢ (2.2') now writes: 

( 2 . 2 " )  i j l ~ ~ m i j l UlU2U3rqt (0), • UlU2Uaaiajal Fsrm(~O(0))= VUl,U2,U3 Y. 

For 

V =  A , A e R  , ~ ( 0 ) = A ( 0 - 0 o ) + 0 o ,  a ] = - l ,  a i 

for (i,j) # (1, 1). (2.2") says that  Fl11(0o) = 0. For 

{(i) (!) } V =  A1 ,A2 ,A1,A2 • R , ¢ ( 0 ) = A ( 0 - 0 o ) + 0 o ,  

J = O  a~ = a~ = e, a, 

for (i,j) ~ (1, 2) or (2, 1) (e = +1) ,  (2.2") with ul  = u2 = u3 says that  r2tl(Oo) = 
er221(0o) = 0. For 

,A•R}, ~(o )  = A(O - 00) + 00, 

J = 0  al  = - 1 ,  a 2 = 1, a 3 = 1, a i 

for (i,j) ~ (1,"1), (2,2), (3,3), (2.2") with ui  = u2 = u3 says that  F123(9o) = 0. [] 

Example 2. (E = ~ x R+., h(9i,92)= 1/2[-log2rc92+921/92]) This exam- 
ple is corresponding to the statist ical  family: 

E = {N(# ,  a2), (p, a 2) • R x a + } ,  01 = ,/0.2, 02 = 1 / o ' 2 .  

PROPOSITION 5.2. In the present case of statistical manifold, the set of en- 
tropy invariant metric is the following: (in 0 = (01,02) coordinates) 

gh = ~1o2, gi2 = g~, = -.yO, lO~, g'~.2 = 7o~1o~ + ,51o~ 

(g~j = g'(O~, Oj)l(ox,o2)), for arbitrary positive constants 7 and 5. 
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PROOF OF PROPOSITION 5.2. Using Proposition 3.3 of Section 3, one obtains 
that, in the present case, the entropy morphisms are forming the following class: 

{¢p~d(81,82) = c81 + d82, ~d(81,82) = c282, c E R., d E R}. 

Let us denote by g~j(81,82) the quantity g'(O~, 0j)l(o~,02). First, let us remark that 
each point (0, 02) is invariant under both ~+10 and ~-10, this implies using (2.1') 
(Section 2) that gij(0,82) = 0 for i ~ j .  Since we also have that ~° (0 ,  1) = 
(0, c2), we find that, if we denote by 7 and 5 the constants gu(0, 1) and g22(0, 1) 
respectively, then: 

gll(0, 02) = ~'/82 and g22(0, 82) = 5/82. 

In addition, as the point (81,02) is invariant under ~ - l d  for d = 201/82, we have 
that -g11(81,82)(81/82) = g 1 2 ( 8 1 , 8 2 ) .  Moreover, since for c ¢ 0, ~cd(01,82) = 
(0, c282) if d = -c01/82, we must have g12(01,82) = --T01/022 and g 2 2 ( 8 1 , 8 2 )  = 

T8~/8~ + 5/85. Therefore, it remains to be shown that the g chosen as indicated 
satisfies: 

t D~Cd g(--1)l~°d(el,O2) D~ cd = g(-)l(el,02) 

for every admissible pair (c,d), (81,02). This, however, does not present any 
difficulty and the proof is complete. [] 

Remarks. 
1) The Fisher metric g corresponds to T = 1, 5 ---- 1/2. 
2) We did not investigate, the class of invariant connections in this case. Let 

us just mention that the Riemamfian connections associated with the previous 
invariant metrics are invariant and it is not very difficult to see that  these connec- 
tions do not coincide with the Amari connections, which are invariant too. 

3) Although we have no intuitive interpretation of this result, it could be useful 
to notice that the set of invariant metrics we obtain in this case is, exactly the set 
of Fisher metric gF on the univariate elliptic model E = {F((- - #)/a),  (#, a) e 

x R+}, where F is varying in the set of all the probability distributions (cf. 
Mitchell (1986)). 
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