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A b s t r a c t .  The problem considered is that of predicting the value of a linear 
functional of a random field when the parameter vector 0 of the covariance func- 
tion (or generalized covariance function) is unknown. The customary predictor 
when 0 is unknown, which we call the EBLUP, is obtained by substituting 
an estimator 0 for 0 in the expression for the best linear unbiased predictor 
(BLUP). Similarly, the customary estimator of the mean squared prediction 
error (MSPE) of the EBLUP is obtained by substituting 0 for 0 in the ex- 
pression for the BLUP's MSPE; we call this the EMSPE. In this article, the 
appropriateness of the EMSPE as an estimator of the EBLUP's MSPE is ex- 
amined, and alternative estimators of the EBLUP's MSPE for use when the 
EMSPE is inappropriate are suggested. Several illustrative examples show that 
the performance of the EMSPE depends on the strength of spatial correlation; 
the EMSPE is at its best when the spatial correlation is strong. 

Key words and phrases: Best linear unbiased prediction, generalized covari- 
ances, geostatistics, kriging, spatial models. 

1. Introduction 

Many da ta  sets in a variety of applied sciences consist of observations Yl, 
Y 2 , . . . ,  Yn taken at corresponding known locations (here assumed to be points) 
tl ,  t a , . . . ,  t~ in d-dimensional Eucl idean space Rd; usually d -- 2 or d -- 3. A fre- 
quent ly  successful approach to  the analysis of such spatial  da t a  is to act as though 
they  were derived from a real-valued stochastic process • -- {Yt : t E D}, where 
D C R d. The  process ~" is called a r andom field. In contrast  to  an approach 
tha t  takes the  observations to  be independent ly  and identically distr ibuted,  the 
r andom field approach allows for spatial  dependence among the  observations, i.e., 
dependence  tha t  is related to the locations (both  actual  and relative) of the ob- 
servations. However, with this approach,  the da t a  are regarded as a por t ion of a 
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single realization of Y; thus, if inference is to be generally possible, it is necessary 
to make some (second-order) stationarity assumptions. 

Common stationarity assumptions are that ~ is either (a) second-order sta- 
tionary or (b) an intrinsic random function of order k (IRF-k) for some integer 
k > 0 (Matheron (1973)). In case (b), E(Yt) -- x~j~, where xt is a q x 1 vector 
whose elements are mixed monomials of degree < k in the coordinates of t and 
is a q × 1 parameter vector; in case (a) the same expression for E(Yt) holds but 
with q = 1 and zt -- 1. Such random fields are referred to as spatial linear models. 
Assumptions (a) or (b) imply that there exists a parametric function G( . ;  0) of a 
d-dimensional vector such that 

j i j 

either for all {)~} and {~,j} [in case (a)] or for all {A~} and {~,j} satisfying 
E(~-]iAiYs,) = E(~j~' jYuj)  = 0 for all Z • Rq [in case (b)] (see, e.g., 
Matheron (1973)). The dimension q is equal either to one [in case (a)] or to 
the number of mixed monomials in d variables of degree _< k [in case (b)], and the 
function G is either the covariance function [in case (a)] or the generalized covari- 
ance function of order k [in case (b)]. In case (b), if k = 0 then q = 1 and G(s - u) 
is equal to the negative of the semivariogram (1/2)var(Ys - Yu); an example of 
such a process is one-dimensional Brownian motion, for which G ( s -  u) = - I s -  u]. 
An example of a one-dimensional intrinsic random function of higher order (k _> 1) 
is the process W8 =- fo(s  - t )k - lWtdt / (k  - 1)!, which has generalized covariance 
function (of order k) G(s - u) = (-1)k-1]s - ulek+l/(2k + 1)! (Matheron (1973), 
Section 2.3). 

In this paper, we consider the problem of predicting the value Y0 of a linear 
functional l(.) of a random field ~ satisfying either assumption (a) or (b). How 
spatial prediction should be accomplished in this framework depends on what one 
is willing to assume is known about G, 0 and ~3. We consider this problem under 
each of the following alternative states of knowledge: 

State 1. Form of G is knowm 0.is known, ~ is unknown. 
State 2. Form of G is known, 0 and ~ are unknown, and 0 is restricted to a 

known set O. 
Under State 1, in which case 0 is known, the best linear unbiased predictor (BLUP) 
of Y0 exists, and expressions for it and its mean squared prediction error (MSPE) 
are well known. However, in practice 0 is rarely known; consequently, of the two 
states considered, the most appropriate one is usually State 2. But how should one 
predict under State 2? The natural and, by now, classical approach to prediction 
under State 2 takes the expressions for the BLUP and its MSPE derived under 
State 1, and simply substitutes in an estimator 0 for 0, yielding the EBLUP and 
EMSPE, respectively. The "E" added to "BLUP" and "MSPE" can be regarded 
as an abbreviation for either "empirical" (following Harville and Jeske (1992)) or 
"estimated." 

The goal of this article is to give properties of the State-2 prediction approach 
just described, with emphasis on the appropriateness of the EMSPE as an esti- 
mator of the EBLUP's MSPE. In particular, we obtain an inequality that, under 
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certain conditions, relates the BLUP's MSPE to the EBLUP's MSPE and to the 
expectation of EMSPE. Reinforcing that  the purpose of this research is to obtain 
good estimators of the EBLUP's MSPE, we propose some alternative estimators. 
We illustrate our results with four examples. The examples suggest that when spa- 
tial correlation is weak, the EMSPE tends to underestimate the EBLUP's actual 
MSPE but the alternative estimators may be useful; the examples also suggest 
that the EMSPE can perform well in the presence of strong spatial correlation. 

Throughout this article, we shall assume that the order k of the IRF has been 
correctly identified using, for example, the unbiased nonparametric procedure pro- 
posed by Cressie (1987). If the chosen k is too small, then there are monomial 
mixtures in E(Yt) of order larger than k, and the estimated variograms and gen- 
eralized covariance functions tend to be inflated (e.g., Starks and Fang (1982)), 
which in turn make estimators of MSPE's larger. 

The effect of estimated variance and covariance parameters on mean squared 
error of estimation or prediction has been considered previously in the context of 
time series models (Yamamoto (1976), Reinsel (1980), Fuller and Hasza (1981)), 
random and mixed linear models (Khatri and Shah (1981), Reinsel (1984), Kackar 
and Harville (1984)), the heteroscedastie regression model (Bement and Williams 
(1969), Carroll et al. (1988)), and the general linear model (Toyooka (1982), 
Rothenberg (1984), Eaton (1985), Harville (1985), Harville and Jeske (1992)). 
The present paper follows closely the development of Harville (1985) and Harville 
and Jeske (1992), and much of it may be viewed as an extension of their results 
to models with generalized covariances. 

2. The State-1 predictor and its MSPE 

Let y = (Yl, . . . ,  Y~)' and y* = (Y0, Y')', let K denote the n x n matrix whose 
i j- th element is G(ti - tj;O), let k denote the n x 1 vector whose i-th element is 
f G(t~ - v;O)l(dv), and let ko = f f  G(v - w;O)l(dv)l(dw). Here, l(dv) is the 
measure corresponding to the linear functional l(~-) to be predicted. Define 

We assume that  the set O to which the true value 0 is restricted is that set for 
which ]E is conditionally positive definite, i.e., the set for which A ' ~  > 0 for all 

satisfying E()~'y*) = O. To emphasize the dependence of K ,  k, k0 and ]E on 
8 (or on an arbitrary element w C O) we shall at times write these quantities as 
K(O), k(O), ko(O) and ]E(0) [or as K(w),  k(w), ko(w) and ]E(w)], respectively. 
It follows from the assumptions on ~- that there exists a known q × 1 vector x0 
and a known n x q matrix X whose rows are x~l,.. .  , x~,  such that E(yo) = x ~  
and E(y)  = X ~ .  Furthermore, var(A'y*) = A']EA where, if ~" is second-order 
stationary [case (a)], then A is any matrix having n + 1 columns, or if 9 r is an 
IRF-k [case (b)], then A is any matrix satisfying A'x~ = O' and A ' X  = 0. 

Define z = L~y, where L is any n x (n - q) matrix of rank n - q satisfying 
L ' X  = O. The vector z is a maximal invariant with respect to transformations 
of the general form T(y)  = y + X w  and is of great importance in what follows. 



30 DALE L. ZIMMERMAN AND NOEL CRESSIE 

If ~" is an IRF-k, z can be taken to be any vector of n - q linearly independent 
generalized increments of order k (GI-k's) of y. (A GI-k is defined as a linear 
combination A'y for which E()~'y) = 0 for all/5 E Rq; see, e.g., Delfiner (1976).) 

It is well known (Goldberger (1962), Delfiner (1976)) that  under State 1, the 
BLUP of yo, i.e., the linear predictor b~y that  minimizes var(b~y - y0) subject 
to E ( b ' y )  = E(yo) for all ~ E R q, is a'y ,  where a is the first component of a 
solution to the equations 

(2.1) [ K X x, o] [;]-- [:]. 
Here, 7 is a vector of Lagrange multipliers that  enforces the unbiasedness condition. 
Assuming that  K is nonsingular, the following results are easily verified: 

(a) the first "component" of the unique solution to (2.1) is 

a = K - l k  + K - 1 X ( X ' K - 1 X ) - I ( x o  - X ~ K - l k ) ,  

(b) the prediction error aly  - Yo is a GI-k, 
(c) E[(a 'y  - y0) 2] = var(a 'y  - Yo) = ko - k ' K - l k  + ( 4  - ~ I K - 1 X )  " 

( X ' K - I X ) - I ( ~ - X ' K - l k ) .  
Thus, under State 1, the BLUP of Y0 is 

(2.2) Pl(Y; 0) = ~ ( X t K - I X ) - I X ' K - l y  

+ k ' K - l [ I  _ X ( X ' K - I X ) - I X ' K - 1 ] y  

and the MSPE E { ~ l ( y ; O )  - y0] 2} ofp l (y ;O)  is 

(2.3) ml(0)  = k 0 - k ' K - l k  + ( 4  - k t K - 1 X ) ( X t K - 1 X ) - I (  mO- X t K - l k )  • 

3. The State-2 EBLUP and its MSPE 

Since the quantities pl(y;O) and ml(O) may be functionally dependent on 
0, under State 2 they generally are not statistics that  depend only on the data. 
Consequently, we must look elsewhere for a predictor. It is customary to obtain 
a predictor and an estimator of its MSPE by substituting an estimator 0 = 0(y) 
for 0 in the expressions for Pl(Y; O) and ml(O). This yields the generally nonlinear 
predictor P2(Y) = Pl(Y;O(Y)),  which we call the EBLUP. Thus, the prediction 
error and MSPE under State 2 are P2(Y) - Y0 and m2(0) = E{~2(y)  - yo]2}, 
respectively. Substitution of 0(y) for 0 in expression (2.3) yields the customary 
estimator ml(0)  of m2(0), which we call the EMSPE. 

In the remainder of this section, we examine the relationship between ml  (0) 
and m2(0) and the extent to which ml(0)  is a good estimator of m2(0). Our results 
depend on making one or more assumptions about the distribution of y*, about 
0, and about G( .; 0). 

One assumption that  shall be made throughout,  without further mention, is 
that  0 is an even and translation invariant estimator, i.e., 0 ( - y )  = 0(y) for every 
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y and O ( y + X w )  = 0(y) for every vector w (and every y). This assumption is sat- 
isfied by all proposed estimators of covariance and generalized covariance parame- 
ters in spatial models known to the authors, including various ordinary, weighted, 
and generalized least squares estimators (Delfiner (1976), Cressie (1985)), maxi- 
mum likelihood and restricted maximum likelihood estimators (Kitanidis (1983), 
Mardia and Marshall (1984)), and minimum variance and minimum norm quad- 
ratic unbiased estimators (Kitanidis (1985), Marshall and Mardia (1985)). The 
translation invariance of 0 implies that 0 depends on y only through the value of 
the maximal invariant z = Lty,  in which case we can alternatively represent 0(y) 
as 0(z).  

The remaining assumptions shall be made from among the following set: 
(A1) The distribution of y* = (y0, Y')' is symmetric about its mean. 
(A2) The distribution of y* is multivariate normal. 
(B1) 0 is unbiased. 
(B2) 0(z) is a complete sufficient statistic for the distribution of z. 
(C1) G(. ; 0) is a linear function of the elements of 0. 

Assumptions (A1) and (A2) (the latter of which is nested within the former) can 
often be satisfied (to a good approximation) by making an appropriate transfor- 
mation of y*. Assumptions (B1) and (B2) are rather stringent; (Sl) is satisfied 
in some cases by several of the aforementioned estimators of 0 but not by others, 
whereas (B2) is satisfied only in very special cases. Assumption (C1) is satisfied by 
several covariance and generalized covariance functions which have proven to be 
useful in practice, including the class of polynomial generalized covariance func- 
tions introduced by Delfiner (1976), the interpolating splines (Dubrule (1983)), 
and covariance functions with known correlation structure up to unknown addi- 
tive (nugget effect) and multiplicative (partial sill) parameters. 

3.1 Relationship between ml(0) and ms(O) 
The State-2 prediction error can be decomposed into two components in ac- 

cordance with the identity 

(3.1) P 2 ( ~ )  --  Y0 = ~O1(~; 0) -- Y0] -~ ~2(Y)  - -Pl (y;O)]  • 

The first component is merely the State-1 prediction error; hence, the second 
component represents the additional error directly attributable to the lack of 
knowledge of 0 under State 2. It follows, by noting the unbiasedness of pz(y;O) 
and by applying Wolfe's (1973) Theorems 2.1 and 2.2 [with # = O, g(z) = - z ,  

V(z )  = P2(Y) -Pl(Y;  O) and Y ( z )  = 0(z)], that P2(Y) is unbiased under Assump- 
tion (A1) (assuming that E~v2(y)] exists). Interestingly, 0 need not be an unbiased 
estimator of 0 for the predictor of Y0 to be unbiased. 

Having established relatively weak conditions under which the EBLUP is un- 
biased, we now characterize the relationship of the MSPE of this predictor to the 
MSPE of the State-1 BLUP. It follows from decomposition (3.1) that 

m2(0) = mz (0) + E{ 2(y) - P z  (Y; 0)] :} 
2 cov ol 0) - -  Yo,P2(Y) - Pz(Y; 0)]. 
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Observe that  if the two components in decomposition (3.1) are uncorrelated or, 
more generally, if E{ ~o2 (y) - Pl (Y; O)] 2 } _> - 2  covey1 (y; 0) - Yo,P2(Y) - BI(Y; 0)], 
then m2(0) _> ml(O). We proceed to obtain sufficient conditions for the two 
components to be uncorrelated. 

Define 

P = P ( O )  = X [ X ' K - I ( o ) X ] - I X ' K - I ( o ) ,  

I:~ _--_ P ( O )  -~ X[XtK-I(~)X]-I  x'K-I(~),  
F '=  F'(O) = K(O)L[L'K(O)L] -1, 
F '=  F'(8) = K(8)L[L'K(O)L] -1, 

and let u represent any vector such that  x~ = u ' X .  It is easy to show that 
I -  P = F 'L ' ,  I -  P = F 'L '  and P P  = P .  Thus, 

P2(Y) -- Pl  (Y; 0) 

= . ' P ( I  - p ) u  + k ' ( 0 ) K - I ( 0 ) ( x  - / ' ) u  - V(O)K-~(O)(X - P)y 
= u ' P F ' z  + k ' ( 8 ) K - l ( 8 ) F ' z  - k ' (O)K- l (O)F'z ,  

i.e., the second component of decomposition (3.1) depends on y only through the 
value of z. Moreover, it is easy to show that cov[z,pl(y;O) - Y0] = 0. It follows 
that  Assumption (A2) is sufficient for the two components of decomposition (3.1) 
to be distributed independently and hence to be uncorrelated with each other. We 
have therefore established the following theorem. 

THEOREM 3.1. Suppose that Assumption (A2) is satisfied. Then m2(O) _> 
ml (O), with equality holding if and only if p2(y) = Pl(Y; O) with probability one. 

Further, if ml(O) >_ E[ml(0)], then Theorem 3.1 shows, to the extent that As- 

sumption (A2) is satisfied, that the EMSPE ml (8) will tend to result in overcon- 

fidence in the EBLUP's precision. Theorem 3.1 also suggests that  for Elm1 (8)] - 

m~(O) to be positive could be a virtue. Conditions under which m~(8) tends to 
underestimate m2(0) will be discussed further in the next section, and situations 

in which ml (8) tends to overestimate both ml  (0) and m2 (O) will be discussed in 
the final section. 

3.2 Performance of m1(8) in estimating m2(0) 
Theorem 3.1 gives a sufficient condition for the MSPE of the EBLUP to exceed 

the BLUP's MSPE. While this result is of interest in itself, of more interest from a 
practical standpoint is the performance of the EMSPE m1(8) in estimating m2(O), 
the EBLUP's MSPE. We now give three theorems that  shed some light on this 
issue. 

Let ~ = {]E(w) : w 6 O} and/4- - -  ( u  : x~ = u ' X } .  It follows from the 
definition of O that  ~ is a convex set. Clearly, any linear unbiased State-1 predictor 
can be written as u 'y  for some u 6/4.  Define, for u 6/4, ~u (~)  = var (u 'y -yo)  = 
k o - 2 u ' k + u ' K u ;  also define ~b(Z) = inf ,eu ¢~(E) .  It is easily verified that  ¢~(]E) 
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is a linear (and hence concave) function on £t; consequently, ¢ (E)  is a concave 
function on the convex set l~. Therefore, for any estimator 0, E[¢(E(0))] _< 
~b(E[]E(0)]) by Jensen's inequality. Observing that ¢(~](w)) = ml(w) for any 
w E O, we obtain the following theorem, which is a coordinate-space version of a 
result due to Eaton (1985). 

THEOREM 3.2. Suppose that E[E(0)] = E(0). Then E[ml(0)] _< ml(O). 

COROLLARY 3.1. Under Assumptions (B1) and (C1), E[ml(0)] < ml(O). 

An argument similar to that used to establish Theorem 3.2 can be used to 
establish the following theorem. 

THEOREM 3.3. Suppose that ]E(O) is negatively biased in the sense that 
E[I](0)] = E(O)-  ]E*, where ]E* is positive definite. Then E[ml(0)] _< ml(O)-c ,  
where c > O. 

The implication of Theorems 3.1, 3.2 and 3.3 is that ml(0) is likely to be an 
accurate estimator of m2(O) only when ]E(0) overestimates ]E(0). This is stated 
another way in the following corollary. 

COROLLARY 3.2. Suppose that Assumption (A2) is satisfied, and suppose 
either that Assumptions (B1) and (C1) are satisfied or that ~3(0) is negatively 
biased in the sense defined in Theorem 3.3. Then E[ml(0)] <_ ml(O) <_ m2(O). 

Although Corollary 3.2 gives conditions under which ml (0) tends to underes- 
timate m2(0), it gives no indication as to which discrepancy, ml(O) -E[ml(0)] or 
m2(O) -m l (0 ) ,  if either, contributes more to the bias. Under certain additional 
conditions, it is possible to quantify exactly the amount by which E[ml(0)] tends 
to underestimate m2(0) in terms of the amount by which m2(0) exceeds ml(O). 
The following theorem extends a remarkable result of Harville and Jeske (1992); 
we omit its proof since, apart from replacing the ordinary covariance matrix by 
the generalized covariance matrix K,  it can be proved in exactly the same fashion 
as Harville and Jeske's result. 

THEOREM 3.4. Suppose that Assumptions (A2), (B2) and (C1) are satisfied. 
Then 

(a) E[ml(0)] = m2(O) - 2[m2(0) - ml(0)], or equivalently, 

(b) m2(0 ) ---- 2m1(0) - E[ml(0)].  

Part (a) of Theorem 3.4 indicates [under Assumptions (A2), (B2) and (C1)] 
that ml  (0) tends to underestimate m2 (0) by an amount equal to 2[m2 (0) - ml(0)]; 
that is, the discrepancy between ml  (0) and E[ml (0)] and the discrepancy between 
m2(0) and ml(O) contribute equally to the bias of ml(0). Part (b) indicates [again 
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under Assumptions (A2), (B2) and (C1)] that an unbiased estimator of rn2(0) is 
given by rh2 --- 2rhl - ml(~), where ?'h i is any unbiased estimator of m1(0). 

3.3 Approximations for, and approximately unbiased estimators of, m2(0) 
Theorem 3.4 allows one to determine m2 (0) exactly, in terms of E[ml (0)], and 

to estimate it unbiasedly when the assumptions of the theorem are satisfied. In 
many cases, however, one or more of the assumptions of Theorem 3.4 may not hold, 
and hence neither an exact expression for, nor an unbiased estimator of, m2 (0) is 
available. In such cases it may be possible to approximate m2(0) and then use 
the approximation to obtain an estimator of m2(0) that is less biased than the 
E M S P E  m1(0). An approximation of m2(0) obtained by squaring the first-order 
approximation of the Taylor series expansion of Pl(Y;0) about 0 was proposed 
for use in mixed linear models with estimated variance components by Kackar 
and Harville (1984) and again for use in the general linear model with estimated 
covariance parameters by Harville and Jeske (1992). The approximation can also 
be used in this setting, and is given by 

(3.2) m2(0) "- m*(O) - m1(0) + tr[A(O)B(O)], 

where A(0) = var[d(y;0)], d(y;0) = Opl(y;O)/00, and B(0) is a matrix that 
either equals or approximates the mean squared error matrix E [ ( 0 -  0 ) ( 0 -  0)']. 
Obviously, the partial derivatives of pl(y;0)  with respect to the elements of 0 
must exist if this approximation is to be used, and/)  must be an estimator for 
which a corresponding B(0) can be calculated. With regard to the latter point, 
the Ganssian-based maximum likelihood (ML) or restricted maximum likelihood 
(REML) estimator of 0 is a convenient choice, since the inverse of the information 
matrix associated with the corresponding likelihood function either contains (in 
the case of ML) or is equal to (in the case of REML) the large-sample covariance 
matrix of 0. 

An estimator of m2(0) based on approximation (3.2) is m*(0) = m1(0) + 
tr[A(0)B(9)]. Clearly, this estimator is more conservative than mi(0), but it is 
equally clear that even m*(0) will tend to underestimate m2(0) in those cases 
where m1(0) tends to underestimate m1(0) and E{tr[A(O)B(#)]} - tr[A(0)B(0)]. 
In view of this, Prasad and Rao (1986) and Harville and Jeske (1992) proposed the 
estimator m** (~) = m l (~) + 2 tr[A (0) B (0)]; the theoretical development presented 
by these authors suggests that this estimator is approximately unbiased when 
Assumptions (A2), (B1) and (C1) are satisfied. 

4. Examples 

We now illustrate the results of the previous section with four examples. Each 
of the first three examples consists of a particular random field observed at a 
specially chosen spatial configuration of locations, and involves theoretical calcu- 
lations. The fourth example illustrates the estimation of MSPE with actual spatial 
data. Throughout these examples, let r denote the Euclidean distance between 
two points in D, let In denote an n × 1 vector of ones, and let Jn = ln1~. 
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4.1 Example 1 
This example is meant to illustrate that situations exist in which the EMSPE 

ml  (0) is an appropriate estimator of the EBLUP's MSPE. Take ~ to be a two- 
dimensional isotropic IRF-0 with generalized covariance function 

~" 0, if r = 0, 
G(r; 0) 

-01 - 82g(r), if r > 0, 

where O = {0 : 01 > 0, 02 _> 0} and where g(.) is "any" function of r [any function 
such that  G(. ; 0) is a valid generalized covariance function of order 0 for all 8 E O]; 
for example, we could take g(r) = r, in which case - G ( .  ; 0) would be the oft-used 
linear semivariogram plus nugget effect. Take tl, t2 and t3 to be points that form 
an equilateral triangle with sides of length one unit. We note in passing that 
lattices built up from such a configuration have been studied (with regard to their 
sampling efficiency) by Yfantis et al. (1987). Let to represent the point at the 
center of the triangle and take Yo to be the value of ~ at to. 

It is easily verified that x0 -- 1, X = 13, k0 = 0, k = -(01 + 02g0)13, and the 
generalized covariance matrix (here of order zero) is K = (01 + 02)1- (01 T 02)J3, 
where go = g (1 /v~) .  It is then a fairly simple exercise to show that p l (y ;0)  = 

(1/3) 3 ~i=1  Y~ and m1(0) = (4/3)01 +(2g0 -2/3)02.  Observe that  p l (y ;0)  does not 
depend on the value of 0, which implies that P2(Y) is also the BLUP of Y0 and that 
ml (0) -- m* (0) = m2 (0). Furthermore, we see that this MSPE is a linear function 
of the unknown parameters; consequently, if ~1 and ~2 are unbiased estimators 
of 01 and 02 (as are, e.g., the minimum variance quadratic unbiased estimators; 

Kitanidis (1985)), then ml (0) is an unbiased estimator of the MSPE. Thus, in this 

example, if 0 is unbiased, then so is ml  (~). 

4.2 Example 2 
Take 9 v to be a two-dimensional, second-order stationary, isotropic, Gaussian 

random field with covariance function C(r; ~) = ~ l ~ ( r ) + ~ 2 c ( r ) ,  where ~1 > 0 and 
(~2 _> 0, 6(-) is the Dirac delta function, and c(.) is a positive definite continuous 
function satisfying c(0) = 1, Ic(r)l < 1 for all r, and c(r) = 0 for all r > r*. Here, 
r* is assumed known. [An example of such a covariance function is the spherical 
covariance function with unknown nugget effect and unknown sill but known range; 
for a description of this and other spatial covariance functions, see Journel and 
Huijbregts (1978).] Take $1,..-, ts to be points located on the perimeter of an 
R1 × R2 rectangle and take Yo to be the value of ~ at the point to at the center of the 
rectangle, as depicted in Fig. 1. The points at which ~ is observed occur in pairs 
on each side of the rectangle: the distance between points within pairs is constant 
and is denoted by rl ,  the distance from each point on the "top" and "bottom" sides 
of the rectangle to to is constant and is denoted by r2, and the distance from each 
point on the left and right sides of the rectangle to to is constant and is denoted 
by r 3. It follows that the shortest distance between two points on adjacent sides 
of the rectangle is equal to a constant r4; assume that  rl  < r* < min(r4, R1, R2). 
Let ci = c(ri) for i = 1,2,3, and assume that Cl > 0. For convenience, we 
repararneterize the covariance function by putting 01 = ~1 +~2 (1 -c l )  and 02 = (~2, 
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Spatial configuration for Example 2. 

t, 

in which case O = {8 : 01 > 0, 82 _> 0}. Note tha t  Assumptions (A2) and (C1) are 
satisfied here. 

It can be shown (see Z immerman and Cressie (1989)) tha t  the MSPE of the 
BLUP of Y0 is 

(4.1) m1(8)= (~ +b) 01-t- (~ci -c2 -c3 -  2Clb) 82-b[82/(01 ~- 2c102)], 

where b = (c2-c3)2/2c~. More to the point, it can be shown tha t  the  est imator 0 = 

(/}1,/}2)' satisfies Assumption (B2), where/}1 - $1/4,/}5 = [($2/3) - ( $1 /4 ) ] / 2C l ,  

$1 E,~I y ~ -  (1/2) 4 = }-~i=l(y2~_l +y2i)  5 and $2 = (1/2) 4 ~ i = 1  (y5~-1 + y2~ - 2~) 2. 
Hence, from Theorem 3.4, 

(4.2) 

and 

(4.3) 

7 2 E[ml (/})] = ml  (O) - -~b[O 1/(81 + 2c182)] 

m2(O) = m1(8) + 75182/(81 + 2c185)]. 
Z 

Zimmerman and Cressie (1989) exploit these results to show tha t  an unbiased 
est imator of m2(8) is given by 

(4.4) 14 ^2 /} e~5 = ml(0) + -~b[01/( 1 + 2cl/}2)]. 

Comparison of expressions (4.2) and (4.3) reveals tha t  m l  (8) tends to under- 
est imate m5 (8) by an amount  equal to 

(4.5) U(Cl, C2, C3, "1, "2) = 751812/(81 -t- 2C102)] ---- 7(c2 -- C3)2["1 -~- a2(1 - cl)l 2 
2d~[.1 + -5(1 + cl)1 
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There are three features of interest in expression (4.5). First, for any fixed values 
of c2, ca, a l  and a2, u(.) is a decreasing function of Cl, which, if c(.) is monotone, 
implies that  u(.) is an increasing function of the within-pair separation distance 
rl .  Thus, if c(.) is monotone, the discrepancy between E[ml(0)] and m2(0) can be 
minimized by taking rl equal to zero, i.e., by replicating twice at the midpoints 
of each of the four sides of the rectangle. The resulting configuration is the basic 
building block of a rectangular lattice (replicated twice). Second, if rl  = 0, then 
u(.)/al is a decreasing function of a2/al, the ratio of the partial sill parameter to 
the nugget effect, and u(.)/al tends to zero as a2/al tends to infinity. Last, for 
any fixed values of cl, (~1 and a2, u(.) is an increasing function of the difference 
1c2 - c31 and equals zero if c2 = c3. 

This example is tractable enough that  a simplified expression exists for the 
approximate MSPE m*(0). Zimmerman and Cressie (1989) show that  A(0) = 
{aij }, where 

a l l  =2(c2  - ¢3)2(01+2c102)(~1+2c1~2) 2, 
a12=a21 =2(c2-c3)2(01+2c102)(~1+2c1~2)(~3+2c1~4), 
a22=2(c2--c3)2(01+2c102)(~3+2c1~4) 2, 

and 

r h -  
02 2022(01 + c102) 1 202(01 + c102) 
02,  T/2 = 02(01 _.{_ 2C102) 2 , ~3 = O1'  ~4 = 01(01 -'t'- 2C102) 2; 

they also show that  the exact mean equared error matrix of 0 is 

1 [ 24o  
B(O) = -02cl 2(01 + 2c102) 2 

3 + 

The approximate MSPE m* (6) can then be computed using expression (4.1) and 
the expressions given above for A(0) and B(0). 

In Fig. 2 we compare m1(0), Elm1(0)], and m*(0) to m2(8), where for illus- 
tration, 

1 - 3r/2  + r3/[2(53/2)], 0 < < 
c(r) = O, otherwise, 

rl  = 0, and r2 = (1/2)r3 -- 1 (and necessarily r4 = v ~ )  are chosen. There- 
fore, C( .  ; 8) is in this case the spherical covarianee function (wlth range equal to 
v ~ )  plus nugget effect. Taking rl  to equal zero makes the spatial configuration 
as favorable as possible to E[ml(0)] (as described above) and makes the (a l , a2)  
and (01,0~.) parametrizations equivalent. Figure 2 clearly demonstrates here that  
ml(0)  tends to underestimate m2(0), particularly when 7 = 02/01 is small: the 
relative bias of mz(0), i.e., IE[ml(0)] - m2(8)l/m2(O), ranges from 33.2% when 
7 is near zero to 1.2% when V -- 4. Now, the correlation between observations 
located a distance r (0 < r < v ~ )  apart is [02c(r)]/(01 + 02) = [Tc(r)]/(1 + 7), 
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so the strength of the spatial correlation increases with % Thus, the performance 
of ml  (#) is poor when the spatial correlation is weak but improves as the spatial 
correlation gets stronger. Moreover, in this example at least, m*(0) offers a rea- 

sonable approximation to m2 (0), which suggests that m* (0) and m** (0) would be 
better estimators than ml(0). Of course, the estimator of choice in this example 
is the exactly unbiased estimator zh2. 

35 

30 

25 

20 

15 

10 \ \ " ,  

40~ 

Ir.1 (e) - m2(#)I/m2(e) 

IE[,',*~($)] - "2(O)I/,',~(O) 

I~*(o) - ~2(O)l/m~(O) 

~ ~ - ~ : - ~ - ~ - ~ = . ~ = . ~ _ ~ = _ ~ =  

2 3 4 

Fig. 2. Graphical comparison of Irnz (8) - rn2(8)l/rn2 (0), IE[ml (0)] - m2(8)[/rn~(8) 
and Irn*(8) - rn2(8)l/rn~(8 ) versus "y over the range 0 < ~/_< 4 for Example 2. 

A difficulty with the estimator 0 in this example is that it can, with nonzero 
probability, assume values outside e .  One strategy for dealing with this problem 

is to define a modified estimator 0+ as follows: 0+ = 01 and 0+ -= 02, if 0 e 0 ,  
0+ = (Sz + $2)/7 and 0+ = 0, if 0 • O. It can be shown, by directly maximizing 
the likelihood function associated with z over the allowable parameter space O, 

that the estimator 0+ so defined is the REML estimator of 8. However, unlike 

0, 0+ is biased; moreover, (0+, 0+)' is not a complete sufficient statistic (for the 
distribution of z), so that  one of the conditions of Theorem 3.4 is not satisfied. 
Nevertheless, it is our intuition that  the estimator of m2(0) obtained by replacing 
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in expression (4.4) with 0+ is a bet ter  est imator  than  either ml(0) ,  ml (0+) ,  

m*(0), m*(0+),  m**(0), or m**(0+); we think tha t  it should retain the at tract ive 

properties of (4.4) with 0, yet avoid the unat t ract ive  property  of being functionally 
dependent  on an est imator  of 0 tha t  can take values outside the parameter  space. 

4.3 Example  3 
Take 5 r to be a one-dimensional Gaussian IRF-0 with covariance function 

C(s ,  t; O) = 016(s - t) + 02 min{s, t}, where 6(.) is the Dirac delta function and 
O = {0 : 01 > 0, 02 ___ 0}; this covariance function is a multiple of tha t  of a Wiener 
process (which is not second-order s tat ionary but  is an IRF-0) plus independent  
white noise. Take t l , . . . ,  tn (where n is even) to be a unit-spaced regular lattice in 
R 1 with tl at  the  origin. Observe, as in Example 2, tha t  Assumptions (A2) and 
(C1) are satisfied here. 

We consider two choices for the point to at which to predict: (I) the point 
halfway between t(n/2) and t(n/2)+l; (II) the point one unit to the right of tn. 
The  resulting configutations of points, hereafter called Configurations I and II, 
respectively, are depicted in Fig. 3. 

( a )  ,~ X X ,~ X X X X 

t l  t2 ~a t 4 t o t 5 t~ t 7 t 8 

(b) x × × × × × × × × 
~t t2 t3 f4 ts te t¢ t s t 0 

Fig. 3. Spatial configurations for Example 3, illustrated for the case n = 8: (a) Con- 
figuration I; (b) Configuration II, 

In this example, ~o = 1, X = ln ,  and the (ordinary) covariance matr ix  is 
K = 01I + 02G, where 

G = 
[i00 0] 1 1 -.- 1 

1 2 --. 2 . 

1 2 . . .  n 1 

The  values of ko and k depend on the configuration: for Configuration I, k0 = 
01 "4- ((n -- 1)/2)02 and k = 02(0, 1 , . . .  , n / 2  - 1, (n - 1)/2, (n - 1 ) / 2 , . . . ,  (n - 
1)/2) ' ,  whereas for Configuration II, k0 = 01 + (n + 1)02 and k = 02(0, 1 , . . . ,  n)' .  
These expressions can be subst i tuted into (2.2) and (2.3) to obtain simplified 
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expressions for Pl (Y; 0) and ml (O). We take 0 to be the REML estimator of 0, i.e., 
the value ~ E O that maximizes the restricted log-likelihood function L(O; y) -- 
- (1 /2)  log I L ' K L I -  (1/2)z'(L'KL)-lz, where z = L 'y  and L is an n x (n - 1) 
matrix whose columns are the first n -  1 columns of I -  (1/n)Jn (see, e.g., Kitanidis 

(1983)). The quantities P2(Y), ml(0), m*(0) and m**(0) can be readily computed, 
where in the computation of the latter two estimators we take B(O) to be the 

large-sample covariance matrix of 8 or equivalently the inverse of the information 
matrix associated with the restricted log-likelihood function. The estimator rh2 
cannot be computed here, since 0 does not satisfy Assumption (B2) and thus the 

evaluation of E[ml (0)] and the determination of an unbiased estimator of m1(0) 
axe intractable problems. The exact MSPE m2(0) is also intractable, so analytical 
comparisons such as those made in Example 2 cannot be made. 

As an alternative to anMytical comparisons, we conducted a simulation study 
in which m2 (0), ml (0), m* (0) and m** (0) could be compared empirically to each 
other and to ml  (0). The simulation study involved (a) generating, for each of three 
values of 02 (02 ----- .25, 1.0, 4.0), 5,000 realizations of y* = (y, y0) t for the special 
case of this example where 01 = 1 and n = 8; (b) computing 0, ~v2(y) - y0] 2, 
ml (0), m* (~) and m** (0) for that realization; (c) averaging each of the quantities 
computed in part (b) over the 5,000 realizations. The averages of ~v2(y) - yo] 2, 
m1(8), m*(0) and m**(0) so computed represent estimates of m2(0), E[ml(0)], 
E[m*(8)] and Elm**(0)], respectively, and are displayed in Table 1. 

Table 1. Comparison of MSPE's in Example 3. Reported values for [p2(y)-y0] 2, rnl(0), rn*(8) 
and m** (8) are averages over 5,000 simulated realizations. Values in parentheses are estimated 
standard errors. 

Configuration 02/01 ml(O) [p2(y) - y0] 2 ml(8) m*(8) m**(8) 

II 

.25 1.268 1.340 (.028) 1.209 (.012) 1.301 (.012) 1.393 (.014) 
1.0 1.560 1.658 (.034) 1.506 (.015) 1.680 (.015) 1.854 (.018) 
4.0 2 .414 2.672 (.056) 2.787 (.026) 3.253 (.028) 3.718 (.029) 

.25 1.641 1.828 (.038) 1.582 (.012) 2.251 (.018) 2.919 (.021) 
1.0 2.618 2.983 (.062) 2.482 (.023) 3.253 (.026) 4.025 (.030) 
4.0 5 .828 6.262 (.128) 6.027 (.055) 7.467 (.065) 8.907 (.074) 

Table 1 clearly illustrates the result of Theorem 3.1, as m2(8) exceeds m1(0) 
by 5-15%. Moreover, we see that m1(0) tends to underestimate rn2(0) when 
02/01 is small but not when 02/01 is large. Since large values of 02/01 correspond 
to strong spatial correlation, the results of this example are similar to those of 
Example 2 in that  the performance of m1(0) improves as the spatial correlation 
gets stronger. On the other hand, the results for the alternative estimator m*(8) 
are rather different here: it appears that m* (8) tends to overestimate m2(0) when 
02/01 = 4.0 in the case of Configuration I and over a large range of values of 02/01 
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in the case of Configuration II, and the bias of m**(8) is even worse. Thus, while 

ml  (0) underestimates m2 (0) under weak spatial correlation in this example, m* (0) 
is generally not as successful an alternative to rnl (0) as it would appear to be in 
Example 2. 

4.4 Example 4: Iron ore data 
As our final example, we illustrate the estimation of MSPE with an actual 

data  set consisting of iron ore (%Fe203) measurements taken from an ore body 
in Australia. The data, which lie on the nodes of an incomplete rectangular 
grid, were displayed by Cressie (1986) and have been analyzed previously by 
Cressie (1986) and Zimmerman and Zimmerman (1991). These authors found 
that  the residuals from a median polish of the data  were compatible with an 
IRF-0 model and that  a suitable scaling of the coordinate axes permit ted the 
use of an isotropic semivariogram (or equivalently, an isotropic generalized covari- 
ance function). From an examination of a plot of the estimated semivariogram, 
Zimmerman and Zimmerman (1991) chose to fit the class of generalized covariance 
function models: 

0) = o, 
G(r; --01 - -  0 2 ( 1  - -  0~), k 

if r = O, 
if r > 0 .  

REML estimates of the parameters of G(r; 0) were found to be 81 -- 5.34, 8~ -- 6.38 
and 83 = .895. 

Using this estimated generalized covariance function, Zimmerman and 
Zimmerman (1991) calculated the EBLUP of an unobserved median polish residual 
value at a point near the "center" of the data, obtaining P2 (Y) = - .  197%. The cor- 
responding EMSPE m1(0) equals 6.57(%) 2, whereas the more conservative MSPE 
estimate m*(0) equals 7.57(%) 2. These data  exhibit spatial dependence that  is 
relatively weak [see Fig. 3 of Zimmerman and Zimmerman (1991)]; therefore, for 
reasons to be described in our concluding section, we would be inclined to use the 
latter value, 7.57(%) 2, as our estimate of the EBLUP's  MSPE. 

5. Concluding remarks 

The traditional procedure for estimating the MSPE m2(0) of the EBLUP is 
to substi tute an estimator 0 for 0 in m1(0), that  is, to use m1(0). In addition, it is 
customary to use ml(~) in the calculation of approximate confidence intervals for 
predicted values. For example, the interval P2 (Y) + 2[ml (0)] 1/2 is typically used as 
an approximate 95% confidence interval for a predicted value. Clearly, this interval 
may be much too optimistic if m1(8) badly underestimates m2(0), or much too 
conservative if m1(0) badly overestimates m2(0). In instances where m1(0) is 
thought  to underestimate m2 (0) badly, we suggest that  the alternative estimators 
m*(0) or m**(0) be used instead; this should result in more satisfactory point 
estimates of m2(0) and in more conservative (but more appropriate) confidence 
intervals for predicted values. 
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The practical issue we have at tempted to address is whether m1(0) is an accu- 
rate estimator of m2(0). It is difficult to make a general conclusion since the bias 

of ml (0) and the usefulness of the alternative estimators m* (0) and m** (0) depend 
on which, if any, of Assumptions (A2), (B1), (B2) and (C1) are satisfied, and may 
also be affected by the number of observations n, the spatial configuration of the 
observations' locations, the location of the value to be predicted, the strength of 
the spatial correlation, and possibly other factors. One general guideline, which 
has emerged from the second and third examples here and from two other exam- 
ples reported by Zimmerman and Zimmerman (1991), is that the performance of 

m1(0) can often be improved upon when the spatial correlation is weak but that 

the performance of ml (0) is adequate and sometimes superior to the alternative 
estimators when the spatial correlation is strong. It is interesting to note that  the 
cases in which Zimmerman and Zimmerman (1991) found ml(e)  to be an approx- 
imately unbiased or positively biased estimator of rr~2(0) corresponded to cases 
in which the REML estimator of the nugget effect or sill value was rather badly 
positively biased. In view of these results, we recommend that practitioners use 
the alternative estimators m* (~) or m** (0) when 0 is known to be (approximately) 

unbiased or ]E(0) is known to be negatively biased in the sense of Theorem 3.3, 
and the spatial correlation is known (or estimated) to be weak. In the absence of 

these conditions, we recommend the continued use of ml(~) to estimate m2(0). 
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