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A b s t r a c t .  Consider the situation where a plane wave signal is received by 
a spatial arrangement of recorders. Information derived from observations on 
such a process can he used to determine the speed and direction of the signal 
together with properties of the medium through which the signal is being prop- 
agated. Certain models for the case where the signal velocity can be regarded 
as stochastic and where the array is irregular are investigated and estimation 
procedures proposed. A major practical property of these models is that, unlike 
their deterministic counterparts, coherence decays to zero as distance between 
recorders increases. 
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i .  Introduction 

The  est imation of the speed, direction and other  propert ies  of a common signal 
from observations collected by an array of recorders is a problem of general interest 
relevant to many  areas of science. The  recorders could be seismometers measuring 
ear th  tremors,  radio telescopes measuring the level of act ivi ty of a distant  star,  
t ide gauges used in oceanographic studies etc. As a consequence the problem has 
been extensively discussed by many  authors  and in many  different contexts; see, for 
example,  Capon  (1969), Hinich and Shaman (1972), Cameron and Hannah  (1978), 
Hinich (1981), Thomson  (1982), Shumway (1983), Brillinger (1985), Cameron and 
Thomson  (1985), Hannan  and Thomson (1988), and Ziskind and Wax (1988) to 
name but  a few. The  references listed in these papers  provide a more extensive 
bibl iography of the field. 

Typical ly  the signal is assumed to be a plane waveform, as would be the case 
if the signal source was located far from the array relative to its size. W h a t  is 
received at one recorder will, modulo noise and the effects of the medium, have 
been received at o ther  recorders before or will be received some t ime lag or delay 

13 



14 17. ,J. T H O M S O N  

later. Knowledge of these delays enables the speed and direction of the wave to 
be determined. 

The array could be three dimensional, but the more usual type of array would 
consist of a linear or two-dimensional arrangement of recorders with a known co- 
ordinate structure receiving a signal propagating along the line or in the plane 
respectively. Situations where a signal is received by a lower dimensional arrange- 
ment of recorders are clearly possible, but in that  case more will need to be known 
about the incoming signal, such as its speed, if both speed and direction are to be 
resolved. 

In the case where the medium is dispersive and the various frequency com- 
ponents that  make up the signal travel at different velocities, velocity is typically 
measured as a deterministic function of frequency. Such information together with 
relative attenuations provides information about the medium through which the 
signal is propagating. 

This paper considers the case where the velocity of the signal is no longer a 
deterministic function of frequency, but is better regarded as stochastic in nature. 
This will typically come about because of varying sample paths and scattering due 
to inhomogeneities in the medium. In such cases, non-constant point velocities 
will result and travel times will vary about their expected value. A model for 
stochastic velocities of this kind is developed in Section 2. See also Sato (1984) 
and the references therein for related work concerning stochastic velocity models 
and random media. In the subsequent sections an estimation criterion for a regular 
array is proposed and the effects of various irregular array structures on the model 
and its estimation investigated. 

2. A stochastic velocity model 

For ease of exposition we restrict attention throughout to the simplest case 
where the space variable is one dimensional and the recorders are located on a 
line. Let Y(x,  t) be the observation at time t of a recorder located at position x 
and assume that  

Y(x,  t) = S(x, t) + N(x,  t) (-~o < x, t < ~o) 

where S(x, t) is the plane wave signal and N(x,  t) is noise. Set S(t) = S(O, t) and 
assume that S(t) is a stationary process with spectral density f(w). Then S(t) 
has spectral representation 

// S(t) = # + e-~t°~dZ(w) 
o o  

where the spectral amplitudes dZ(w) have mean zero and are orthogonal with 
mean square E{IdZ(w)l 2} = f(~o)dw. 

Consider the deterministic velocity case. If there is no dispersion and the 
signal propagates through the medium with velocity V, then S(x, t) = S ( t -  L(x)) 
where L(x) = x / V  is the time lag between the receipt of the signal at location 0 
and location x. If the medium is dispersive and V is a function of ~ then 

/? S(X ,  t) = 13, + e - i ( t - L ( x ' ~ ) ) ~ d Z ( w )  
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where L(x, w) = x/V(w). Furthermore, if we allow for the possibility of attenua- 
tion then the model becomes 

(2.1) Y(x, t) -- #+ e-~(t-L(x'~°))~a(z, w)dZ(w)+N(x, t) (-oe < x, t < ec) 

where a(x, w) describes the attenuation of the component at frequency w. 
Given sampled data from Y(x, t) and suitable assumptions about the noise 

(typically N(x, t) is assumed to be stationary in t and uncorrelated in z) various 
estimation procedures have been proposed for (2.1) and related models. Standard 
methods include delay and sum beamforming, Capon's high resolution method 
and the Hamon and Hannan method (see Capon (1969) and Hamon and 
Hannan (1974)). Of these, only Capon's method was designed for the case where 
N(x, t) is stationary in space as well as time which restricts the N(x, t) to have 
the same spectra, but does allow for spatial correlation. Moreover, as noted in 
Hinieh (1981), delay and sum beamforming is equivalent to finding peaks in the 
frequency wavenumber spectrum (see also Hannan and Thomson (1988)). As the 
references given in Section 1 indicate, there are many other methods that have 
been developed, most tailored to particular variants of the model (2.1). However 
all these procedures have in common the assumption that L(x, w) = x/V(w) where 
V(co) is the deterministic velocity of the component of the signal at frequency co. 

Now consider the stochastic velocity case. Here we need a model to account 
for varying sample paths, scattering etc. We choose to model L(x, co) as a process 
of stationary, independent increments where L(x' +x, co) - L(x', co), the time taken 
for the component at frequency co to travel a distance x from x', has mean x/V(w) 
and characteristic function 

E{e = ¢(0,co)x (x > 0). 

(For a discussion of such processes and their properties see, for example, Ash 
and Gardner (1975), p. 195.) Thus ¢(8,co) is the characteristic function of the 
time taken to travel unit distance. This assumption implies that  travel times 
over disjoint space intervals are independent and are identically distributed with 
mean x/V(co) when these intervals have the same length x. Moreover L(x, w) 
is assumed to be independent of S(t) and N(x, t) with S(t), N(x, t) mutually 
uncorrelated. In addition, it is assumed that  N(x, t) is not necessarily uncorrelated 
in space, but is stationary in space and time with spectral density f,~ (A, w), and the 
attenuation a(x, co) does not vary with x (equals a(co) say) across the array. The 
latter means that a(co) and f(co) cannot be identified from the spectrum without 
further information. Hence we set a(co) = 1 or, equivalently, absorb a(w) into the 
signal spectrum f(~) .  

With these assumptions Y(x, t) = S(x, t) + N(x, t) is now stationary in space 
and time. Moreover, S(x, t) has mean p and autocovariance function 

E{(S(x' ,  t') - , ) ( S ( x '  + t' + t) - 

= e~t'~E{e-i(L(x'+z,'~)-L(x',~))"~}f(co)dw 
o o  

( = ez(t~-~°(~))p(co)l~lf(w)dw (-c¢ < x,t  < oc) 
~ G  
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where p(co) and 0(co) are the modulus and argument respectively of ~(w, co) with 
p(~) = p(-~.,), 0(co) = -0(-co) .  Note that 0(co) = w/V(co) if the distribution 
corresponding to ~/J(0, co) is symmetric about its mean. In particular, observe that 
the stochastic velocity model has an autocovariance function that decays to zero 
as the distance between recorders increases. Such a situation typically occurs in 
practice. However the autocovariance function for the deterministic velocity model 
never decays to zero, irrespective of how far apart the recorders are placed. Thus 
this property is a major practical advantage of the stochastic velocity model over 
the deterministic velocity model. 

The space-time spectral density of Y(x,  t) is now given by f~(A, co) + fn(A, co) 
where 

9(co) 
(2.3) f (A, co) = f(co)7r(g(co) 2 + (A + O(co)) 2) < A, co < oo) 

and g(a;) = - logp(co). For p(co) < 1, f ,(A,w) is a continuous time AR(1) spectral 
density in A centred at A = -O(co). Note that f~(k, co) becomes f(co)5(A+w/Y(co)), 
(~(.) the Dirac delta function, in those cases where p(co) = 1. This includes the 
important special case when the velocity function is deterministic with L(x, co) = 
x/V(co) and f~(A,,;) = f(aJ)6(A + co/V(co)) for all A, co. Thus the stochastic 
velocity model has replaced the delta function of the deterministic velocity model 
by an AR(1) density. This spreading and attenuation of the peak along the line 
A = -O(co) is a direct consequence of the fact that travel time is no longer exactly 
proportional to distance, but fluctuates about a mean value. 

3, Estimation for linear equispaced arrays 

In this section we consider the stochastic velocity model introduced in Section 
2 and restrict attention to the important case of a linear array of equispaced 
recorders. Irregular arrays will be dealt with in the later sections. Suppose that 
Y(x,  t) has been sampled at unit intervals in time and space with the time unit 
chosen so that there is no spectral aliasing in time. Then f(co), fn(A, a;) are zero for 
]col > 7r and Y(x , t )  has space-time spectral density f(A, co) = f~(A,w) + fn(A, CO) 
where 

(3.1) J~(A, co) = f(co) 1 - P(co)2 (-Tr < A, co < rr) 
2rr ]1 - p ( c o ) e ~ ( ~ + ° ( ~ ) ) l =  

and f~(A, co) has (possibly) been replaced by its aliased form in A. Analogous 
comments to those made following (2.3) can also be made here. In particular 
f~(A, co) is a discrete time AR(1) spectral density in A centred at A = -O(co) 
(mod2rr) for p(co) < 1 and is f(co)5()~ + co/V(co)) when p(co) = 1. 

Now consider the simple case of fitting the stochastic velocity spectral model 
(3.1) over a narrow band of time frequencies B centered at some frequency of 
interest coo (0 < coo < re). This case arises in many practical situations where 
the data has been band-pass filtered by virtue of the frequency response of the 
recorder, or because the signal is band-limited and essentially monochromatic. 



S T O C H A S T I C  V E L O C I T Y  M O D E L S  A N D  A R R A Y S  17 

Assume that L(x + 1,a~) - L ( x , w ) ,  the time taken to travel unit distance, has a 
symmetric distribution about its mean so that O(w) = w/V(w).  Also assume that 
f(w),  p(aJ) and V(w) are (approximately) constant over the band B, and f~(A, co) 
is (approximately) constant over aJ C B and all ,~. The latter is equivalent to 
assuming that the noise process is uncorrelated in space, but stationary and not 
necessarily uncorrelated in time. The more general case where N(x,  t) is stationary 
and correlated in space and time is briefly discussed at the end of this section. 

The space-time Fourier transform of the observations Y(x , t )  (x = 1 , . . . ,  S; 
t = 1 , . . . ,  T) yields the statistics 

S T 

1 t)ei(X;~+t,~ ) 
x = l  t = l  

evaluated over frequencies ,~, co of the form 27rj/S, 27rk/T respectively. These 
are key quantities in any space-time Fourier analysis. Their importance in the 
current context arises because, for large S and T, they are approximately in- 
dependent, complex Gaussian random variables with zero means and variances 
f(1,  a:) ((~,aJ) ¢ (0,0)) (see Brillinger (1974) for example). Moreover, as is well 
known, the W(A, a~) can be computed very efficiently. 

Since the exact likelihood will be difficult to obtain in general, an obvious 
technique is to use maximum likelihood based on the asymptotic likelihood of the 
W(A, aJ), w E B. After some manipulation, the log likelihood that results is, apart 
from a constant, proportional to 

(3.2) 
wEB 

where 

(3.3) f(A, wo) = f(wo) 1 - p(wo) 2 
II-p( o)e' P 

+ 

Equivalently, estimates of f(w0), P(W0), f~(c00) and V(w0) are obtained by min- 
imising 

(3.4) E { l o g  f(A, w0) + Q(A, V(wo))/ f(A,  Wo)} 
A 

where 
= 1 Iw( - 2 

m 
coEB 

and m is the number of frequencies aJ of the form 27rk/T in B. Given V(wo), 
minimising (3.4) is equivalent to fitting an AR(1) plus noise model in space to 
periodogram ordinates given by Q(A, V(a~0)). 

Let l)(w0), 0 = (](Wo),~(Wo),]n(wo)) T be the estimates of V(wo), 0 = 
(f(coo),p(wo), fn(Wo)) T obtained by minimising (3.4) and allow m, S, T to in- 
crease in such a way that []B]] = 27rrn/T $ O. Then, subject to certain regularity 
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conditions, it can be shown that V(w0), 0 are strongly consistent estimators of 
V(w0), 0 and v/~S(V(w0)-  V(w0)), ~ ( 0 -  0) are asymptotically independent, 
zero-mean, normal variates with 

(3.5) 

lim {Var{~mS(9(wo) - V(wo))}} 
rr~,S,T-+ oo 

{/{ V(&0) 4 1 ~ Ologl(A, Wo) d,~ 
= w0 ~ ~ ~ o h  

lira { V a r { v / ~ ( O -  0)}} 
rrt,S,T~oo 

{ / _  } - 1  
_ 1 7r Olog](A, wo) 01og](A, W0)d/k 

- ~ ~ ~ ' o 7  

The method of proof follows conventional lines and is an amalgam of techniques 
given for stationary time series in standard works such as Hannan (1970) and 
Brillinger (1975). In addition to the assumptions already made, Y(x, t) is typically 
required to satisfy a mixing condition in addition to smoothness conditions on the 
various spectral components. Appropriate conditions are given in Brillinger (1974). 

As p(wo) approaches 1, minimising (3.4) becomes equivalent to maximising 

Q(0, v(~0)) = ± ~ IW(-w/V(~o),~)? 
m wEB 

1 S 2 

-- 271-mS wE~B x=lE Wx(~2)e-ixw/v(=°) 

where the Wx(w) are the time Fourier transforms of the data with 

T 
(3.6) W~(w) - 1 E y ( x , t ) e U ~  

~ t - - - - 1  

Thus, as p(wo) approaches 1, the method reduces to delay and sum beamforming. 
Since l/(w0) and 0 are asymptotically independent, a computationally efficient 

algorithm to obtain these estimates is given in Table 1. Note that the delay and 
sum estimate fr(0) is a consistent, but not efficient, estimator of V(w0) irrespective 
of the value of p(w0). 

Table 1. Algorithm for fitting stochastic velocity model to equispaced arrays. 

(1) Form an initial estimate ~(o) of V(wo) using the delay and sum method. 

(2) Form an initial estimate 0(o) of 0 by fitting an AR(1) plus noise model to 
the Q()% I?(°)). 

(3) Update 1/(°) to f'O) using one step of the Newton-Raphson algorithm that 

minimises ~-~;~ Q(A, Y)/f(A, wo) where f(A, wo) is f(A, wo) evaluated at 0 = 0(o) 
(4) Iterate from (2) until convergence. 



STOCHASTIC VELOCITY MODELS AND ARRAYS 19 

To illustrate the practicality of the algorithm given in Table 1, we applied it 
to data from a seismic reflection-refraction survey undertaken by the Geophysics 
Division of the New Zealand Department of Scientific and Industrial Research 
(see Davey and Smith (1982)). The data subset considered comprised 512 time 
observations from 16 seismometers. These were spaced 1 km apart along a radial 
line from a shotpoint 6 km from the closest recorder where an explosive device was 
detonated to generate the data. The resulting traces were digitised at 200 samples 
per second and the data subset considered was selected from the stationary coda. 
Since the response functions of the recorders were band limited, a narrow band B of 
11 time frequencies was considered centred about COo = 27r f0 where f0 = 0.09 cycles 
per unit time or 18 cycles per second. A contour plot of the space-time periodogram 
function IW(A, co)I 2 over the region of interest is given in Fig. 1. Since the data 
contain a mix of refracted and reflected arrivals, the model introduced in Section 2 
is not strictly applicable. However, for the data subset considered, the one reflected 
arrival is the dominant signal and so, for the purposes of illustration and to a first 
degree of approximation, the refracted arrivals are subsumed in the noise. (The 
extension of the model to handle a superposition of delayed signals is currently 
under study.) The conventional delay and sum estimate yielded 12 (°) = 8.240 
km/sec and the algorithm described in Table 1 converged after two iterations to 
give a final value of l) = 8.241 km/sec. The line A = -a~/I) is superimposed for 
reference on the contour plot given in Fig. 1. Although the velocity estimates are 
much the same, their standard errors are not. The standard error for V using 
the stochastic velocity model was 0.057 km/sec whereas that for l) (°) using the 
deterministic velocity model was 0.036 km/sec. Thus, as would be expected, the 
stochastic velocity model gives more conservative error bounds for the velocity 
estimates. It should be noted that the estimate of p(co0) was 0.91 with standard 
error 0.06 indicating that in this case it may be difficult to discriminate between 
the two competing models. 

Finally we consider the situation where fn(A, w) can only be regarded as ap- 
proximately constant over aJ E B and A E C. Here C is a non-degenerate subset 
of (-Tr, 7r] which should contain -aJo/V(wo) if sensible results are to be obtained. 
This allows N(x, t) to be stationary and correlated in both time and space. Fol- 
lowing the same arguments as before we find that estimates of f(aJ0), p(aJ0), f~(aJ0) 
and V(wo) are obtained by minimising 

~ {log i(A + ~/V(~o), ~o) + IW(A, co)l=/f(~X + o~/V(~o), ~o)}. 
AEC wE B 

Moreover, under similar regularity conditions to those given before, the estimators 
are strongly consistent and v/-m-S(l)(w0) -V(w0)) ,  ~ ( 0 -  0) are asymptotically 
zero-mean, normal variates with variances and covariances given by (3.5), but 
with the range of integration now restricted to C + wo/V(a~o). The asymptotic 

independence of l)(aJo) and 0 - 0 is also preserved provided C is (asymptotically) 
symmetric about -a~o/V(coo). 
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4. Deterministic irregular arrays 

In this section we consider linear arrays of irregularly spaced recorders where 
the locations xj (Xl < x2 < " .  < xs) are given and regarded as deterministic 
rather than stochastic. Now consider the S-dimensional vector stationary process 
Y(t) with j - th  component Y(xj, t) given by (2.1) where a(x, w) -- 1 and N(x, t) 
is stationary in time, uncorrelated in space and uncorrelated with S(x, t). Denote 
the associated vector of time Fourier transforms by W(w) where W(w) has j-  
th component given by (3.6) with x = x i. Assume as before that L(x,~) is 
independent of both S(t) and N(t, x) with L(x+ 1, w) - L(x, ~) having a symmetric 
distribution, and that Y(x, t) has been sampled at unit time intervals with the time 
interval chosen so that aliasing is not a problem. Then, for T large, the W(w) 
(0 < w < 7r) may be regarded as approximately independent complex Gaussian 
random vectors each with mean 0 and covariance matrix 

(4.1) A(~)S(~)A(w)* 

where 
f(w) = f(w)R(w) + f~(w)I. 

Here I denotes the identity matrix, R(w) the matrix with typical element 
p(w)lxj-xkl A(~) the diagonal matrix with j - th  diagonal entry expixjw/V(w) 
and the * denotes conjugate transpose. This result follows from the form of (2.2) 
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and will be true in quite general circumstances (see Hannan (1970) and Brillinger 
(1975) for example). 

Consider, in particular, the case of fitting the spectral model (4.1) over a 
narrow band B of m frequencies centred at coo (0 < coo < rr) and assume that 
f(co), p(w), f,~(co) and V(co) are approximately constant over B. Proceeding as 
before we are led to estimate f(oa0), p(~o0), fn(co0) and V(wo) by minimising 

1 
(4.2) logdetf (wo)  + - -  E U(°")*f(co°)-I U(co) 

m 
a~EB 

where U(co) = A0(co)* W(co) and A0(co) is a diagonal matrix with typical element 
exp ixjco/V(coo). Note that the U(w) are vectors of re-phased Fourier transforms. 
The special case when p(wo) = 1 has been considered by many authors and assumes 
that the coherence between any two recorders in the array is the same regardless of 
location. However the more general model given here assumes that the coherence 
between recorders is an exponentially decreasing function of the distance between 
them which would seem to be a reasonable assumption in practice. 

Observe that  f(COo) is the covariance matrix of an irregulary sampled, con- 
tinuous parameter AR(1) process plus noise. Such models can typically be fitted 
by maximising the likelihood directly or, by using the Kalman filter. Taking the 
latter approach, the re-phased Fourier transforms U(w) can be rearranged as m- 
dimensional vectors Uj (j = 1,..., S) where Uj has typical element Uj(co) with 
co varying over the m frequencies in B. An appropriate state space model for the 
Uj is 

(4.3) uj  = sj  + Nj (j = 1 , . . . ,  S) 
= .t jSj_ 1 + E j  

where the (complex) vector processes {Nj}, {Ej} are Gaussian and independent, 
Nj is white noise with covariance matrix fn(Oao)I, Rj is p(coo)XJ-x~-iI with x0 
defined as -oc ,  and the Ej are independent each with zero mean and cov(Ej) = 
f(co0)(1 - p(coo)2(x~-xJ-1)I. Note that the complex state space model (4.3) can 
be reformulated into one involving just the real and imaginary parts of Uj, Sj, 
Nj, Ej and the model involves replicates over frequency. For a discussion on the 
fitting of such models to irregularly spaced data, see Robinson (1977) and Jones 
(1981). 

As before, we now define l)(coo), 0 =(](coo) ,  P(coo), in(coo)) T to be the esti- 
mates of V(coo), 0 = (f(coo), P((co0), fi~(coo)) r that minimise (4.2), and let rn and 
T increase in such a way that IrBII  = l o. Given suitable regularity condi- 

tions (see Hannan (1975) for example), it can be shown that l)(co0), 0 are strongly 

consistent estimators of V(cJ0), 0 and, moreover, v~(l)(co0) - V(coo)), vZ-m(O - O) 
are asymptotically independent, zero-mean, normal variates with 

(4.4) 

^ V(coo) 4 
m { V a r { v < ( V ( c o o )  - V ( c o o ) ) } }  = 

lira {Var{v/m(0 - 0)}} = a -1. 

- - -  ~ { x T ( ( I  ) -  I ) x }  -1 ,  
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Here the vector x has typical element xj (j = 1 , . . . ,  S), the matrix ~ has typical 
element f (~o)j kf  (~o) kj (f  (~o)J a" denoting the typical element of f (wo) - 1 ) and ~t 
has typical element 

~jk = tr{ f(Wo)-l i:)f~(~jO) f(Wo)-l Of~(~kO) } . 

The asymptotic independence of V(~0) and 0, together with the observations 
made in the previous paragraph suggest the iterative fitting scheme given in Table 
2. Again, I} -(°) is a consistent, but not efficient, estimator of V(wo) irrespective of 

The model (4.1) can readily be generalised to include varying attenuations of 
the form indicated in model (2.1) and to include noise processes N(x,  t) which, 
although uncorrelated in time, have variances that depend on location. 

Table 2. Algorithm for fitting stochastic velocity model to irregular arrays. 

(1) Form an initial estimate ~-(0) of V(wo) using the delay and sum method. 

(2) Form an initial estimate 0 (°) of 0 by fitting a (replicated) continuous parameter AR(1) 

plus noise model to the U;. 

(3) Update ~lo) to ~(1) using one step of the Newton-Raphson algorithm that  minimises 

( l / m )  ~ E B  U(w)*f (w°) - I  U(w) where )~(w0) is f(wo) evaluated at 0 = 0 (°). 

(4) Iterate from (2) until  convergence. 

5. Random irregular arrays 

Consider the situation as described in Section 4, but where now the xj may 
be regarded as a realisation of some stochastic process. In situations such as these 
the data is typically Fourier transformed as if the recorders were equispaced and 
the irregularities are taken account of by appropriate spatial modelling. However 
the resulting computational efficiencies, while clearly a virtue, will only apply if 
the number of recorders is large. 

The case where the xj can be thought of as independent observations from a 
common distribution with unknown mean and variance is given in Hinich (1982). 
Two other models of interest are 

(5.1) xj = xj_ 1 ~- gj 
and 

(5.2) xj = j A  + zlj 

where {sj }, {~j } are sequences of independent and identically distributed random 
variables with E(ej)  = A, E(~j) = 0 and A > 0 is an unknown space interval. 
To ensure that xj > xj-1 we shall require the ej to be distributed on (0, cx~) 
and the Uj to be distributed on ( - A / 2 ,  A/2]. Both situations relate to cases 
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where the recorders are, on average, a distance A apart. However (5.1) allows 
measurement errors to accumulate as would happen if each recorder were located 
by being positioned relative to its neighbour. With (5.2) recorders are located, 
subject to error or jitter, at the points of a regular grid. 

If model (5.1) is adopted then the process Sj(t) = S(xj,t) has mean # and 
autoeovariance function 

(5.3) F E{Sy(s)Si+k(s + t)} = ei(t~-kO'(~))p[kl(w)f(w)dw 
~T 

where pl(W),  0l(W) are the modulus and argument respectively of ¢(w) = 
E{O(w, w) c } with the random variable c having the same distribution as Cy. Thus 
Sj (t) has space-time spectral density given by (3.1), but with O(w), ¢(w) replaced 
by Pl (w), 01 (w) respectively. This is formally equivalent to assuming that the unit 
increments of L(x, w) have characteristic function ¢(~) rather than 0(w, w). If the 
Cj are identically equal to A so that the recorders are located at the points jA,  
then (5.3) with A = 1 reduces to (3.1) as expected. In the case of a determin- 
istic velocity function, ¢(w) is just the characteristic function of Ej evaluated at 
¢z/V(w). The important point here is that the spectral form (3.1) can arise purely 
through stochastic velocity, irregular spacing or a combination of both. 

If model (5.2) is adopted then Sj (t) has mean # and space-time spectral density 

I1 ÷ - 1)p(w)ei()'+°(~))[ 2 - 2 
( 5 . 4 )  27r 11 - 2 

where a(w) = E{~p(w,w)n}E{¢(w,w)-'} with the random variable ~1 having the 
same distribution as ~j. Note that (5.4) reduces to (3.1) in the case where the ~j 
are zero and a(w) = 1. However, in the case of a deterministic velocity function, 
(5.4) becomes 

(5.5) f(w){t~(w/g(w))125(A +w/V(w)) + ~ ( t - [ / ~ ( w / V ( w ) ) l  2 } 

where 3 ( )  is the characteristic function of rlj. This is similar to (3.1) in the case 
p(w) = 1, but differs in that the delta function has been modified by the factor 
[fl(w/V(w))[ 2 and low order spectral mass added. 

The spectral models arising from (5.1) and (5.2) can be fitted using essentially 
the same procedures as those described in Section 3. Note that the xj will typically 
be known and estimates of ¢(w), in the case of (5.1), and a(w), in the case of 
(5.2), can be obtained. Given the same assumptions as were made in Section 3, 
appropriate estimates are 

(5.6) 

and 

(5.7) 

S 
1 

¢(w)-  S -  1 EP(W°)~JeiEy/v(~°) 
j=2 

{is 
&(w) = ~ EP(Wo)~Jei~'~/v(~°) 

j = l  

s 

p( o) } 
3=1 
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w h e r e  'flj = :~:j - j A  a n d  z~ = ~ i x  j~ ~ j2  is t h e  o r d i n a r y  l eas t  s q u a r e s  e s t i m a t o r  

of  A .  However ,  as a resu l t ,  t h e  o p t i m i s a t i o n  p r o c e d u r e  is now m o r e  involved.  
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