
Ann. Inst. Statist. Math. 
Vol. 44, No. 1, 1-11 (1992) 

A SPACE-TIME CLUSTERING MODEL 
FOR HISTORICAL EARTHQUAKES 

F. MUSMECI ] AND D. VERE-JONES 2 

121 Via Carlo Alberta dalla Chiesa, 00061 Anguillara, Roma, Italy 
2Institute of Statistics and Operations Research, Victoria University of Wellington, 

P.O. Box 600, Wellington, New Zealand 

(Received December 21, 1989; revised November 5, 1990) 

A b s t r a c t .  This paper describes a generalization of Hawkes' self-exciting pro- 
cess in which each event creates a process of "offspring" with conditional in- 
tensity governed by a diffusion kernel. The process may be described as a 
space-time branching process with immigration, the immigration representing 
a background series of independent events. The model can be fitted by like- 
lihood methods. As an illustration it is fitted to the catalogue of historical 
Italian earthquakes. 
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I. Introduction 

This  paper  describes an a t t empt  to fit a simple type  of space-time cluster pro- 
cess to historical da ta  from Italy. As such it forms one of a series of papers  (see 
Vere-Jones and Ozaki (1982), Ogata  and Vere-Jones (1984), Vere-Jones (1988), 
Vere-Jones and Deng (1988)) which seek to develop models and associated statis- 
tical methods  for analyzing historical ear thquake catalogues. 

Neither  pure spatial  methods  nor pure t ime series methods  have proved very 
revealing in s tudying pa t te rns  of ear thquake occurrence. Even such a basic feature 
as the ex t reme clustering of smaller events (see, for example,  Vere-Jones (1978)) is 
obscured by project ion onto either t ime or space axes, a process which mixes the 
clusters and distorts  their  real characters.  Typically, the historical records reveal 
a superficially random (Poisson) character ,  with a variety of subtler f ea tu res - -  
local clusters, possible coincidences, apparent  variations or al ternat ions in act ivi ty 
from one par t  of the region to ano the r - -which  lie somewhere on the borderl ine 
between subjective fancy and statistically verifiable features. General ly speaking, 
historical consistency (completeness) requires tha t  only the largest shocks (typi- 
cally M > 6) be considered, in which case the da ta  often comprises no more than  
50-100 events. In such circumstances modelling is clearly more of an art  t han  a 
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science, and more cautious statisticians may well query the value of attempting 
to fit relatively complex models to such limited and unreliable data. However, 
the historical catalogues provide a unique, and in most cases the only, record of 
regional earthquake activity over periods of the order of 1000 years. Bearing this 
in mind it may be justified to spend a small proportion of the time until the next 
1000 years of data have accumulated in speculating how the last 1000 years might 
be interpreted. 

The pioneering papers in the development of space-time models for earth- 
quakes axe those of Kagan (1973) and Kagan and Knopoff (1976), which develop 
and apply a rather complex magnitude-space-time branching process, primarily 
for use with major earthquakes on a global scale. Their analysis suggests, among 
other things, a kind of wave of heightened activity spreading out from major events 
on a global scale. The model outlined in the present paper is an extension of the 
simpler "self-exciting" processes introduced by Hawkes (1971) and first applied to 
earthquake data by Hawkes and Adamopoulos (1973). Subsequently a series of 
papers by Japanese authors (e.g. Ogata et al. (1982), Ogata and Katsura (1986, 
1988)) have extended the models in several directions, exploiting their simple like- 
lihood structure as a basis for estimation and inference. 

The special feature of the present extension is its explicit use of the space- 
time intensity. The importance of using space-time models, even to explain purely 
spatial patterns, was emphasized more than a quarter of a century ago by Whittle 
(1962) in a study of spatial patterns of soil fertility. The point is that the inclusion 
of the time variable makes possible a causal, evolutionary approach which is simply 
not available in the purely spatial context. From the point process viewpoint, this 
means that space-time models can be treated as "marked" point processes, taking 
time as the key variable and treating the spatial coordinates (latitude and longitude 
of the earthquake epicentre), and also the magnitude, as marks. 

As such the model comes under the general theory for marked point processes 
developed by Jacod (1975), Karr (1986) and others, in which the point process 
is uniquely specified by its "compensator" (or time derivative, the "conditional 
intensity function"). A simple product formula is then available for the likelihood. 
An introduction to these concepts in the unmarked case is given in Daley and 
Vere-Jones ((1988), Chapter 13). 

We shall not stress the general theoretical aspects in the present paper, but 
concentrate rather on describing and fitting the model (Sections 2-3 below) with 
an application to the Italian historical catalogue given in Section 4. 

2. Description of the model 

We assume the following "self-exciting" form for the space-time conditional 
intensity A(t, x, M): 

(2.1) ~(t,x,m)dtdxdM= f(M)dM[~o(X)+ E h(t-ti,x-x~,Mi)]dtdx. 
i : t i~ t  

Here 
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(i) The left-hand side (LHS) of (2.1) can be interpreted as the conditional 
probability of an event in the time-space-magnitude window (t, t + dt) × (x, x + 
dx) × (M, M + dM), given the past history of events {ti, x~, Mi} with t s < t. 

(ii) The earthquake magnitudes Mi are supposedly determined, independently 
of all other aspects of the process, according to a distribution function with density 
f (M).  (In practice f (M)  is exponential, corresponding to the so-called "Guten- 
berg Richter frequency-magnitude relation"; see, for example, Vere-Jones and 
Smith (1981).) 

(iii))~0(x) is the space-time intensity, assumed constant in time, of a Poisson 
process of independent background events. 

(iv) h(u, x, M) is a kernel defining the contribution to the risk (conditional 
intensity), at time u and location x, from an earthquake of magnitude M at the 
space-time origin. Note the homogeneity assumption that this kernel is a function 
of the differences t - ti and x - x~ only, not of the pairs of coordinates (t, ti) and 
(x, x/) separately. In an epidemic-type interpretation, h(u, x ,M)  describes the 
risk of a newly infected individual appearing at location (u, x) after contact with 
an infected individual, with "strength of infection" M, at the origin. 

The particular feature of the Hawkes' self-exciting model, which is preserved 
in the above extension, is the representation of the conditional intensity as a sum 
of contributions from all previous events. As with the original model, the process 
defined by (2.1) can also be interpreted as a "branching process with immigration" 
(see Hawkes and Oakes (1974)), the immigration component being described by the 
constant rate (in time) Poisson process of background events, while the "offspring" 
from a given "ancestor" with coordinates (to, Xo, M0) form a Poisson process in 
space-time with intensity h(t - to, x - x0, M0) (t > to). 

If either A0(x) is bounded or has finite integral, then it is easy to deduce from 
general conditions given, e.g. in Daley and Vere-Jones ((1988), Subsections 8.2 
8.3) that a sufficient condition for the existence of a stationary (in time) version 
of the process is 

(2.2) p= EM [ / /  h (u ,x ,M)dudx  I < 1  

which simply asserts that the mean number of "offspring" per "ancestor" is less 
than one, and implies that the expected total number of progeny produced by a 
single ancestor is finite and bounded in x. If the inequality is reversed (p _> 1), the 
process is "explosive", and will typically increase without bound as t increases. 

Under the condition p < 1 the first moment or expectation measure of the 
stationary process has a density rn(x) in space which can be found by taking 
expectations in (2.1). This leads to the integral equation of renewal type 

(2.3) re(x) = Ao(X) + / m(x - y)q(y)dy 

where 

fO °~ q(y) = EM[h(t, y, M)]dt. 



4 F. MUSMECI AND D. VERE-JONES 

Since f q(y)dy < 1 from (2.2), equation (2.3) is readily seen to have the solution 

= Ao(X) + / Ao(X - y )R(y )dy ,  l~t ( x ) 

where the "renewal density" R(y)  is given by the convergent series 

R(y)  -- q(y) + q*q(y) + . . .~  

and * denotes convolution in space. Thus the stationary rate (constant in time, 
varying over space) is, under these conditions, just a smoothed version of the 
immigration rate. In the non-stationary case (p ~ 1), the mean rate re(x, t) will 
generally increase without bound, either linearly (p --- 1) or exponentially (p > 1)I 
as t -~ oc, although more complex types of behaviour can also occur. 

In the sequel we shall consider two specific parametric forms for the kernel 
h. The first, suggested in part by the discussion in Whittle (1962), is a standard 
diffusion kernel 

(2.4) h ( u , x , M ) = A e ~ M e  -~u 1 { 1 ( x2 Y~22)} 
27ra~a~u exp - ~ u  ~x 2 + 

Here x = (x, y ) T  A is an overall constant, e ~M describes the dependence of 
the risk on the magnitude of the exciting event, e -zu is an exponential damping 
factor (energy absorption), and the diffusion constants ax, ay control the rates of 
diffusion of risk along the x- and y-directions respectively. For fixed u, the contours 
of constant risk are ellipses with their axes aligned along the x- and y-axes. For 
fixed x, on the other hand, the risk at time u after an event at the origin decays 
asymptotically at a rate proportional to u - l e  - ~ ,  which is reminiscent (apart from 
the exponential term) of the so-called "Omori Law" for the decay in aftershock 
frequency following a main event. 

However, in the context of historical earthquakes the function of the kernel 
h(.) is not so much to describe the immediate aftershock sequences (which rarely 
contain more than one or two of the larger events to which the historical cata- 
logue has to be restricted for this type of analysis) as the longer term transfer of 
stress from one locality to another. Although the direct evidence for a diffusion 
mechanism for such a process is hardly overwhelming, many historical catalogues, 
including the Italian catalogue, include examples of pairs or short sequences of 
large events, separated by distances of 100 km or greater, which occur within 
time periods which are short by comparison with the overall mean time between 
events. Similarly the diffusion mechanism may help to account for the impression 
of waves of heightened activity which move up and down the peninsular in an 
irregular fashion. 

In addition to the Gaussian distributions incorporated in the kernel (2.4) we 
experimented with a product-Cauchy form 

2 2 2 u2c~)]-1 (2.5) h ( u , x , M )  = Ae~M e-Z~u2cxc.~[~2(x 2 + u cx)(y + 

in which the contours for fixed u are closer to diamond shaped, and the decay for 
fixed x is asymptotically proportional to u-2e - ~  as u --* oz. 
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3. Estimation of model parameters 

Given the catalogue, the likelihood for a space-time process with conditional 
intensity of the form (2.1) can be represented in the form 

N 

(3.1) logL = E log £(ti, x~, M ~ ) - / w  
i = 1  

A(t, x, M)dt dx dM 

where W refers to the space-time-magnitude window of the observation zone. 
In order to fit model (2.1) to the data, a preliminary estimate of the form 

of A0(x) is first needed. This can be made, for example, by a simple kernel 
smoothing of the complete data set. Since the relative weight to be given to the 
background terms is not known a priori, an additional proportionality factor needs 
to be introduced into (2.1), by writing it in the form 

(3.2) A(t,x,M) = f (M)A{(1-  p)Ao(x) + p E h(t-  t~,x - x~,Mi)} 
i : t ~ _ t  

where ~0(x) is the estimate of A0(x) and p is constrained to the unit interval 
0_<p_<l .  

Before entering a numerical optimization routine two further simplifications 
were made. Already the form (2.1) embodies the assumption that magnitudes 
are independent of other features of the process. When introduced into (3.1) the 
integral of f(M) in the second term on the right side of (3.1) equals unity and so 
drops out of the equation, leaving the likelihood as the product of two terms, the 
first a product of the f(Mi) and the second independent of the form of f(M). Thus 
the problem of estimating any parameters in the distribution of magnitudes can 
be treated as a separate problem in its own right, and the essential task reduces 
to maximizing the second term, that is the so-called "partial likelihood" 

N 

(3.3) logL1 = E l o g A l ( t i , x ~ ) - / w  Al(t,x)dtdx 
1 1 

where Al(t, x) is the coefficient of f(M) in (3.2), W1 is the space-time component 
of the observation window, and the magnitudes appear in (3.3) only in the form 
of known (observed) values. 

Also the overall constant A in (3.2) can be estimated directly from (3.3), by 
differentiating with respect to A and solving, which leads to the result 

A=N/I ,  where I = f w  ¢ ( t , x ) d t d x  
1 

and we have written ~p(t, x) for the term in braces in (3.2). Substituting for 
back into (3.3) gives the reduced form 

(3.4) 
N 

logL1 = N l o g N -  N l o g I -  N + E l o g ~ ( t i , x ~ ) .  
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A similar calculation can be performed for the special case of a constant-rate 
Poisson process, which leads to the likelihood 

(3.5) logLo = N l o g N -  N l o g l W ] -  N 

where IWI is the space-time "volume" of W. Hence we can replace the maximiza- 
tion of (3.3) by the maximization of the log likelihood ratio log(L1/Lo), in the 
form 

(3.6) 
N 

log(L1/Lo) = Z log~/,(ti, ~i) - Nlog(I/IWI). 
1 

This manipulation reduces the number of unknown parameters by one and 
gives the solution directly in terms of a likelihood ratio which is independent 
of the choice of scales in the time and space dimensions, and is the quantity of 
immediate practical interest. 

The estimation of the remaining parameters can then be completed by se- 
lecting one or other of the parametric forms (2.4), (2.5) for h(.) and applying 
a standard optimization routine, such as those available in the NAG or IMSL 
subroutine libraries. 

The initial at tempts to produce a satisfactory solution failed, apparently as a 
result of the mixture form of (2.1) and the existence in the catalogue of events with 
identical spatial coordinates x4, a combination which produced spurious maxima 
with cr x ~ 0. ay ~ 0. This difficulty was overcome by constraining crx and 
~ry to lie above small positive constants ex and cu, paying careful attention to 
overflow procedures when the arguments of the exponentials in (2.4) become too 
large, and using the double precision version of the optimization routine. With 
these additional precautions satisfactory convergence to an interior point of the 
parameter space was obtained. 

4. Application to the Italian historical catalogue 

As an illustration of the modelling and estimation procedures, we describe 
their application to major events in the Italian historical catalogue. The applica- 
tion was restricted to events with a maximum Mercalli intensity of 9 or greater, 
and to the time period 1000-2000 AD. A comb diagram for the data is shown in 
Fig. 1, and a plot of the epicentres in Fig. 2. 

One problem with this particular catalogue is that the size of events is in- 
dicated only by the maximum Mercalli intensity and not by the magnitude. Al- 
though intensities are approximately linearly correlated with magnitudes, they 
are a measure of surface damage rather than of energy release, and their use as a 
surrogate for magnitudes in the analysis represents one step further away from a 
direct link with the geophysical reality. A revised catalogue with magnitudes is in 
preparation but was not available for the analysis. 

Other problems, typical for historical catalogues, concern doubts about the 
completeness of the data set, even for these large events (an increase of fre- 
quency with time is visible even by eye in Fig. 1) and a tendency for events to be 



A S P A C E - T I M E  C L U S T E R I N G  M O D E L  7 

INTEH 

11- 

10. 

9 ,  

lggg 

Fig.  1. 

11Qg 1200 13~g 1400 1Sgg 160g 1?gO 

ANNI 

I 

18go lgg@ 2ggg 

C o m b  d i a g r a m  for I t a l i an  h i s to r i ca l  d a t a  A D  1100-1980.  

li',lOQI 

LAI 

,]l,i! . . . . .  I . . . . .  I . . . . .  r , ' '  

I,~'5 I,TZ 12.80 I+,ZT 

L ~  

F - - 0 3  - - -  O,~ - -  ~,l 
- - -  ~.Q - -  10.0 ~,! 

Fig.  2. B a c k g r o u n d  i n t e n s i t y  t 0 ( x )  w i t h  s u p e r i m p o s e d  e v e n t s  A D  1100-1980.  



8 F. MUSMECI AND D. VERE-JONES 

given identical epicentres when they affect the same localities. See, for example, 
Margottini and Serva (1988) for further illustrations of the problems of dealing 
with historical catalogues. 

Despite these problems the model was applied directly to the catalogue data, 
as a test of the feasibility of the methodology and to gain a preliminary idea of 
the results that  might be expected from such an analysis. 

The results of the estimation procedure are shown in Table 1, which lists the 
parameter values for four evaluations, three with the Cauchy kernel using different 
versions of the background intensity A0(x), and one with the diffusion kernel. The 
values are in artificial units, after rescaling all dimensions to the interval (-1,  1). 
In real units, the values of/3 represents a half life for the exponential decay in the 
range 400 2000 years, and the values of c~., cy  represent spreading velocities of the 
order of 5--50 km per century. The values of H in the first column represent the 
values in kilometres of the radii of a prelinfinary smoothing kernel applied to the 
total data set to estimate A0(x). 

Table 1. Parameter values for cluster models. 

(a) Cauchy-type clusters 

Smoothing p a /3 c~ Cy A log L 
parameter (proportion) (magnitude) (time decay) ( l a t )  (long) 

H = 50 .992 -.00292 1.1264 .00922 .00017 39.5 
20 .987 -.00064 .4684 .02789 .01931 62.8 
10 .980 -.00029 .3900 .04208 .03272 84.1 

(b) Diffusion clusters 

p a 2 ax a.~ 

H = 20 .9856 .0000 .4590 .0079 .0040 

Once the parameters have been estimated, interpolated values of the risk at 
any time t and location x can be obtained by substitution in the intensity formula 
(2.1) with h given by (2.4) or (2.5) as appropriate. One way of illustrating the 
results is as a sequence of contour plots for the intensity at different times t. Ideally, 
the sequence of plots should be displayed in movie-style, and would then illustrate 
graphically the rise and fall of high risk regions in response to the development of 
various earthquake clusters. An indication of the results to be expected is given in 
the panel of results in Fig. 3, which shows the risk contours for 1620, 1660, 1700 
and 1740. They illustrate, for example, the sudden appearance and slower delay 
of a high risk region near the Adriatic coast in 1660, and the relative stability of 
high risk regions near Friule in the North East, and in Sicily. 

A few general comments concerning the interpretation of the parameter values 
may be made. 

(i) In no cases was significant dependence on the magnitudes noted: for prac- 
tical purposes one might as well take c~ = 0 in either form (2.4) or (2.5) for h(.). 
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The result is counterintuitive and tends to suggest that the model is not tracking 
any physically meaningful feature. 

(ii) The decay parameter ~ and the diffusion terms cx, % all indicate a long- 
sustained, highly spatially concentrated risk. This suggests that the main mod- 
elling effect may just be to reproduce the near coincidence of historical epicentres 
from different epochs, a feature of the catalogue already referred to. 

(iii) The estimated number of offspring per ancestor is given in terms of the 
parameters of (3.2) as 

Ap b 
~ b - a  

where b is the coefficient in the frequency magnitude (here intensity-magnitude) 
distribution 

f ( M )  = be -bin. 

If the estimated coefficients are substituted into this formula, the values obtained 
are of the order of 10-25, and indicate a system in the early stages of supercritical 
growth. This estimate is very rough, and does not allow for the finiteness of 
the region, but is almost certainly related to the completeness problem with the 
catalogue, and the need to reproduce an increasing overall frequency of events with 
time. This increasing tendency is evident even in the relatively short time span 
covered by the diagrams in Fig. 3. 

(iv) Given the parameters, a simulated catalogue can be developed following 
essentially the simulation procedures for point processes outlined by Ogata (1981) 
for the 1-dimensional case. The points in a realization are simulated in sequence; 
for each point, first the time coordinate, and then the space and magnitude values, 
are obtained, starting from the form of the risk function at the time of the preced- 
ing event, and recalculating the risk after the addition of the current point. The 
results of such realizations were not so tightly linked to the geographical bound- 
aries of Italy as the actual data indicating that geographical constraints on the 
possible locations of events are not properly taken into account in the model. The 
simulation model can also be used to forecast the risk into the future. 

(v) As the degree of smoothing in the estimate of ,k0(x) is decreased, allowing 
tighter contours round the data, the overall fit, as well as the relative importance of 
the immigration term, increases. This is hardly surprising, but raises the question 
of how the one feature should be traded off against the other. One possibility here 
is to replace the non-parametric smoothing procedure by a parametric smoothing. 
Then the tightness of fit is controlled by the number of terms in the parametric 
smoothing model, and a model-selection criterion such as AIC can be used to judge 
the optimal stopping point. 

Overall, the results of this preliminary analysis are rather disappointing, and 
not such that any great geophysical significance could be planned on them. Rather, 
they are dominated by features which seem to be artefacts of the data. A more 
careful and thorough study would be required, testing out the sensitivity of the 
different features to variations in the data set, checking the consistency of the 
estimation procedures from simulated data, etc., before one could be confident in 
the physical interpretation of the results. 
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