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A b s t r a c t .  Let X1,. . . ,  XN be independent observations from Np(#, ~1) and 
Y1,..., YN be independent observations from Np(#, ~2). Assume that Xi's and 
Y~'s are independent. An unbiased estimator of/z which dominates the sample 
mean X for p _> 1 under the loss function L(/z,/2) -- (f~ - #)'~i-l(fL -/~) is 
suggested. The exact risk (under L) of the new estimator is also evaluated. 
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1. Introduction 

Let X 1 , . . . , X N  be independent observations from a p-variate normal distri- 
bution with mean vector # and positive definite covaxiance matrix ~1, Np(#, El). 
Let Y1,. . . ,  YN be independent observations from Np(#, Z2). Assuming that Xi's 
and Y/'s are independent, we consider the problem of estimating the common mean 
vector # when ~1 and Z2 are unknown. 

This problem, when p = 1, has been considered by many authors, among 
them, Graybill and Deal (1959), Brown and Cohen (1974), Cohen and Sackrowitz 
(1974) and Khatri and Shah (1974). These authors suggest unbiased estimators of 
# with smaller variances than vax()(), sometimes smaller than both var(.~) and 
var(Y) with certain restrictions on the sample size N, where )(  = ( l /N)  ~-~g=l Xi 

and 1~ = ( l /N)  ~-~g=l Y~. 
For p > 1 case, Chiou and Cohen (1985) considered this problem with respect 

to the covariance criterion. Under this criterion, between the unbiased estimators 
/51 and/22 of #, f~l is preferable to fL: if cov(~2)-  Cov(fL1) is a positive semidefinite 
matrix, where cov(-) denotes the covariance matrix. They showed that  none of the 
estimators, that axe multivariate analogous to the ones considered in the papers 
cited in the previous paragraph, dominates either ) (  or Y under the covaxiance 
criterion. Loh (1988) suggested some combined unbiased estimators for # under 
the loss function L(#,/2) = ( p - ~ ) P ( ~ l  1 -{-~21)(~--fL). None of these estimators is 
known to dominate either ) (  or Y analytically. Recently, Kubokawa (1989) treated 
this problem under the loss L(#, ft) -- (# -~)~P(#- /5 ) ,  where P is a known positive 
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762 K. K R I S H N A M O O R T H Y  

definite matrix, and proposed a combined estimator that dominates both )~ and 
?. 

In this paper, we evaluate the merit of an estimator through the loss function 

(1.1) L(#, ft) = (it - / ~ ) ' Y ] ~ l l ( ~  - -  ft). 

This loss function is chosen for mathematical convenience. Under this loss (1.1), 
there are several estimators (for example, James and Stein's estimator (1961)), 
based on only one sample observations X1,. . .  ,XN, that dominate )(. However, 
note that such estimators are not unbiased and also they necessitate (to dominate 
)~) that  p _> 3. So we hope that if we use both sample observations X~'s and Yi's, 
we can find an unbiased estimator that beats )~ under the loss (1.1) for any p > 1. 

In Section 2 of this paper, we suggest an unbiased estimator that is similar to 
the one given in Krishnamoorthy and Rohatgi (1988) for p -- 1 case. We compute 
the exact risk of the new estimator and show that it is less than the risk of X, for 
any p >_ 1 and N _> p + 5, under the loss function (1.1). 

We discuss the features of the new estimator and a relation between the loss 
(1.1) and the covariance criterion in Section 3. Numerical study (Table 1) indicates 
that the relative improvement of the new estimator over X is quite significant when 
tr(Ei(Z1 + E2) -1) is moderately large. 

In the Appendix, we derive expectations of some mixtures of Wishaxt and 
inverted Wishart random matrices (using some "matrix derivatives" results) that 
are needed in Section 2. These expectations are in a more general form and, if one 
is interested, moments of mixtures of elements of Wishart and inverted Wishaxt 
random matrices can be obtained from them. 

2. Main result 

Consider the transformation Ui = Xi and Vi = Xi - Yi, i = 1, 2 , . . . ,  N. Define 

N N 

= (I/N))--~U~ and = E ( u ,  - o ) ( v ,  - 0 ) '  
i=1 i=1 

Let 17 and Sv be defined similarly. 
When Z1 and Z2 are known, it can be easily seen that t~ = ~-~/'--~I()'~Q +)-~2)--11¢ r 

is the best unbiased estimator and hence better than both .~ and I7" under the 
loss (1.1). When E1 and E2 are unknown, replacing El(E1 + E2) -1 by aSuSv 1, 
where a is a positive constant, leads to the estimator 

(2.1) fro = ¢ - aSu S v l  ~ .  

The rational for considering fta is that "E(Su) = ( N -  1)El and E(Sv 1) -- (N - p -  
2) -1 (El + E2) -1, and a is chosen to minimize the risk. Since E(U) = #, E(V) -- 0 
and (Su, Sv) is independent of (U, V), t~a is an unbiased estimator of #. 

We need the following lemma to derive the risk of fta under the loss (1.1). 



ESTIMATION OF A COMMON MEAN VECTOR 763 

LEMMA 2.1. (i) The conditional distribution of Su given Sv is noncentral 
Wishart with n =- N - 1  degrees of freedom, covariance matrix Ell.2 = E l - E 1  (E l+  
E2)-IE1 and noneentrality parameter E l l2ASv  A ', where A = El(E1 + E2) -1. In 
the standard notation Su [ Sv ~ Wp(n, Eu.2, Enl.2ASvA'). 

(ii) E(Su I Sv) = nEn.2 + ASvA'  

(iii) E(SvCSv  I Sv) 

= n(n + 1)(El l .2CZll .2)  

+ (n + 1)(En.2CASvA' + ASvA'CEn.2) 

+ t r (CEl l .2 ) (nEl l .2  + ASvA')  + (tr C A S v A t ) E l l . 2  

+ ASvA 'CASvA '  

where C is a matrix of constants. 

PROOF. (i) Let U = (U1,..., UN) be a p x N matrix. Noting that, 

U I (171,..., VN) "~ N(Mp×N, IN ® Y~ql.2) 

where M = (# + AV1,... ,# + AVN) and A = El (E1 + E2) -1, we prove (i). 
(ii) follows from (i) (for example, see Muirhead ((1982), p. 442)). 

(iii) Let W ~ Wp(n,O,O-lz/~f). Note that W d ZZ ~, where Z is a p × n  
matrix whose columns Zi's are independently distributed as Np(~i,O) and 
(T]l,...,~p) = ~ is a p  x n matrix. So, 

(2.2) 

Now 

(2.3) 

E(WCW) = E(ZZ'CZZ')  

) (  ) = E z , < C a <  + , , E ZiZ:CZ.Z I. 
E . . . 
i=1 i # j  -- 

i # j  i# j  

Next, using the relation Zi d ~i + ~li, where ~i's are i.i.d, as Np(O, O), we get 

(2.4) 
\ i=1  

= E ~ + ~) (~  + ~,)'C(~ + ~)(~, + ~)' 

= 2n(OCO) + tr(CO)(nO + ~ ' )  + 2 0 C ~ '  
n 

i=1 
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Combining (2.2), (2.3) and (2.4), replacing O by Ell.2 and yy' by A S v A ' ,  and 
after some simplification we get (iii). 

We now derive the risk of ~a. 

THEOREM 2.1. (i) The risk of fza = U - aSuSv1TJ under the loss (1.1) is 
given by 

(2.5) R ( # , / ~ )  

= 2 )  

+ (ac l /N){ [an (n  - 1)(n + p + 1) - 2n(n - p)(n  - p - 3)] tr D 

+ [2(n - p)(n - p - 3) 

+ a(2n + p  + 2)(p - 2n) - 2a(2n - p - 2)](tr D 2) 

+ 4a(3n - 2p - 1)(tr D 3) + a(9n - 6p - 1)(tr D)( t r  D 2) 

+ [2(n - p)(n - p - 3) - a(4n 2 - (p + 2) 2 + 2)](tr 0 )  2 

+ a(3n - 2p - 3)(tr D) 3} 

where cl = [ ( n - p ) ( n - p -  1 ) ( n - p - 3 ) ]  -1 and D = (El  + E 2 ) - l / 2 E l ( E 1  +E2) -1/2. 
(ii) Moreover, for n >_ ( p + 4 )  and ao = (n - p ) ( n  - p  - 3) / ( (n  - 1 ) ( n + p +  1)) 

 oo) < 2 )  

for all positive definite matrices E1 and E2. 

PROOF. (i) 

(2.6) R(#,  fta) = E(f~a - #)'E11(fta - #) 

= R(# ,  f ( )  - 2 a N - 1 E  t r ( S v S y  1) 

+ a 2 N - 1 E t r ( S v 1 S u E l l S u S v I ( E 1  + E2)). 

To get (2.6) we used the conditional expectat ion E ( U - #  ] ~') = El(E1 + E 2 ) - I V  
and N E ( V V ' )  = (El + E2). Using Lemma 2.1(ii), we first compute 

(2.7) E t r ( S u S v  1) 

= E [ t r E ( S u S v  1 [Sv)]  

= n(n  - -p  -- 1) -1 tr(Ell .2(E1 + E2) -1) + E t r ( A S v A ' S v 1 ) .  

Let Q = (]El + E2)-I /2SV(E1 q- E2) -1/2 ~ Wp(n , I ) .  Then E t r ( A S v A ' S v  1) = 
E t r ( D Q D Q  -1) and using Corollary A.l(i) ,  it follows from (2.7) that  

(2.8) E t r ( S u S v  1) = (n - p -  1 ) - l [ n t r D  - t r D  2 - (tr D)2]. 

Next, from Lemma 2.1(iii), we have 

(2.9) E t r ( S v 1 S u E ~ I S u S v I ( E 1  + E2)) 
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E [ E t r ( S v 1 S u E ~ I S u S v I ( E 1  + E2) ] Sv)] 

n(n + 1)E tr[Sv1E11.2E-~lE11.2Svl(E1 + E2)] 

+ (n + 1)Etr[Sv1E11.2E~lASvA'Sv1(E1 + E2)] 

+ (n + 1)Etr[Sv1ASvA 'E~IEl l .2SvI (E1  + E2)] 

+ tr(E~-IEll.2)E t r [Sv1ASvA 'Sv  1 (El + E2)] 

+ ntr(E~1E11.2)Etr[SvIE11.2Sv1(E1 + E2)] 

+ E tr(E~-IASvA') tr[S v 1E11.2Sv 1 (El + E2)] 

+ E t r [ S v I A S v A ' E ~ I A S v A ' S v ~ ( E ~  + E2)]. 

Using the relations that,  for any matrices F and G, t r (FG)  = t r (GF)  and for 
symmetric matrices F,  G and H of same order t r (FGH) = tr(GFH),  (2.9) can 
be written as 

(2.1o) E t r ( S v 1 S u E l l S u S v I ( E 1  + E2)) 

= n ( n +  1 ) E t r [ Q - I ( D -  2D 2 + D3)Q -1] 

+ 2(n + 1)Etr[Q-2(D - D2)QD] 

+ (p - tr D)E tr (Q-2DQD) 

+ n(p - t r D ) E t r [ Q - l ( D  - D2)Q -1] 
+ E[tr(DQ) t r ( Q - l ( D  - D2)Q-1)] 

+ E tr[Q-2DQDQD]. 

All these expectations on the rhs of (2.10) are evaluated and given in the Appendix 
(Corollary A.l(ii), (iii), Theorem A.2(i), (ii) and the equation (A.3)). After sub- 
sti tuting these expectations in (2.10) and then combining the resulting equation 
with (2.8) and (2.6), we get (2.5). 

(ii) When a = ao, (2.5) can be simplified as 

(2.11) R ( , , 2 )  - 

= a2oClN-l[n(n - 1)(n + p +  1)tr  D 

+ (2n 2 + 8n - 2 n p -  p2 _ 2 p -  2)(tr D 2) 

- 4(3n - 2p - 1)(tr D 3) - (9n - 6p - 1)(tr D)( tr  D 2) 

+ (2n 2 - 2np - p2 _ 2p)(tr D) 2 

- (3n - 2p - 3)(tr D)3]. 

Since D = (El + E2) - I /2EI (E :  + E2) -1/2 is a positive definite matrix with all 
eigen-values greater than zero and less than or equal to unity, p _> tr D _> tr D 2 

t r D  3 > 0. Applying these inequalities along with the relation 2n 2 > 2np to (2.11), 
it can be checked that  R(#, f()  - R(#, ~ao) > 0 if [n(n - 1 ) ( n + p +  1) - (p2 + 2p+  
2) - (4n - 8p - 4) - p(9n - 6p - 1) - (p2 + 2p)p -- (3n -- 2p - 3)p 2] tr D > 0 which 
is equivalent to 

(2.12) n 3 q- n2p - n(3p 2 + 10p q- 5) q- (p3 + 6p2 + 7p + 2) > 0. 
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It can be easily shown that the lhs of (2.12) is positive when n = p + 4 and a 
strictly increasing function of n for n > p + 4 and so the inequality (2.12) is true 
for all n _> p + 4. Thus we prove (ii). 

Remark 2.1. Interchanging the roles of X and Y, it can be easily seen that 
is inadmissible under the loss L(#, 12) = (/~ -tt) 'E21(12 - tt) for any p >_ 1 and 

N > _ p + 5 .  

Remark 2.2. Noting that R(# , ) ( )  = t r D / ( n  + 1), it follows from (2.11) 
that lim~-.oo(R(#, )() - R(#,  15~o))/R(#, X )  = tr D/p.  Therefore, the relative 
improvement of 12ao over X is significant for large values of n and moderately 
large values of tr D. This is also evident from Table 1. 

Remark 2.3. It is to be noted that the estimator 12, in (2.1) changes under 
the permutations of the observations Xi's and Yi's because the cross-product ma- 

n ! 
trix Sv  in 12a involves ~i=l(XiY~ + YiX~). Thus, one can obtain n! distinct 
estimators by permuting Xi's  and Y/'s. These n! estimators can also be obtained 
by just permuting Yi's keeping Xi's fixed. We also note each of such estimators 
is unbiased and has the same risk function as that of fla- Therefore, the esti- 
mator 15a can be improved as follows: Let T' denote the set of all permutations 
on the integers 1 , 2 , . . . , n  and ~ = { i l , . . . , i n }  be an element in P.  Also let 

n X Sv(~) = )-~d=l( J - Y~j - V ) ( X j  - Yij - V/)' and 12a(~) = ~- _ aSuSv(~)V.-1 - Then, 

(2.13) /5" = ~ 15a(~)/n! 
~E'P 

is invariant under the permutations of the observations and an unbiased estimator 
of #. Also as L(#, 12) in (1.1) is a strictly convex function of 12, Jensen's inequality 
implies that 

(2.14) L(#, 12a) < ~ L(#, 12a(~))/n!. 
~E:P 

Thus, taking expectation on both sides of (2.14) and using the fact that R(#, 12~(~)) 
is the same for all a E :P, we prove #â * dominates 15a(.) for each a E ~P. In particular, 
it dominates fta in (2.1). 

3. Concluding remarks 

The estimator 12" in (2.13) is itself inadmissible because it is not a function of 
minimal sufficient statistics. However, the numerical comparison in Table 1 shows 
that the percentage relative improvement of 15ao over X is quite significant for 
moderately large values of tr D where D = El(E1 + E2) -1. Therefore, the use of 
ftao or 12" 0 over )~ under the loss function (1.1) is certainly an advantage. 

We next like to point out a relation between the covariance criterion and the 
loss (1.1). Consider the loss function LT(#, 12) = (12 -- #)'T(t~ - #) where T is an 
arbitrary positive definite matrix. It is not too difficult to show that an estimator 
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& d o m i n a t e s  b for  covar iance  o rde r ing  if and  only  if it domina t e s  b unde r  LT for all 

pos i t ive  def ini te  ma t r i ces  T .  Since the  loss (1.1) is a pa r t i cu la r  case of  LT(#, f~), 
it is a s l ight ly weaker  cr i te r ion  t h a n  t he  covar iance  cr i ter ion.  So we do no t  know 
w h e t h e r  or no t  fLao domina t e s  ) (  unde r  the  covar iance  cr i ter ion.  

In Table  1, t he  n u m b e r s  wi th  "%" are  the  values of  1 0 0 [ R ( # , _ ~ ) -  

R(#, fLao)]/ R(#, X). 

Table 1. Percentage relative improvement of £~o over -~. 

p=3 
DN 10 20 30 

(.99, .99, .99) 
(.9, .s, .7) 
(.7, .6, .5) 
(.1, .4, .9) 
(.5, .5, .5) 
(.1, .1, .9) 
(.4, .3, .2) 
(.22, .22, .25) 
(.1, .1, .1) 

p=5 
DN 10 20 30 

32% 74% 87% (.99,.99,.99,.99,.99) 7% 56% 76% 
27 59 69 (.9, .9, .8, .7, .7) 7 46 76 
21 43 50 (.7, .6, .6, .5, .4) 5 32 41 
16 33 38 (.1, .1, .7, .7, .9) 5 28 36 
17 35 42 (.5, .5, .5, .5, .5) 5 28 36 
13 26 30 (.1, .1, .1, .9, .9) 4 23 30 
10 21 24 (.4, .3, .4, .3, .2) 3 18 22 

8 17 20 (.25, .25, .25, .25, .25) 3 13 17 
3 7 8 (.1, .1, .1, .1, .1) 1 5 7 

p = 10 

DN 20 30 50 

(.99,.99,.99,.99,.99,.99,.99,.99,.99,.99) 19% 47% 73% 
(.9, .9, .9, .9, .9, .8, .8, .8, .8, .8) 18 41 62 
(.9, .9, .9, .7, .7, .7, .6, .6, .6, .5) 16 34 51 
(.5, .5, .5, .5, .5, .5, .5, .5, .5, .5) 12 24 35 
(.1, .1, .9, .9, .2, .2, .8, .8, .1, .9) 12 24 35 
(.1, .1, .2, .2, .5, .5, .7, .7, .8, .9) 11 22 32 
(.4, .4, .4, .3, .3, .3, .2, .2, .2, .2) 7 14 20 
(.25, .25, .25, .25, .25, .25, .25, .25, .25, .25) 6 11 17 
(.1, .1, .1, .1, .1, .1, .1, .1, .1, .1) 2 4 6 
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Appendix 

We first  give " m a t r i x  der iva t ives"  of  some func t ions  of  ma t r i ces  which are  
needed  in eva lua t ing  the  e x p e c t a t i o n s  given in Sect ion  2. "Ma t r i x  der iva t ive"  is 
essent ia l ly  a col lec t ion of  pa r t i a l  der iva t ives  a r r anged  in o rde r ly  arrays.  For  more  
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details and application the readers can refer to Roger ((1980), p. 82) and von 
Rosen (1988). 

We now define some basic tools which are needed in the sequel. For a matrix 
A :p  x q, vec(A) denotes the pq × 1 vector obtained by arranging the columns of 
A one after another in a longer column. For matrices A = (aij) and B = (b/j), 
A ® B = (aijB) is the Kronecker product. Let J ~  denote the p × p matrix whose 
(a,/3) element is unity and other elements are zeroes and let 

p p 

a=l  3=1 

The derivatives given in the following lemma can be found in Roger (1980) 
and von Rosen (1988). 

LEMMA A.1. Let X be a p x p symmetric matrix whose elements are otherwise 
functionally independent. Let Y : p × p and Z : p × p be matrix valued functions 
of X ,  and y and z be real valued functions of X .  Further, let A and B denote the 
matrices of constants. Then, 

( 1  iy k = l  
OY ( cOYiJ Jij ® ~fkl Jkl , ~/kl = i 1 (i) a ×  = Z~ \ ~ ~ if k # l 

where n -- { ( i , j , k , l )  : 1 <_ i , j , k , l  <_p}. 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

(viii) 

(ix) 

(~) 

where 
whose 

OX 1 
a x  = ~[vec(Ip)vec(Ip) + I(p,p)] 

Otr(AX)  _ (A + A') /2  
OX 

olxl q 
OX -- q l x [ q x  -1 (provided X is nonsingular) 

_ O Z  a(YZ)  0Y (Z ® Ip) + (Y ® Ip) aX 
OX o x  

O Z y O Z  ( O y )  
a x  - - ~ Y  + z ®  - ~  

a(AYB)  = (A a Y  
ax ® g)~-2 (B ® g) 

- -  Z " OY OF-lax -- ( v - x  ~ p)~_~ ( y - 1  ® Ip) 

0 t r (Y)  v O(E~=I e~Yei) 
OX OX 

ay(z(X)) ay az 
OX Oz OX 

(provided Y is nonsingular) 

v o Y  
= ~ ( <  ®I,)-~-2(e~ oIp)  

i----1 

Ip denotes the identity matrix of order p × p and ei denotes the p x 1 vector 
i-th element is unity and others are zeroes. 
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LEMMA A.2. Let S ~ Wp(n, E), n >_ p + 1. The pdf of S is given by 

f (S )  = clSl(n-p-1)/21hp/2e -tr(hS), h -= (1/2)E -1 and 

0/ 
O---A = (n /2 )h - l  f (S )  - S f (S ) .  

769 

PROOF. Use Lemma A.l(x), (ii) and (iii). 

In the following theorem, we use these derivative results to compute the ex- 
pections given in Section 2. 

For n > p + 4 ,  let cl = [ ( n - p ) ( n - p -  1 ) ( n - p - 3 ) ]  -1 and c2 = ( n - p -  1)cl. 

THEOREM A.1. Let S ~ Wp(n, E) and B be a p × p matrix of constants. 
Theft, 

(i) E ( S - 1 B S )  = (n - p -  1 ) - I ( n E - 1 B E  - (tr B)Ip - B) 
(ii) B ( S - 2 B S )  = n c l ( t r E - 1 ) E - 1 B E + n c 2 E - 2 B E - c l ( t r E - 1 ) ( I p t r B + B ) -  

2(cl + c2)E-1B - c2[(trE-1B)Ip + (tr B)E -1] 
(iii) E ( S - 2 B S B S )  = n 2 [cl (tr E - 1 ) E - 1 B E B E  + c2E-2BEBE] - ncl (tr E - l )  • 

[ ( t rB)BE - E - 1 B E 2 B  + B2E + B E B  + tr (BEB)Ip  - t r (EB)E-1BE]  - 
2nc l (E -1BE-1B)  _ nc2[( trE-1B)BE + ( t r B ) E - 1 B E  + t r (E-1BEB)Ip  + 
2 (E-1B EB )  + t r ( B E B ) E  -1 - t r ( E B ) E - 2 B E  - E-2BE2B] + (cl + c2)[4B 2 + 
2(tr B2)Ip - 2nE-1B2E] + (2Cl + c2)(tr B ) B  + c2(tr B)2Ip. 

PROOF. (i) We know that  

(A.1) E ( S - 1 B )  = f S - 1 B f ( S ) d S - -  2 ( n - p -  1)- lAB.  
J s  >0 

Differentiating both sides of (A.1) (using Lemma A.l(vii) and Lemma A.2) with 
respect to A, we get 

(A.2) E ( S - 1 B  ® S) = n ( n - p -  1 ) - l ( E - 1 B  ® E) 

- (n - p - 1)-l[vec(Ip)vec(Ip) ' + I(p,p)](S ® Ip). 

Postmultiplying both sides of (A.2) by veC(Ip), we get (i). 
(ii) It is known that  (for example, see Haft (1979)), 

(A.3) E ( S - 2 B )  = 4cl (tr A)AB + 4c2A=B. 

Use Lemma A.l(vi),  (vii) and Lemma A.2 to differentiate both sides of (A.3) with 
respect to A. We get 

(A.4) E ( S - 2 B  ® S) 

= n[c l ( t rE-1)E-1B + c2E-2B] ® E 

- c~ (tr E-~)[vec(Iv)vec(Ip) ' + I(p,v)] (B ® Iv) 

- 2c l (E-1B ® Ip) - c2[vec(Ip)vec(Ip)' + I(p,p)](E-1B ® Ip) 

- -  C2(~-] -1 @ Ip)[Vec(Ip)vec(Ip)' + I(p,p)](B ® Ip), 
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and now (ii) follows from (A.4). 
(iii) Premultiplying both sides of (ii) by B and then proceeding as in the proofs 

of (i) and (ii) we get (iii). 

COROLLARY A.1. Let S ~ Wp(n,  I )  and n >_ p + 4. 
(i) E t r ( S - 1 B S B )  = ( n - p -  1 ) - l [ ( n -  1 ) t r B  2 - ( t rB)  2] 

(ii) E t r ( S - 2 B S B )  = [cl(np - p - 2) + c2 (n - 2)] (tr B 2) - (clp + 2c2)(tr B) 2 

(iii) E t r ( S - 2 B S B S B )  

= [ c l ( n p -  4 ) ( n -  1) + c 2 ( n  2 - 3n + 4 ) ] ( t r B  a) 

- [cl ( n p -  4) + 3c2(n - 1)] (tr Y)(tr  B 2) + c2(tr B) 3. 

THEOREM A.2. Let S ~ Wp(n,  I ) .  Then, for  a matrix  of constants A, 
(i) E ( t r  A S ) ( t r  S - 1 A S  -1)  = cl (u - 2)(n + 1)(tr A) 2 - 2 c 1  ( 2 n  - p - 2) t r(A 2) 

(ii) E t r ( A S ) t r ( S - 1 A 2 S  -1)  = c l ( n -  2)(n + 1 ) ( t rA) ( t rA  2) - 2c1(2n - p -  
2) tr(A3). 

PROOF. Let B be a matr ix  of constants and ~ be a real variable. Then it is 
easy to check tha t  

O E t r ( S - 1 B S - 1 ) e - ~ ( t r A S )  0=0 
(A.5) E ( t r A S ) ( t r S - 1 B S - 1 )  --- 08 " 

Using the derivative c31I + 20AlU/2/OO le=o= n t r A  in (A.5) it follows tha t  

(A.6) E ( t r A S ) ( t r S - 1 B S  -1)  

= c l (n  - 2)(n + 1)(tr A)(tr  B) - 2c1(2n - p - 2)(tr A B )  

Now (i) and (ii) follow from (A.6). 
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