Ann. Inst. Statist. Math.
Vol. 43, No. 4, 715-734 (1991)

STATISTICAL INFERENCE BASED ON ALIGNED RANKS
FOR TWO-WAY MANOVA WITH INTERACTION

TAKA-AKI SHIRAISHI

Department of Mathematics, Yokohama City University, Yokohama 236, Japan

(Received May 31, 1988; revised June 13, 1990)

Abstract. Multiresponse experiments in two-way layouts with interactions,
having equal number of observations per cell, are considered. Robust pro-
cedures based on aligned ranks for statistical inference of interactions, main
effects and an overall mean response in the models are proposed. Large sample
properties of the proposed tests, estimators and confidence regions as the cell
size tends to infinity are investigated. For the univariate case, it is found that
the asymptotic relative efficiencies (ARE’s) of the proposed procedures rela-
tive to classical procedures agree with the ARE-results of the two-sample rank
test relative to the t-test. In addition, robustness due to Huber (1981, Robust
Statistics, Wiley, New York) can be drawn.

Key words and phrases: Asymptotically distribution-free procedure, multi-
variate analysis, test, point estimate, confidence region, asymptotic efficiency,
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1. Introduction

For the present paper, we consider a two-way MANOVA model with interac-
tion, having equal number of observations per cell. For the two-way model, the

k-th observation Xj;, = (Xi(jl,z, L X ff,g)’ in the i-th level of the first factor and

j-th level of the second factor is expressed as

(1.1) Xijk ——-,u+a,-+ﬂj +(aﬂ),-j + &k,
(i=1,...,I,7=1,...,J, k=1,...,n)

where Y°/_; a; = 37_; B; = 0 and Yi_, (@B)i; = X7, (@B)i; = O for all i, 5s.
In (1.1), p is the overall mean response, a; is the effect of the i-th level of the
first factor, §; is the effect of the j-th level of the second factor, (af);; is the
interaction between the i-th level of the first factor and the j-th level of the second
factor, and e;;) is the error term with mean 0 and a positive-definite covariance
matrix. The terms a; and ,Bj are also called main effects. It is assumed that e;;;’s
are independent and identically distributed with continuous distribution function
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F(x). For the respective parameters, the null hypotheses of interest and the
alternatives are respectively

(1.2) H; (af);j=0for i=1,...,] and j=1,...,J

vs. A; (aB)i; # 0 for some (i,7),
(1.3) H: a;=0fori=1,....,1 vs. A", o;#0 for some i,
(1.4) H'; B;=0for j=1,....J vs. A B;#0 for some j,

J
and

(1.5) HY; p=0 vs. A%, p#o0.

Sen and Puri (1977} proposed multivatiate aligned rank tests for the full rank
linear models and investigated the asymptotic properties of the proposed tests.
However, the linear models do not include our model (1.1) which is not a full rank
model. For the two-way ANOVA (MANOVA) models without interaction, rank
test procedures were proposed by Friedman (1937), Mehra and Sarangi (1967),
Sen (1969), Mack and Skillings (1980) and others. Also, R-estimators for con-
trasts of treatment effects were proposed by Lehmann (1964), Puri and Sen (1967,
1968) and confidence regions based on the R-estimators were discussed by Puri
and Sen (1967). Then, most of them investigated the asymptotic properties of
these statistics as the number of blocks tends to infinity. On the other hand,
Shiraishi (1989a) proposed the extended aligned rank tests, the Friedman-type
tests {within-block rank tests) and the R-estimators of treatment effects for the
two-way MANOVA models without interaction, and showed the asymptotic equiv-
alence of the statistical inference based on aligned ranks and the one based on
within-block ranks as the cell size tends to infinity. Furthermore, Shiraishi (19895)
derived the asymptotic properties of the R-estimators and confidence regions based
on the R-estimators as the number of blocks tends to infinity.

Aligned rank test procedures for the hypotheses (1.2)—(1.5) in the model (1.1)
are proposed and the asymptotic properties as the cell size n tends to infinity are
derived. Next, the estimators of respective parameters based on aligned ranks are
proposed, and the asymptotic properties are derived. Furthermore, the confidence
regions are discussed.

2. Classical unbiased estimators

Because of the motivation in the proposed statistics and because of the com-
parison to robust procedures, unbiased least squares estimators are stated in Ta-
ble 1.

Table 1. Classical unbiased estimators.

Parameter 7 o; B; (aB)i;
Estimator X. Xl -X. X] -X. X” - X,, — Xj + X..
T I J n T J n 3
X. = )i 23':1 Zk:l Xijk/N, Xi.. = Zj:l Dot Xige/(In), Xy =
25:1 E:=1 Xijk/(In) and X = Z:zl X;;x/n, where N = IJn. When p = 1

and F(z) is normal, it is simple to verify that these unbiased estimators are
uniformly minimum variance unbiased estimators.
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3. Linear rank statistics

For p x IJ matrix ¢ = (&1,...,t5,t1,...,815), p X [ matrix t*

(*(l))l Lpyi=1,...0 = (tf,...,t}) and p-dimensional column vector tj’
(t+(1) L tY@Y et us define allgned observations by Y;x(t) = Xy — (X
X;)- t”, ”k( )= Xz]k—(X —X;.)—t and Y+ (1) = X5 — X5 +X..

t"' and let their I-th coordinates be respectively Yl(]lk( ) Yzjg)( ) and Y+(l)(t+)
where t;; = @t

T4

t7). Then let R{;(t), Ri\ (t*) and R}’ (t*) be the rank

ij 20 Vg ijk ijk
of ng,g( ) among the N observations Yl(ll)l( t),. ..,Yl(g)n(t), the rank of Yi;g)(t*)
among the observations Yl*l(ll) (t*),. Y;}Q(t*) and the rank of |Y;;k(l)(t+)) among
the observations EYIﬁl)(t*)} . {Yf;ﬁ)(t*)] respectively for [ = 1,...,p. Using
these ranks and score functions a§v)( ) and a;(l)( ) which are maps from {1,..., N}
to real values (N > 1), for ¢, t# = (tﬁ,.. 1J’t217 t}e’f])7 t* and t*, let us
put;

®
(3.1) 5./ (t, %)

= D (e (Ryi(6) - (RGL(%) - af (RE(#4) + '}/ Vi,

J

(3.2) 579t ZZ{ VRS () ~a{}/ (Ivn)

j=1k=1

and
I J n

(33) STOH) =SS {sign (Y (¢l O (REL (47)) /(1T VR),

i=1 j=1k=

respectively, where @} )(R(l) t#) =31, ag\l,)(Rg)k(t#))/I

J N
af (REL(H#) = Y aQRO(*)/7  and &) = 3~ o (m)/N
]:1 m=1

and sign(z) = 1 for z > 0;= 0 for z = 0; = —1 elsewhere. The values of S(Z)(t t#),

S*(l)(t*) and ST (¢*) depend on t¥) = (tgll), . t§‘},t§’f, e ,t%), t#) ) =

(t I(”, N ;(l)) and 1+ respectively, but they are not independent of t(ll), t#(1)

t*@) and t+0) for I # 1.
4. Common assumptions and basic theorems

The following are some assumptions to discuss the asymptotic theory.

AssuMPTION 1. Score function ag\l,)(') is generated by a function ¥;(u) (0 <
u < 1) in the following way (I =1,...,p):

aQ(m) = E{¥i(Un(m))} or wi(m/(N+1)) for m=1,...,N,
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where Uy (m) is the m-th order statistic in a sample of size N from the rectangular
(0,1) distribution.

AssuMPTION 1. Score function a;(,(l) ()
Assumption 1:

is defined in the same manner as in

ai(m) = E{py(1/2+ Un(m)/2)} or (1/2+m/{2(N )})
for =1,...,N.

ASSUMPTION 2. The score generating function ;(u) is non-constant, non-
decreasing and square integrable.

AssUMPTION 3. Letting Fy(z) and f;(z)) be respectively the I-th marginal
distribution function of F(z) and its density function, for I = 1,...,p, Fi(z®)
possess finite Fisher’s information, i.e.,

| i) O )80 < +oo

We derive asymptotic linearity for the rank statistics Si(j-) (t,t%), S; 0 (t*) and
g+ (t+).

4.1 Asymptotic linearity of S(l)(t t#)
For p x I.J matrices s and t, letting Q( ) (8, t) be the rank of Xz(]lzc (l)
tg.) among the N observations {Xij,c s¥ t(l) i=1,....1,j=1,...,J, k =

5ij
1,...,n} for l =1,...,p, we introduce the followmg statlstlc

l i 1
5P (s, t,t#) = Z{a“ Qik(s,1))

—aP(QY% (s, t#)) — al QY (s, t#)) + aW}/ v/,

where a(l)(Q(l.gc(s, t#)) and dg\l,) (Q(l) (s,t#)) are respectively defined in a similar
way to -<’>(R<‘) (¢#)) and a§9(R<”(t#)) Then, 5{(s,t,t#) is a function of

! 0 L0 1) L#) ) L)
(Sgl)a . ’353’ gl)’ t(I}’t vee ij 1 b and

tf;(l’) for I’ # 1. Also, to reduce notatlona.l complexity, we set Si(j) = SZ-(;)(O, 0,0).

(l)) and does not depend on s,

Lemma 4.1. Let (X2, ... ,X}lJ)n) have a joint density [[_, H;-Izl ey fi

(xg)k) and let ||z||m = Vz- 2’ for the m-dimensional row vector z. Then under
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Assumptions 1-3, for any positive €, C1, Cy and Cj3;

lim P sup |S‘§§)(p/«/ﬁ, A/vn, A% [Vn) - S’z(}l)
e 1PN 1s<Ca

1AM rs<Cs

a#®]<Cy

l (1 (1 {1
+di- (o) =0 =59 + Y

+AY - AY — AFO _AEO L oRFD) 5 8 =0,

l n 1 l NG 1
where p) = (pgl), .,p&},pgl), ..,pg}) AW = (Agf,...,Ag},Agl), .. .,Af,}) and
A#W) gre respectivery the I-th rows of p x IJ matrices p, A and A#, and

1
- /0 (i) - FIE @)/ fu(Fy ().
PROOF. Let us put
Wii(o/v/m, A/v/n) ZM”&NWANw (@4 (0,0))}/vn

+d- (o) - 50+ AY - AY),
Then it suffices to show

(4.1) sup  |Wi(p/vn, A/vn)| 20,
1PV 15 <Cr
NAO <,

where — denotes convergence in probability. There exist K; (i = 1,2) such that
Idi - Ci|/K; < €/8. So we put the set

l 1 l l l i
B = {(pgl)‘u,117pg2)’u,12’ ’pg..)lu”’Agl)vlwAgZ)vm’ Ag.;v”);

pg)u” = —-C1 +u;;C1 /Ky
for w;;=0,1,...,2Ky;:=1,...,I;j=1,...,J and
Ag»)vij = —Cy +v;;Ca/ Ky

for v; =0,1,...,2Kp;i=1,...,I;j=1,...,J}.

Then, from Assumptions land 2, 31_, a(l)(Qg-)k(P/ Vvn,A/\/n))/+/n is nonin-

creasing in pw and A( ) , while it is nondecreasing in p( ), and A() for (¢/,7') #
(,7). Here it follows that

(4.2) The Lh.s. of (4.1) < (p(‘) A(l) |Wz](p/\/_ A/vn)| +e/2,



720 TAKA-AKI SHIRAISHI
where the notation Lh.s. stands for a left-hand side. Using Assumption 3, which

is a condition for the contiguity, from the proof similar to the proof on Lemma 3.8
of Jureckové (1969), we find that

(4.3) Wis(p/Vn, AfVR) 0.
Therefore (4.2) and (4.3) give (4.1). O
By using Lemma 4.1, it is simple to show

THEOREM 4.1. Under the assumptions of Lemma 4.1, for any £ > 0 and any
Cl, Cy > 0,

lim P sup S (A/vn, A% //n) — 8
neo 1a® ;<
Ia*®|1;<C2

+d;- (A — AY — AFO _ 3O L oq*0) 5 8 = o,

where Si(;)(t, t#) is defined by (3.1).
We get two corollaries as a direct result of Theorem 4.1:

CoroLLary 4.1. Let B(C) = {A®;AY = AV = 0 jor all 4,55,
I|A®|;; < C}. Then under the assumptions of Lemma 4.1, for any € > 0 and
any C1,Cs > 0,

lim P sup ISP (A/vn, A%/ n) - 8P +d- AV > e =0,
n—oo A(I)EB(C;[)
A*VeB(c,y)

COROLLARY 4.2. Under the assumptions of Lemma 4.1, for any € > 0 and
any C >0,

lim P{ sup |ts§§>(A/¢ﬁ,(3ﬂ>)|—|§§;)—dl-A§?||>s}=o,

where (@f) = (@B)11, - -, (@B)1s, (@B)a, ..., (@B)1) and (aB)i; = Xij. — Xy —
X;+X..
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4.2 Asymptotzc linearity of S*(l)(t*)
Lettmg Q Y be the rank of X k among the N observations {X (]L, i=1,...,1,
j=1,...,J, k =1,...,n}, we 1ntr0duce the following statistic:

*l *(1 _(
=3 S E@) - a) v
7=1k=1

Proceeding as in the proof of Theorem 4.1, we get

THEOREM 4.2. Under the assumptions of Lemma 4.1, for any € > 0 and any
C >0,

lim P{ sup |Si*(l)(A*/\/r_z) - 5’:“) +d; - (A:(l) *(l))l > 5} =0,
nT {laxd|<C

where S;V(t*) is defined by (3.2) and A™ = L, A;V/1.

4.3 Asymptotic linearity of ST (¢)

For p x IJ matrix st = (s ;S()

put X} 0(s+ t+) = x) — st — v Letting Q+()(8+ t*) be the rank

)i,i,; and p-dimensional column vector tt, we

ijk ijk z
of |X:J',(cl)(.9+ t*)| among the N observations {IX:]',(CI)(3+ th;e=1,...,1,j =
.,J, k=1,...,n}, we introduce the following statistic:
I J n
! ] !
§¥0(s*, 1) = 303 S {sign(X;5 0 (a1, t9)}al Q5 (57, £9) /(LT VR).
i=1 j=1 k=1
Then St®) (s, ¢+) is a function of (s7",.. ., sT® t+1)) and does not depend

on s+(l) and t+() (all ©’s and all j’s) for I # [. Also, to reduce notational
compleXIty, we set ST = §t1(0,0).

LEMMA 4.2. Suppose that (X{ll)l,...,X”n) has a joint density

Hz_l HJ 1 [Teet filz ”k ) and fi(z) is symmetric about 0. Then under Assump-
tions 1', 2 and 3, for any positive €, C and Cs,

lim P sup  |StO(pt/vn, AT /Vn)
e Ipt | a<C
|A+(l) |<C2

50 g (pFO £ ATO) > 3 =0,
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where p+(l) = (o1, ,p?}l)) and A*Y) are respectively I-th rows of pt and A™,

S YD Dl 1%(”/ (1J) and
- / (/24 u/2) - FIFH (12 4 w/2)) (12 + w/2)) .

PrOOF. Let us put
Wi (o [V, A¥ [yn)
= Z{sxgn X (0% /v A% /) (@F (0% v/, A¥ [v/))

l l
—Slgn(X:;,(cl)) ()( :}2)(0 0))}/\/—+d+ (pij(l) +A+(l))
Then it suffices to show

(4.4) sup Wi (et /v, At V)| D> 0.
1T P rs<Cr
lA+(l) |<C2

There exist K; (i = 1,2) such that |df - C;|/K; < £/8. So, we put the set
+( ! +(
B+ {(pll(u)u?p-l;(u)m’ ’pI}JIJ’A+(l));

pf?u” —Cy +u;C1/ K,y

for u;; =0,1,...,2K;i=1,...,I;j=1,...,J and
AW = _Cy +vCy /Ky for v=0,1,...,2K,}.

Then, from Assumptions 1’ and 2,

Zslgn (X5 (0t /v, AT [VR))aR QY (b7 [vn, At [VR)) [v/n

is nonincreasing in p+(” and AT while it is nondecreasing in Pisyr 0 for (@, 5") #

(¢,7). Here it follows that

(4.5) The Lh.s. of (4.4) < max (Wit (0" /v/n, A* [v/n)| +€/2.

(p+(l)’A+(l))€B+

Using Assumption 3, which is a condition for the contiguity, from the proof similar
to the proof on Lemma 3.8 of Jureckova (1969), we find that

(4.6) Wi (ot /v, AT [v/m) 25 0.

Therefore, (4.5) and (4.6) give (4.4). O
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Proceeding as in the proof for Theorem 4.1, we get

THEOREM 4.3. Let BT (C) = {AT®;|A+W)| < C}. Then, under the as-
sumptions of Lemma 4.2, for any € > 0 and any C > 0,

lim P{ sup |STO(AY//n) - ST 4 gf  ATD| > s} =0,
n—00 A+WeB+H(C)

where ST (1) is defined by (3.3).
5. Statistical inference for interactions

The distribution of Y;;x(¢) is not dependent on a;’s and 3;’s. Neither do the

ranks of Rg.)k(t)’s depend on p. Since the statistical inference is considered based
on the ranks throughout this section, it is assumed without a loss of generality
that

(5.1) u:a1=---=alzﬂl:...:ﬂ.]:0.

Let us put pIJ column vectors S(t,t%) = (Su(t,t#),...,514(¢, t*),
Sar(t, %), ..., Sy(¢t,t#)') and S(s,t,t#) = (Sui(s, ¢, t*),. ., S15(s, ¢, t*),
Sor(s, t, t#) ..., S1s(8,¢,t#)"), where the I-th coordinates of S;;(t,t#) and
S',-j(s,t,t#) are respectively Szg]l-)(t,t#) and ngl.)(s,t,t#). Also, to reduce no-
tational complexity, we set S = S(0,0), S = 5(0,0,0) and Rg.) = Rg)k(ﬂ)

5.1 Tests
Based on the asymptotic distribution of § under H, we consider testing the
null hypothesis H versus the alternative A.

LEMMA 5.1. Suppose that Assumptions 1-3 are satisfied. Then under H, as
n — 00, S has asymptotically a pIJ-variate normal distribution with mean 0 and
a variance-covariance matriz A @ I', where A = (Apm/ )m,m’=1,..., 1.7,

(5.2) U= (v )ip=1,..p

Ammr = (1 -1/ -1/J)ifm=m/; = =1/J+1/(IJ) if m = i —1)J +j
and m' = (i —~ 1)J + j' for i and (j§,5') such that 1 < i< I and 1< j £ §' < J;
=-1/I+1/(IJ)ifm=(i-1)J+j and m' = (¢’ —1)J + j for (i,7') and j such
that 1 <i#¢ <Iandl<j<J;=1/(1J) elsewhere,

1
[ 1) - iy 1=,
Y = 70 .
/122 {vi(Fi(z)) — i {vw (Fr (v)) — Yv }dFu(z,y)  elsewhere,

P = fol Yi(u)du, Fy(z,y) stands for the (1,1')-th marginal distribution of F(z)
and ® denotes the Kronecker product.
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PROOF. Theorem 4.1 shows that § — § —2> 0 under H. Furthermore, it

is simple to verify that S £, Nprs(0,A ® I'), where £, Nk (g, L) denotes
convergence in law to a K variate normal distribution with mean y; and a variance-
covariance matrix .. Hence, the conclusion is found. O

Next, we give a consistent estimator of I'. Let us put I'(R) = (4 (R))1,1:=1,....p,
where

I J n
68wl =3 33 fa (Roh) - a}o v (G = aiy }/(N = 1)

ASSUMPTION 4. ;(u) is absolutely continuous for [ =1,...,p.

LEMMA 5.2. Suppose that Assumptions 1-4 are satisfied. Then, under H,
['(R) converges in probability to T

PROOF. The proof is similar to the proof of Lemma 4.2 of Shiraishi (1989a)
and is therefore omitted. O

We reject H when the following statistic is too large: AL = S'{AQT(R)}~S.
Since the generalized inverse of A ® ['(R) is not unique, we take E;; ® I'(R)™!

as the generalized inverse, where E,, is the identity matrix of order m. Then, we
have AL = §'{E;; @ T(R)"'}S.

AsSSUMPTION 5. T is positive definite.
Then combining Lemma 5.1 with Lemma 5.2, we get

THEOREM 5.1. Suppose that Assumptions 1 through 5 are satisfied. Then
under H, as n — 0o, AL has asymptotically a x?-distribution with p(I —1)(J —1)
degrees of freedom.

Next, we consider the sequence of local alternatives Ay; (af);; = A;j/vn,
A;; # Ay for some (4,7) # (¢/,j') and Zilzl A= ijl A;; =0 for all 4, 5’s,
where Aj; = (A, ..., ALY

If we suppose the following Assumption 6, proceeding as in the proof of The-

orem VI.2.1 of Hijek and Sidak (1967), we find that A, is contiguous to H as
n — 00.

ASSUMPTION 6. df(x)/8z(")’s are continuous and

/ { ~ 0f(2)/0a" [ f()}*f(@)dw < oo for L=1,..,p.
RP

THEOREM 5.2. Suppose that Assumptions 1-6 are satisfied. Then, under
A,, as n — oo, AL has asymptotically a noncentral x2-distribution with
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p(I -1)(J =1 degrees of freedom and noncentrality parameter 62, where 62 =
1 ! 1
Zq,—:l_ EJ—IV’WF VU?VU_ ( ’EJ)‘ v 'ij ) and V()_dl Aﬁ])

ProoF.  From Theorem 4.1, we get under H
&l !
1SY(-A/vn,~A)vR) -89 - v 0.

Here it follows that §(~A//n, —A/v/n) -5 N(v,A @ I’) under H, which is
equivalent to the relation that

(5.4) S—L»N(V,A@)I’) under A,.
P

The contiguity of A, with respect to H and Lemma 5.2 implies that AQT'(R) —
A ® I' under A,. Combining this with (5.4), we get the conclusion. O

5.2 Point estimates
Using a similar method to that of Shiraishi (1989a), we propose the R-
estimators of matrix (a8) = ((&f)11, . . ., (@B)1s,(eB)a1, - . ., (aB)1s) on the model

(1.1), based on the aligned ranks. Let | s|| = Zle ZJJ.ZI |si;| for IJ-dimensional
row vector s. Then, we put

R.(R) = {9 ZIIS(” (@B))Il = minimum

=1
1 J

under Z 0;; = Z 0;; =0 (all 4,j's) }
i=1 1=1

) {" IS©(0, (@) = minimum

under 20(1) ZOU) =0 (all 4,5’s) for [= 1,...,p},

where 0 = (011, . 01J,021,. . ,01J), 0,-1- = (91(11), A ,og_’))l, S(l)(t, t#) =
(SO, %), (')(t t#)) is the I-th row vector of S(t, t¥#)and (af) is defined
in Corollary 4.2. Sine Sg)(t, t#) takes finite values in (£\,. .. ,t)), R(R) isnot

empty. We propose some point én in £, (R) as an aligned rank estimator of (a,@),
It is simple to verify;

(55) {0 =S 15D( + (@B), (@B))]] = minimum

=1

under Z 0;;= Z 0,;=0 (all ¢, j's) }

{0 - aﬂ) 0 € R,(R)}.
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If 2, (R) is a convex set, a natural choice of 8, is the center of gravity of ,,(R).
We add

ASSUMPTION 7. d;>0forl=1,...,p

THEOREM 5.3. Suppose that Assumptions 1-3 and 7 are satisfied. Then
vn - vec(8,, — (aB)) has a pIJ-variate normal distribution with mean 0 and a
variance-covariance matric A ® =, where vec(A) denotes (ai,...,a.,) forpxm
matrix A = (0,1, ey a,m), == (gll’)l,l’——:l,...,p and fll’ = "Yll’/(dl . dll). Fun‘hermore,

lim P{ sup V7 0n — Ollprs > a} =0 for e>0.
n—oe e, (R)

where ||Allm = /Tvec(A)Y - (vec(A)].

PROOF. From (5.5), we may assume without a loss of generality that (o)
0. Let us define the solution for system of the following equations by 0
6O, 6@ where ) = (0§ll), . 09,9&?, o ,éy})

Y =n-df) for j=1,...,J and I=1,..,p.

6 is given by 6® = 8O/(/n - d;), where 8O = (59, ... 5(”) Hence, the
asymptotic normality of vec(S(®)’, , §®"Y implies that \/ﬁ vec(#) has asymp-
totically a multivariate normal dlstrlbutlon with mean 0 and a variance-covariance
matrix A ® Z. Also, using Corollary 4.1, the convergence of /n - vec(d) and As-
sumption 7, along the lines, on the proof of Appendix of Shiraishi (1989a), we can
show

. P
sup v/nl||@—0|prs — 0.
0€Q, (R)

Therefore, all the conclusions are found. O

5.3 Confidence regions
If Assumptions 1-3, 5 and 7 are satisfied, from Theorem 5.3, we can find that

A —_ A c
n{vec(, — (@B))Y (Ers ® 1) {vec(8 — ()} — X3(1-1)(s-1)-
Letting ¥ be a consistent estimator of the unknown Z~1, if we put

CR(r) = {8;n{vec(0 — 6,)} (Er; ® £){vec(0 — 6,)} < x21-1)s—1)(")},

CR(7) is an asymptotically 100(1 — 7) percent distribution-free confidence region
for (aB), where x2,(7) is the upper 1007 percent point of the x?-distribution with
m degrees of freedom. So we construct the consistent estimator.

From Theorem 4.1, we can get
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LEMMA 5.3. For some positive c, let us define, fori=1,...,I,j=1,...,J
andl=1,...,p,

d$) 1 =185 (6n — i/, (@B)) — 5 (B + cEis /v, (@B))}/[2¢(1 - 1/1),

where &;; is a p x (IJ) matriz with 1, at the {(i — 1)J + j}-th column and zero
vector elsewhere for each (i,5) and 1, = (1,...,1)’. Suppose that Assumptions

1-3 are satisfied. Then cifll[z j] converges in probability to dj.

As an estimator of d;, we choose d; = Zf_l ZJJ 1 A(l[z ]]/(IJ) and put D =

by R(l)k(o ) for all 4, j, k and [ in (5.3), we denote
the corresponding random variable by 4y (R(6,)) and set

diag(d}, e ,oip). Replacing Rz(;)k

T(R(0,)) = G (R(0n)))1v=1,...p-

Proceeding as in the proof of Lemma 5.2, we get

LEMMA 54. Suppose that Assumptions 1-4 and 7 are satisfied. Then,
T(R(0,,)) converges in probability to T

Hence, combining Lemma 5.3 with Lemma 5.4, we get

‘THEOREM 5.4. Suppose that Assumptions 1-5 and 7 are satisfied. Let Y=
D{T(R(0,))}"D. Then, CR(r) is an asymptotically 100(1 — 1) percent distribu-
tion-free confidence region for (aff).

6. Statistical inference for main effects

We consider statistical inference for a;’s and 8,’s in this section, but we will
concentrate our effects on the statistical inference for a;’s as we recognize that
the statistical inference for 3;’s can be obtained simply by reversing the first and

second factor. We consider the statistical inference based on R;; *0) + (t)’s in this
section. The distribution of statistics under the model (1.1) does not depend on
B, B;’s and (aB);;’s.

Let us put pI column vectors S$*(t) = (S7(t),...,S;(t)’)’, where the I-th
coordinate of S*(t) is S*(l)(t) Also, to reduce notational complexity, we set

* * * *(l * l

S* = §%(0), 8 = §(0,0) and R;}}) = R} (0).
6.1 Tests

Based on the asymptotic distribution of §* under H*, we consider to test the
null hypothesis H* versus the alternative A*. Using Theorem 4.2, as in the proof
of Lemma 5.1, we get

LEMMA 6.1. Suppose that Assumptions 1-3 are satisfied. Then under H*,
as n — 0o, 8 has asymptotically a pI-variate normal distribution with mean
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0 and a variance-covariance matriz A* ® I'*, where A* = Er —1; - 17/I, T* =
(v /I =1,....p and vy is defined by (5.2).

Next, we draw a consistent estimator of I'*, based on R; ()’s Let us put
I*(R*) = (Ju (R*)/ )i =1,...p, where

I J n
6.1 Aw®R)=Y.3 Y (e E®RD) - alHal (RIS - aly 1 /(N —1).

i=1 j=1 k=1
Proceeding as in the proof of Lemma 5.2, we get

LEMMA 6.2. Suppose that Assumptions 1-4 are satisfied. Then under H*,
I*(R*) converges in probability to T*.

We reject H* when the following statistic is too large: AL* = S*{A* ®
I'*(R*)}~S*. Then we get

PROPOSITION 6.1. Suppose that T*(R*) is positive definite. Then AL* does
not depend on the choice of generalized inverse A* ® I'(R*) and is expressed as
AL* = S“{E[@F* R* 1}5*

Then, combining Lemma 6.1 with Lemma 6.2, we get

THEOREM 6.1. Suppose that Assumptions 1-5 are satisfied. Then under H*,
as n — oo, AL* has asymptotically a x*-distribution with p(I — 1) degrees of
freedom.

Next, we consider the sequence of local alternatives A;a; = Af//n, A} #
A for some i # i’ and Y.I_, A = 0, where A} = (A:(l), e ,A:(p))’.
Using Theorem 4.2, as in the proof of Theorem 5.3, we get

THEOREM 6.2. Suppose that Assumptions 1-6 are satisfied. Then under A},

as n — 0o, AL* has asymptotically a noncentral x2-distribution with p(I — 1)
degrees of freedom and noncentrality parameter §2, where 6% = Zz] 7250 Rkt 7
vri=wY P and v =g, AT,

6.2 Point estimates
We propose the R-estimators of matrix o = (@, ..., ay) on the model (1.1).

Let ||s]|* = Zf=1 |s;| for I-dimensional row vector 8. Then we put
P 1
Q(R) = {0* : Z 118*®(0*)||* = minimum under Zﬂ: = 0}
1=1 i=1

1
= {0* : |18*@(0*)||* = minimum under ZGZ(” =0forl=1,... ,p},

i=1
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where 0* = (61,...,07), 6: = (87 ,...,0;®Y and §*V(t*) = CARCG .
S';(l)(t*)) is the I-th row vector of §*(t). We propose some point 8, in Q2 (R) as
an aligned rank estimator of o*. It is simple to verify;

Ld I
{0* : Z ||S*(l)(0* + a”)||* = minimum under ZO;‘ = 0}
=1 i=1

If Q% (R) is a convex set, a natural choice of 8% is the center of gravity of Q%(R).
Even if Q7 (R) is not convex, we can show

THEOREM 6.3. Suppose that Assumptions 1-3 and 7 are satisfied. Then,
Vvn-vec(8: —a*) has a pI-variate normal distribution with mean 0 and a variance-
covariance matriz A* ® £/J, where E is defined in Theorem 5.3. Furthermore,

lim P{ sup vn|0: —0*||,r > e} =0 for e>0.
n=oo Loreni(R)

PROOF. The proof is similar to that of Theorem 5.3 and is therefore omitted.
O

6.3 Confidence regions
If Assumptions 1-3, 5 and 7 are satisfied, from Theorem 6.3, we find

nd{vec(0r, — &™)} (Bt @ 1) {vec(d; — ")} - x31_1)-
Letting ©* be a consistent estimator of the unknown -1, if we put
CR*(r) = {0%;n{vec(8" — 0;)} (Er ® £*){vec(0" — 6;)} < x3;_1)(7)},

CR*(7) is an asymptotically 100(1 — 7) percent distribution-free confidence region
for o*. So, we construct the consistent estimator. Using Theorem 4.1, we get

LEMMA 6.3. For some positive c, let us define, fori =1,...,1,

drd = (8108 — c&i/vn) = ;O @5 + c€i/v/m)}H{(20) 1 - 1/T)},

where &; is a p x I matriz with 1, at the i-th column and zero vector elsewhere
for each i. Suppose that Assumptions 1-3 are satisfied. Then, dn((z; converges in
probability to d;.

As an estimator of d;, we choose J;“ = EI :((3 /I and put D+ = diag(J’{, ey
d*) Replacing R, *O) by R*(l)( @) for all 4, j, k and { in (6.1), we denote the

corresponding randorn variable by 4,/ (R* (9 )) and set

T(R*(8:)) = G (R*(0:)i=1,...0-
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Proceeding as in the proof of Lemma 5.2, we get

LEMMA 6.4. Suppose that Assumptions 1-4 and 7 are satisfied. Then,
['(R*(6%)) converges in probability to I

Hence, combining Lemma 6.3 with Lemma 6.4, we get

_ THEOREM 6.4. Suppose that Assumptions 1-5 and 7 are satisfied. Let o =
D*{T'(R*(6))}D*. Then CR*(7) is an asymptotically 100(1 — 7) percent distri-
bution-free confidence region for o*.

7. Statistical inference for overall mean response
Throughout this section, we add

ASSUMPTION 8. f(x) = 0PF(x)/0x; -- - Oz, is diagonally symmetric about
0, that is, f(—x) = f(x).

Since we consider the statistical inference based on Rz'.g) (t*)’s in this section
and since the distributions of statistics under the model (1.1) do not depend on
a;’s, B;'s, or (aB);;’s, throughout this section it is assumed without a loss of
generality that

(7))  ae=-=ar=f=--=8;=(fu=-=(ab),=0.
_ Let us put p column vectors S*(t%) = (STA(tY),...,8t@)(¢+)) and
S+(st,tt) = (§TW(st,tt),...,ST®(s*, 1)), Also, to reduce notational

complexity, we set S* = §+(0), §+ = §+(0,0), ;¥ = v;19(0), R} =

ijk ijk ijk
{
+0(0) and QI =QiP(,0).

7.1 Tests
Based on the asymptotic distribution of §* under H*, we test the null hy-
pothesis H+ versus the alternative A*.

LEMMA T7.1. Suppose that Assumptions 1’, 2, 3 and 8 are satisfied. Then

under HY, asn — oo, 81 has asymptotically a p-variate normal distribution with
mean 0 and a variance-covariance matriz T, where T = (v}, /(1J))1,y=1,...p and

/0 {9(w)) e —

W=
/R . sign(z) - sign(y) - Yi(Fi(|z]))vw (Fi (ly)))dFw (z,y)  elsewhere.

PROOF. Theorem 4.3 shows that §* — §+ £ 0 under H*. Furthermore,
it is simple to verify that S+ £, Ny (0,T'*). Hence, the conclusion is found. O
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Next, we draw a consistent estimator of I'". Let us put I'"(R*) =
At (RY)/INyr=1,....p and THQT) = (31(QF)/(IT))1v=1,....p, Where

(7.2) A5 (RY)

I n
. 14 l ! v 14
=33 Y sien(¥)- sign(Y;K") - af O (RED)aH O (RED) /N

1=

-
.
Il
-
>
Il
—

and

. l v
=32 sien(x (5 -sisn(xG) - ai® @E)aF @I/,

LEMMA 7.2. Suppose that Assumptions 1', 2-4 and 8 are satisfied. Then
under Ht, T+ (R') converges in probability to T't.

PROOF. Theorem 5.4.4 of Puri and Sen (1985) shows I'* (Q™) L, o+ By

the proof similar to that of Lemma 5.2, we can verify that 4;}, (R*) -4} (Q%) 2,0
for all I and I’. Thus, the conclusion is found. O

We reject HT when the following statistic is too large: AL* = St/ .
{TT(R*)}~S™.

AssuMmPTION 9. Tt is positive definite.
Then, combining Lemma 7.1 with Lemma 7.2, we get

THEOREM 7.1. Suppose that Assumptions 1’, 2-4, 8 and 9 are satisfied. Then
under HY, as n — oo, ALt has asymptotically a x2-distribution with p degrees of

freedom.

Next, we consider the sequence of local alternatives A}; u = At//n, AT #0,
where At = (AT . A+@)Y,
Using Theorem 4.3, as in the proof of Theorem 7.1, we get

THEOREM 7.2. Suppose that Assumptions 1', 2-4, 6, 8 and 9 are satis-
fied. Then under Af, as n — oo, ALY has asymptotically a noncentral x2-

distribution with p degrees of freedom and noncentrality parameter 62, where §% =
v (TH) -t vt = (W) @)Y gnd 7O = dfF - ATD),
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7.2 Point estimates
Using a method similar to that of Hodges and Lehmann (1963), we propose

o = (éj{(l), . ,é:{(p))’ as an estimator of u = (..., u®)’, based on aligned
ranks, where

010 = [inf{tTW; 5TV (¢¥) < 0} + sup{tt®; ST () > 0}]/2
for I=1,...,p.
We find that é,‘: is the center of gravity of the set of admissible solutions of £+ for

which 3°7_, [ST®(¢¥)| = minimum.
By using Theorem 4.3, we get

THEOREM 7.3. Suppose that Assumptions 1’, 2, 3 and 8 are satisfied. Then
Vvn-vec(8 — p) has a p-variate normal distribution with mean 0 and a variance-
covariance matriz =1, where Bt = (&, /(IJ))1y=1,..p and &, = v} /(df - ).

7.3 Confidence regions
If Assumptions 1’, 2, 3, 8 and 9 are satisfied, from Theorem 7.3, we find that

n(0F — ) (ENUOF - p) 5 X2

Letting =+ be a consistent estimator of the unknown (Z*)~1, if we put
CR*(r) = {6%;n(0 - 7)'S+(8 - 87) < x;()},

CR* (1) is an asymptotically 100(1 —7) percent distribution-free confidence region
for u. So, we construst the consistent estimator.

LEMMA 7.3. For some positive c, let us define, forl=1,...,p,
d*® = {STO@F —c1,/vn) - STV + c1,/vn)}/(2¢).
Then under Assumptions 1'-3 and 8, d+® converges in probability to df.
PrROOF. From Theorem 4.3, we can find
STV (@, - c1,/vn) — STO@, + cl,/v/n) > 2cdf,
which implies the conclusion. O

We put Dt = diag(di*, o ,dA;). Replacing R;;g) by R;‘;S)(é;: ) for all 4, j, k
and [ in (7.2), we denote the corresponding random variable by ;. (R (6;})) and
put R A

L(R*(87)) = (3 (RT (07 ))iv=1,...p-

Proceeding as in the proof of Lemma 7.2, we get
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LEMMA 7.4. Suppose that Assumptions 1, 2, 3, 8 and 9 are satisfied. Then,
T(R*(67)) converges in probability to T'*.

Hence, combining Lemma 7.3 with Lemma 7.4, we get

THEOREM 7.4. Let &+ = DH{IH(R*(0}))}"D*. Then under the assump-
tions of Lemma 7.4, CRY(7) is an asymptotically 100(1 — ) percent distribution-
free confidence region for p.

8. ARE and robustness

We discuss the asymptotic relative efficiencies (ARE’s) of the proposed tests
and estimators with respect to the normal theory parametric tests and classical
unbiased estimators. For p > 2, the ARE’s are complicated, especially in the case
of the tests, the ARE under A, (A}, A}) depends on parameter A (A*, At) and
we can discuss the ARE as in Section 4 of Sen (1971). So we give the ARE’s for
p = 1. Normal theory F-tests were reviewed by Dunn and Clark ((1987), Chapter

7). It is simple to verify that (normalized likelihood ratio F-test) £, X%I—l) (J-1)
under H and -5» x%,_l)u_l)(nz) under A,, where n? = A - A’/ Var(ej1;). Also,

we find \/ﬁ((c/z,\@) — (aB)) £, N(0,Var(ey11) - A), where (&B) is a least squares
estimator and is defined in Corollary 4.2. Combining these facts with Theorems
5.1, 5.2 and 5.3, we get

ARE(AL, the F-test)

— ARE(d,,, (aB))
= Var(elu)

: [ / ). {—f'(F-1<u>)/f(F-1(u))}du} 2 / / [a(w) —

which is equivalent to the classical ARE-results of the two-sample rank test with
respect to the t-test, where ARE(C, D) stands for the asymptotic relative efficiency
of C with respect to D. The ARE-results of the proposed R-confidence regions for
(afB) and the other proposed statistical inferences relative to F-tests and classical
inferences based on unbiased estimators likewise, remain identical in the case.

Moreover, as in Section 6 of Shiraishi (1989a), the choice of an asymptotic
optimal score generating function can be given, and asymptotically maximin power
tests and minimax variance estimators due to Huber (1981) can be drawn.
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