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A b s t r a c t .  Multiresponse experiments in two-way layouts with interactions, 
having equal number of observations per cell, are considered. Robust pro- 
cedures based on aligned ranks for statistical inference of interactions, main 
effects and an overall mean response in the models are proposed. Large sample 
properties of the proposed tests, estimators and confidence regions as the cell 
size tends to infinity are investigated. For the univariate case, it is found that 
the asymptotic relative efficiencies (ARE's) of the proposed procedures rela- 
tive to classical procedures agree with the ARE-results of the two-sample rank 
test relative to the t-test. In addition, robustness due to Huber (1981, Robust 
Statistics, Wiley, New York) can be drawn. 
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I .  Introduction 

For the  present paper,  we consider a two-way MANOVA model  with interac- 
tion, having equal number  of observations per cell. For the two-way model, the 

{ ¥-(i) y(p)~! 
k-th observation Xi jk  = v . i j k , . . . , . . ~ j k j  in the i - th  level of the first factor and 
j - t h  level of the  second factor  is expressed as 

(1.1) 
( i = l , . . . , I ,  j = l , . . . , J ,  k = l , . . . , n )  

I J I (~ J where )-~i=1 ai  = E j : I  # j  : 0 and ~-]i=1( f~)~J : )-:~j=l( f~)ij : 0 for all i , j 's .  
In (1.1), D is the overall mean  response, a i  is the  effect of the i - th  level of the 
first factor, j3j is the effect of the j - t h  level of the second factor, (aj3)ij is the 
interact ion between the i - th  level of the first factor  and the j - t h  level of the second 
factor, and e~jk is the error  t e rm with mean 0 and a positive-definite covariance 
matr ix.  The  terms c~i and f~j are also called main effects. It  is assumed tha t  e~jk's 
are independent  and identically dis t r ibuted with continuous distr ibution function 
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F(x). For the respective parameters, the null hypotheses of interest and the 
alternatives are respectively 

(1.2) H; (a~)ij=O for i = l , . . . , I  and j - - 1 , . . . , d  

(1.3) 

(1.4) 
and 

(1.5) 

v.s. A; (af~)ij # 0 for some (i,j),  

H*; a i = 0  for i = l , . . . , I  v.s. A*; a i ~ 0  for somei,  

H'; ~ j = 0  for j = l , . . . , J  v.s. A'; j 3 j ¢ 0  for some j, 

H+; # = 0  v.s. A+; # # 0 .  

Sen and Purl (1977) proposed multivatiate aligned rank tests for the full rank 
linear models and investigated the asymptotic properties of the proposed tests. 
However, the linear models do not include our model (1.1) which is not a full rank 
model. For the two-way ANOVA (MANOVA) models without interaction, rank 
test procedures were proposed by Friedman (1937), Mehra and Sarangi (1967), 
Sen (1969), Mack and Skillings (1980) and others. Also, R-estimators for con- 
trasts of treatment effects were proposed by Lehmann (1964), Purl and Sen (1967, 
1968) and confidence regions based on the R-estimators were discussed by Puri 
and Sen (1967). Then, most of them investigated the asymptotic properties of 
these statistics as the number of blocks tends to infinity. On the other hand, 
Shiraishi (1989a) proposed the extended aligned rank tests, the Friedman-type 
tests (within-block rank tests) and the R-estimators of treatment effects for the 
two-way MANOVA models without interaction, and showed the asymptotic equiv- 
alence of the statistical inference based on aligned ranks and the one based on 
within-block ranks as the cell size tends to infinity. Furthermore, Shiraishi (1989b) 
derived the asymptotic properties of the R-estimators and confidence regions based 
on the R-estimators as the number of blocks tends to infinity. 

Aligned rank test procedures for the hypotheses (1.2)-(1.5) in the model (1.1) 
are proposed and the asymptotic properties as the cell size n tends to infinity are 
derived. Next, the estimators of respective parameters based on aligned ranks are 
proposed, and the asymptotic properties are derived. Furthermore, the confidence 
regions are discussed. 

2. Classical unbiased estimators 

Because of the motivation in the proposed statistics and because of the com- 
parison to robust procedures, unbiased least squares estimators are stated in Ta- 
ble 1. 

Table  1. Classical  unb ia sed  e s t ima to r s .  

Parameter # ~ i  ~ j  ( a ~ ) i j  

E s t i m a t o r  ~7.., Xi.,  - -~-.. X, j .  - Jl:... ~YCij. - -Y~i.. - ~:.j. + X--- 

ff~,.. I J n J n 
~" E i = I  = Ej=I Ek=I xijk/(Jn)' X'J" E j = I  E k = l  xiJ k/N, z~i.. 
n n Ei21Ek=l Xijk/(In) and  Xij. ---- Ek=l Xijk/n, where  N = Ign. W h e n  p = 1 

and  F(x) is normal ,  it  is s imple  to  verify t h a t  these  unb iased  e s t ima to r s  are  
un i fo rmly  m i n i m u m  var iance  unb ia sed  e s t ima to r s .  
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3. Linear rank statistics 

For p × I J  matr ix  t = ( t n , . . . ,  tlJ, t21,..., tIJ), p × I matr ix  t* = 
(,*(0~ ~i )I=1 ..... p,i=l ..... I = ( t~ ' , . . . , t ~ )  and p-dimensional  co lumn vector t + = 
( t+(1) , . . . ,  t+(P)) ', let us define aligned observations by Yijk(t) ---- Xijk -- (~fi.. + 

, , + ( t + ~  - X ~ j . + X . . .  ~:.j.)-t~j, Yijk(t  ) = X i j k - ( X i j . - X i . . ) - t ;  and Yijk~ , = Xijk 

t +, and  let t h e i r / - t h  coordinates  be respectively Y~(jt)(t), *q) Y~j~ (t) and  Y/;(/)( t+),  

(t! 1) t (~)Y (~) ~*(~) R+(O(t +) be the rank where t~j = ,_~ , . . . ,  ~ij ~. Then  let R~j~(t), t~ij~ (t*) and 

of Y/~O(t) among the N observations v(l) . n i ( t ) , . . . , Y ( ~ ) ( t ) ,  the  rank of Y~jk *(~) (t*) 

among  the  observations Y~*I~ ) ( t * ) , . . . ,  .(t) . YIJn ( t )  and the rank of IY~+(t)(t+)t among  

the  observat ions jY+~l)(t+)l,.., y+(I)(,+, ' IJn ~ ) respectively for t = 1 , . . . , p .  Using 

these ranks and score functions a ~  ) (.) and  a +q) (-), which are maps  from { 1 , . . . ,  N}  

to real values (N ~ 1), for t, t # = (t1#11,...,t~,ta#l,...,ti#j), t* and t +, let us 
put ;  

(3.1) S!!)(t ~ , , t # )  

n 
a(O (t) 

= E { N (Risk(t)) - ~( l ) r~ (1 ) t t#~  -- a(N )t~(l) ( t # ~  + a ~ ) } / v ~ ,  
k = l  

J n 

(3.2) S*(O(t *) (z) *(0 * _a(~) = Z Z { a N  ( t ) )  
j----1 k = l  

and 
I J n 

(3.3) S+q) ( t  +) = E E E{s ign(Y/+k( t ) ( t+~a+(1) rR+q)  J J, N ~ ijk ( t + ) ) / ( I g v ~ ) ,  
i = 1  j = l  k = l  

respectively, where ~(~)(R!J)(t#)) ' ,~(t)tn(l) = E =I (t#))/I, ~ N  \~  ~ i j k  

J N 

' = " k ( t # ) )  = E a~)(rn)/N E a N  (RiJk (t ) ) /J  and = 
j : l  m : l  

and sign(x) = 1 for x > O; = 0 for x = O; = - 1 elsewhere. The  values of S}~)(t, t #) ,  

S~q)(t *) and S+(O(t  +) depend  on t (z) (~(z) ÷(0 t~z~, t(z)~ t#q) ,  t ' q )  
: k ~ l l ' ' ' ' ' ~ l J  ' " ' ' '  I J ] ~  

( t~ (5 , . . . ,  t /q))  and  t +(z) respectively, but  they are not  independent  of t (¢), t #q ' ) ,  
t *(l') and  t +q') for l ~ # 1. 

4. Common assumptions and basic theorems 

The  following are some assumpt ions  to discuss the asympto t ic  theory. 

ASSUMPTION 1. Score funct ion a(~)(.) is generated by a funct ion e l (u)  (0 < 
u < 1) in the  following way (l = 1 , . . .  ,p):  

a(~)(m)=E{~l(UN(m))}  or ~ t ( m / ( N + l ) )  for m - - 1 , . . . , N ,  
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where UN (m) is the  m - t h  order statist ic in a sample of size N from the  rectangular  
(0, 1) distr ibution.  

ASSUMPTION 1'. Score function a+(l)(.) is defined in the  same manner  as in 
Assumpt ion  1: 

a+(t)(m) = E{¢1(1 /2  + UN(m)/2)}  or ¢z(1/2 + m / { 2 ( N  + 1)}) 

for m = 1 , . . . , N .  

ASSUMPTION 2. T he  score generat ing function ¢ l (u)  is non-constant ,  non- 
decreasing and square integrable. 

ASSUMPTION 3. Let t ing  Fl(x(Z)) and f t (x  (~)) be respectively the  l- th marginal  
dis t r ibut ion funct ion of F ( x )  and its densi ty function,  for l = 1 , . . .  ,p, Fz(x (~)) 
possess finite Fisher 's  information,  i.e., 

< 

O 0  

(t) We derive asymptot ic  l inearity for the  rank  statist ics S~i (t,  t # ) ,  S~ (~) (t*) and  

S+(t)( t+) .  

4.1 Asymptotic linearity of S~)( t ,  t # )  

For p × I J  matrices s and t, let t ing (~ijk"-'(l) (8," t) be the  rank of y(t)..ijk -- s~ ) -- 
~y(t) _ At) (l) tl~ ) among  the  N observations t"~jk  ~ij -- tij ; i = 1 , . . . ,  I ,  j = 1 , . . . ,  J, k = 

1 , . . . ,  n} for l = 1 , . . .  ,p, we int roduce the  following statistic: 

n 

~(Z)(s (z) (t) ij , , t ,  t# )  = ~ { a N ( Q i j k ( s , t ) )  
k=l 

where _(t),,-,(t), ~(N t) (t) a N (ql.jk(s, t#) )  and (Qi.k(s, t#) )  are respectively defined in a similar 

way to ?z~)(R!~)(t#)). and ~)(R( ')~t#~)~ ,.k, , . Then,  S!!)(s,t,t#)~3, is a function of 

_(t') t!t.') and , (t) o(t) ÷(t) ÷(t) t~(t) ÷#(l)~ and does not  depend  on ~ij , -~ ( 8 1 1 , ' ' ' , ° I J ,  O l l ~ ' ' ' , o I J ,  " ' ' ~o IJ  ] 
#(t') for l ~ tij ~ I. Also, to reduce nota t ional  complexity, we set S~) = :~!!)~ ,(0, 0, 0). 

LEMMA 4.1. Let I Y(t) Y(~) ~ have a joint density YIiI=l J r~ I'Ij----1 l'-Ik=l fl" t , ~ l l l ~ ' ' ' ' ~ I J n ]  
(z), 

xijk) and let IlZllm = v/z • z '  for the m-dimensional row vector z.  Then under 
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Assumptions 1-3, for any positive ~, C1, C2 and C3; 

sup I ~ J ) ( p / C ~ , a / v ~ , a ~ / ~ )  - ~(~) 
IIP°}ll~j<C~ 
II~{OlDj<C2 
II~ #(l} II <c3 

+ dz • tPij 

+ AI ~) _ ~!!) _ a~(l) _ ~{1) + 2~{1))1 > ~}, = o, 

where  p(L) , (l) , ,~(l) .~(l) ~{/)'l A(l)  (A  (/) A(1) A{/) A(/)~ a n d  ~,°11,-.- t~lj /- '21}.-.,1~ij]} -- t . ~ 1 1 , - . . } ~ l j r ' - - " 2 1 } . . . , ~ I j !  
~ # ( 0  are respectivery the l-th rows of p × I J  matrices p, A and A# ,  and 

£ dt = - {¢l (u)"  f[(Fl-l(u))/fl(Fl-~(u))}du. 

PROOF. Let us pu t  
n 

w~j(plv~,~/v~) ~ 2 { a ~  ) (z) (1) (~) = (Q~j~(p /v~ ,  A / v ~ ) )  - a N (Qi)k(0, 0 ) ) } / v ~  
k=l 

+ dz ' (l) _ p!f)  (l) /~!!)). • [Pij -4- A i j  - -  

Then  it suffices to  show 

(4.1) sup IW~j(p/,/-n,,a/vCn )l P, O, 
lip (° I I H  < C ~  

II~ {I)]DJ<C= 

where 
]dl. Cil/Ki < c/8.  So we pu t  the set 

- -  (1) (l) ~(l) A(I) A(I) . . .  A{Z) ~. 
B = { [ P l l u l l , P 1 2 u 1 2 : . . . } F i J u i j , ~ 1 1 v 1 1 }  12v12' ' ~ I J v t j ] '  

p(l) : - e l  -t- u i j C l / K 1  ijuij 

for u~j = 0 , 1 , . . . , 2 K 1 ;  i = 1 , . . . , I ;  j = 1 , . . . , J  
(l) 

A~¢v, j = -C~ + v~jC2/K2 

for vij =O, 1, . . . ,2K2; i =  l , . . . , I ;  j = l , . . . , J } .  

P 
denotes  convergence in probability. There  exist Ki (i = 1, 2) such tha t  

and  

n (z) (0 Then,  from Assumpt ions  1 and 2, )-2k=1 aN (Qi j k (P /V~ , z%/V /"n ) ) /V  z~ is nonin- 
A{0 creasing in Pij-{l) and  A{Z. ),J , while it is nondecreasing in P~8' and  --i,j, for ( i ' , j ' )  

(i, j ) .  Here it follows t ha t  

(4.2) The  1.h.s. of (4.1) < max  IW~j(p/vr~,A/v~)I + e / 2 ,  
(p0) ,A0))EB 
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where the notation 1.h.s. stands for a left-hand side. Using Assumption 3, which 
is a condition for the contiguity, from the proof similar to the proof on Lemma 3.8 
of JuredkovA (1969), we find that 

(4.3) w~j(plv% alv~)  P> o. 

Therefore (4.2) and (4.3) give (4.1). [] 

By using Lemma 4.1, it is simple to show 

THEOREM 4.1. Under the assumptions of Lemma 4.1, for  any ~ > 0 and any 
C1,C2 >0, 

lim P { 
n - - - + ~  

sup IS}~)(Z~/v~, a # / v ~ ) -  ~}~) 
IIA(I) IIsJ<C~ 

IlZi#m IIsJ<C2 

(A{9-A!!)-2~ (o -#(0 22~.#.(011 > } O, +dz' , - -~a - A . j  + e = 

where S!0(t, t#) is defined by (3.1) --z3 

We get two corollaries as a direct result of Theorem 4. h 

COROLLARY 4.1. Let B ( C )  = {A(0;/~!J) = AI '). = 0 for  all i , j ' s ,  

IIA(OIIIj < C}.  Then under the assumptions of  Lemma 4.1, for  any ~ > 0 and 
any C1, C~ > O, 

f 
lim P { sup  

n--+oo t A(06B(C1) 
A#(O eB(C2) 

= 0 .  

COROLLARY 4.2. Under the assumptions of  Lemma 4.1, for  any ~ > 0 and 
any C > 0, 

lim P ~  sup I ,q!!)(A/v~,(~'~))] - ,g!!)-  d~.A~)ll >e} = o ,  
n--* oo t A(06B(C ) -~3 --*3 

A A A A A A 

where (w~) = ( ( ( ~ ) n ,  . . . , ( a B) l j ,  (ot~)21,..., (ot~)i j )  and (a~)i j  = Xij .  - ,~i.. - 
x.~.  + ~; .... 
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*(O(t* ) 4.2 Asymptotic linearity of S~ , , 
~ y(O . i y(l) among the N observations t~.ijk, Letting Q*J~) be the rank of ~'ijk 

j = 1 , . . . ,  J, k = 1 , . . . ,  n}, we introduce the following statistic: 
= 1 , . . . , I ,  

g n 

~,(l) x---'x--', (z),~*(l), a~)}/(Jx/n) .  
j = l  k = l  

Proceeding as in the proof of Theorem 4.1, we get 

THEOREM 4.2. Under the assumptions of Lemma 4.1, for any e > 0 and any 
C > 0 ,  

lim P~  sup [S* ( l ) (A ' /x /n ) -  S *(z) +d ,  • (A;(~) - A.*(~))[ > e} = 0, 
n ~ o ¢  k l i ~ , ( z ) j i < C  

where S~(L)(t *) is defined by (3.2) and A *(t) I = A (t)lI. 
4.3 Asymptotic linearity of S+(Z)(t +) 

For p x I J  matrix s + (s +(t)~ --- ~ ij )z,i,j and p-dimensional column vector t +, we 

put Y+(~)ts + t +) y(z) o+(t) -t+(~). r)+(~)(s +, t +) be the rank ~ i j k  k , : " ~ i j k  - -  ° i j  Letting "~iyk 

of IX+(O(s+,t+)l among the g observations {IX+(l)(s+,t+)];i = 1 , . . . , I ,  j = 
1 , . . . ,  J, k = 1, . . . ,  n}, we introduce the following statistic: 

I J n 

S+(t)(s+' t+) = Z Z Z{s ign(X+(~) ( s+, t+"~a+( t ) t °+( l ) ( s+ , t+) ) / ( I Jv~)  N ,~, jk 
i : 1  j = l  k = l  

Then ~+(t)(s+, t+) is a function of (S+l(Z),..., s+j (z), t +(z)) and does not depend 
on ~j+(l') and t +(V) (all i's and all j 's) for 1 ~ ~ I. Also, to reduce notational 

complexity, we set ~+(0 _- ~+(z)(0 ' 0). 

LEMMA 4.2. Suppose that ( y(1) y(l) k"~l l l ,  " " " ' "~IJn]  
I J n (l) fl(Xijk) and symmetric about O. fli----i l - I j = l  YIk=i  ft(x) is 

tions i I, 2 and 3, for any positive e, C1 and C2, 

has a joint density 

Then under Assump- 

nlim P { sup 
lip +(')lllJ<C1 

[A+(,) [<C2 

(p+ / 

_ ~+(z) + d + " (fi+(0 + A+(l))l > e}, = 0, 
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where p+(O = (p+(O +(I)~ , . . . ,  t~ij ? and A+(O are respectively l-th rows of p + and A+. 
p+(l) I J = ~,=1 ~-~i=1P+(O/( I J) and 

d? = - {¢~(1/2 + ~/2) .  f[(FV~(1/2 + ~/2))/I~(FV~(1/2 + ~/2))}d~. 

PROOF. Let us put 

w~;( f  / v ~ , ~ + / ~ )  
n 

= (Q~jk (P /v~,A+/~/-~)) 
k = l  

s" X+(z) a (l) +(0 - l g n (  ijk )N(Qi jk  (O,O))}/v~+d+'(P +(l) +A+(O) • 

Then it suffices to show 

(4.4) sup Iw~+(p+/v/-~,a+/v~)l P, o. 
liP +(z) l lza<C, 

[A +<~>1<C2 

There exist Ki (i = 1, 2) such that  Id +.  C~{/K~ < ~/8. So, we put the set 

B + ~t~+(z) ~+(z) ~+(l) A+(~)); ---- t k ~ ' l l u l l , F 1 2 u 1 2 ,  " " " ~ W l J u i a  

p(l) = _C 1 + uijC1/K1 
i j u i j  

foruij=O, 1 , . . . , 2 K 1 ; i = l , . . . , I ; j = l , . . . , J  and 

A (l) = -C2 + vC2/K2 for v = 0, 1 , . . . ,  2K2}. 

Then, from Assumptions 1' and 2, 

Z sign( X+~t) (p+ / x/-~, A + / v~  ) )a (~) ( Q+(~) (p+ / v~, A + / v~  ) ) / vf~ 
k = l  

,+(~) 
is nonincreasing in p+(0 and A +(0, while it is nondecreasing in ~'i,j, for (i', S )  # 
(i, j ) .  Here it follows that  

+ + 
(4.5) The 1.h.s. of (4.4) < max [Wij (p /v/-n, A+/v~) I  + el2. 

(p+(l) ,A+(t))EB+ 

Using Assumption 3, which is a condition for the contiguity, from the proof similar 
to the proof on Lemma 3.8 of Jure~kovA (1969), we find that  

(4.6) Wi+(p+/v'n,~,+/vfn ) ]~,, O. 

Therefore, (4.5) and (4.6) give (4.4). [] 
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Proceeding as in the proof for Theorem 4.1, we get 

THEOREM 4.3. Let B+(C) = {A+(4); IA+(4) I < C}. Then, under the as- 
sumptions of Lamina 4.2, for any e > 0 and any C > 0, 

l i m P {  sup IS+(~)(A+/v/K)-S+(4)+d+.A+(OI>~}=O, 
A+(t)EB+(C) 

where S+q)(t) is defined by (3.3). 

5. Statistical inference for interactions 

The distribution of Yijk(t) is not dependent on ai ' s  and t3j's. Neither do the 

ranks of (4) , Rijk(t) s depend on #. Since the statistical inference is considered based 
on the ranks throughout  this section, it is assumed without a loss of generality 
that  

(5.1) 

Let us put p I J  column vectors S ( t , t  #) = ( S ] l ( t , t # ) ' , . . . , S 1 y ( t , t # )  ', 
S21(t, t#)l,-.. ,  SIJ(~, t#)l) I and S(s,  t, t #) = (S11(s, t, t # ) ' , . . . ,  S1j(8, t, t#) I, 
$21(s, t, t # ) ' , . . . ,  SIg(s, t, t#) ')  ', where the l-th coordinates of Sij(t,  t #) and 

• j (s ,  t, t #) are respectively S!!)/t~3, ' t# )  and Sij~(O(s, t, t#).  Also, to reduce no- 

tational complexity, we set S = S(0, 0), S -- S(0, 0, 0) and "~jk pq) = Rijk(O)'(4) 

5.1 Tests 
Based on the asymptotic distribution of 51 under H, we consider testing the 

null hypothesis H versus the alternative A. 

LEMMA 5.1. Suppose that Assumptions 1-3 are satisfied. Then under H, as 
n --~ oc, 51 has asymptotically a pIJ-variate normal distribution with mean 0 and 
a variance-covariance matrix A ® F, where A = (Amm')m,m'=l ..... I J, 

(5 .2 )  r = (Tu,)4,z,=1 ..... p, 

Atom' ---- (1 - 1 / I ) ( 1  - l / J )  i f  m = m';  = - 1 / J  + 1 / ( I J )  i f  m = (i  - 1 ) J  + j 
and m' = (i - 1)g + j '  for i and ( j , j ' )  such that 1 < i < I and 1 < j ~ j '  < J; 
= - 1 / I +  1/ ( IJ)  i f m  = ( i -  1 ) J + j  andre' = ( i ' -  1 ) J + j  for (i,i') and j  such 
that 1 < i ¢ i' < I and 1 < j < J; = 1/ ( IJ)  elsewhere, 

/ fo 1(¢'(u) "711' [ R {¢4 (F4 (x)) - ~l } {¢l' (F4, (y)) - ¢1' }dEu' (x, y) 

if 1 = l', 

elsewhere, 

= fo ¢4(u)du, Fw(x ,y )  stands for the (l,l')-th marginal distribution of F(x)  
and ® denotes the Kronecker product. 
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PROOF. Theorem 4.1 shows that  S - S P )  0 under H. Furthermore, it 

is simple to verify that S z: ) ) NpIJ (0, A ® F), where z: NK (#0, E) denotes 
convergence in law to a K variate normal distribution with mean #0 and a variance- 
covariance matrix Z. Hence, the conclusion is found. [] 

Next, we give a consistent estimator of F. Let us put F(R) = ('~m (R))l,l,=l ..... p, 
where 

(5.3) 
I J n 

= Z Z{a  ) ( ).Ri k. (z) - 1) 
i=1 j = ,  k= l  

ASSUMPTION 4. ~t(U) is absolutely continuous for l = 1 , . . .  ,p. 

LEMMA 5.2. Suppose that Assumptions 1-4 are satisfied. Then, under H, 
F(R) converges in probability to F. 

PROOF. The proof is similar to the proof of Lemma 4.2 of Shiraishi (1989a) 
and is therefore omitted. [] 

We reject H when the following statistic is too large: AL = S'{A ® F(R)} -$ .  
Since the generalized inverse of A ® F(R) is not unique, we take E I j  ® F(R)-' 
as the generalized inverse, where Em is the identity matrix of order m. Then, we 
have AL = S ' { E I j  ® F(R) - I}8 .  

ASSUMPTION 5. F is positive de f in i t e .  

Then combining Lemma 5.1 with Lemma 5.2, we get 

THEOREM 5.1. Suppose that Assumptions 1 through 5 are satisfied. Then 
under H, as n ~ oc, AL has asymptotically a x2-distribution with p( I - 1)(J - 1) 
degrees of freedom. 

Next, we consider the sequence of local alternatives An; (o~)ij -- A i j / V ~ ,  
I J ~ i j  # Ai,j, for some (i , j)  # ( i ' , j ' )  and ~-~i=1Aij = ~-]~j=l AiJ = 0 for all i ,j 's, 

, ' "  A(P)~ / where ~ i j  = (AI~) . , - - i j  J.  
If we suppose the following Assumption 6, proceeding as in the proof of The- 

orem VI.2.1 of H£jek and Sid£k (1967), we find that An is contiguous to H as 
n - - 4  ( x ) .  

ASSUMPTION 6. Of(X)/Ox(l)'s a r e  continuous a n d  

A n  

In  - O f ( x ) / O x ( ' ) / f ( x ) } 2 f ( x ) d x  < oo for 1 : 1 , . . .  ,P. 
p 

THEOREM 5.2. Suppose that Assumptions 1-6 are satisfied. Then, under 
as n ~ c¢, AL has asymptotically a noncentral )c2-distvibution with 
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PV - W - 1) d ge rees of freedom and noncentrality parameter fi2, where b2  =
c’=  c”= y!.F-ly.. v..  = (Jl)

z 1 3 1 23 23, 2.l
v!?‘)’  and y!!) = dz  . A!‘!

23  ) ... 1 ZJ 23 13  .

PROOF. From Theorem 4.1, we get under H

Here it follows that /3(-A/&, -A/&i) -& N(v,A  @ I’) under H, which is
equivalent to the relation that

(5.4) s 5 N(“,h@‘) u n d e r  A , .

The contiguity of A, with respect to H and Lemma 5.2 implies that A@I’(R)  -%
A @ I under A,. Combining this with (5.4),  we get the conclusion. q

5.2 Point estimates
Using a similar method to that of Shiraishi (1989a), we propose the R-

estimators of matrix (a/3) = ((o$)il,  . . . , (a$),~, (@)2i,. . . , (@),J) on the model
(l.l), based on the aligned ranks. Let JJsjl = ci=, )& 1~1  for IJ-dimensional
row vector s. Then, we put

R,(R) = 8 : 2 IIS@)(8, (&&)I[ = minimum
I=1

under 2 &,  = 2 &,  = 0 (all i, j’s)
i=l j=1

=
{

8 : pw(8,  @))I/  = minimum

under ~S~~‘=~s!:‘=O(alli,j~s)  for
i=l j=l

where 8 = (&i,. . . ,0iJ,e2i,. . . ,BIJ), f& = (Be),  . . . ,$‘))l, S(l)(t, t#) =

(Sg+ t#)1 1 . . . , Syj(t,  t#)) is the I-th row vector of S(t, t#) and (&$P,  is defined

in Corollary 4.2. Sine Sji’(t, t#) takes finite values in (tyl,.  . . ,tj”?),  R,(R) is not
empty. We propose some point 6, in a2,  (R) as an aligned rank estimator of (@).
It is simple to verify;

(5.5) B : 2 I(S@)(8 + (ap),  (;@))I/ = minimum
1=1

under 2 flij = 2 Bij = 0 (all i, j’s)
i=l j=l

= {e - (&I);  8 E R,(R)}.
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If flu(R) is a convex set, a natural choice of 0n is the center of gravity of flu(R). 
We add 

A S S U M P T I O N  7 .  dz > 0 f o r  I = 1,...  , p .  

THEOREM 5.3. Suppose that Assumptions 1-3 and 7 are satisfied. Then 
v/n • vec(0~ - (aft)) has a p lJ -var ia te  normal distribution with mean 0 and a 
variance-covariance matrix A ® E, where vec(A) denotes ( a ~ , . . . ,  a ~ y  for p × m 
matrix A = ( al, . . . , am), E = (~u')ly=l ..... p and ~w -- ~/u, /(dt  " dr) .  Furthermore, 

lira P~" sup v~llOn-O[[pIj>~):O for ~ > 0 .  

where IIAII,m -- x/{vec(A)} ' '  {vec(A)}. 

PROOF. From (5.5), we may assume without a loss of generality that (a~) = 
0• Let us define the solution for system of the following equations by 0 = 
(~0)', 0(P)')' where 0<z) = (~0,  ~(1) t~(0 ~(0~ 

• " " , " " " ' ~ l J '  v 2 1  ~ " " " ' ~ I J ] "  

S~(J)= v ~ ' d z 0 ~  ) for j = 1 , . . . , J  and l =  1 , . . . , p .  

0(0 is given by 0 q) S(0/(v/-n-dl) ,  where 8(0 (5(0 cq)~ Hence, the = = ~,L'11 ' " " ' ' " l J ] "  

asymptotic normality of vec(S(U' , . . . ,  S(P)')' implies that vf~ • vec(0) has asymp- 
totically a multivariate normal distribution with mean 0 and a variance-covariance 
matrix A ® ~.. Also, using Corollary 4.1, the convergence of v/-n • vec(0) and As- 
sumption 7, along the lines, on the proof of Appendix of Shiraishi (1989a), we can 
show 

sup IIo- Oll . P, o. 

Therefore, all the conclusions are found. 

5.3 Confidence regions 
If Assumptions 1-3, 5 and 7 are satisfied, from Theorem 5.3, we can find that 

n{vec(0n ( o ~ ) ) } ' ( E I j  ® E-1){vec(0n (aft))} ~: 2 - -  - -  ) X p ( I - 1 ) ( J - 1 ) "  

Letting ~ be a consistent estimator of the unknown ~ - 1  if we put 

2 
CR(T)  = {0; n{vec(0 - On)} ' (EI j  ® ~){vec(0 - #n)} -< Xp(I-1)(J-u(T)} ,  

C R ( r )  is an asymptotically 100(1 - T )  percent distribution-free confidence region 
for (aj3), where X20  -) is the upper 1007 percent point of the x2-distribution with 
m degrees of freedom. So we construct the consistent estimator. 

From Theorem 4.1, we can get 



INFERENCE BASED ON ALIGNED RANKS 727 

LEMMA 5.3. For some positive c, let us define, for  i = 1 , . . . ,  I,  j = 1 , . . . ,  J 
and 1 = 1, . . . , p, 

~ ( z )  ( l )  ^ ( l )  ^ 
oI ,Jl + = - S ~ j  (0,  c g i j / x / - n , ( ~ ) ) } / [ 2 c ( 1 -  1/IJ)] ,  

where gij is a p × (I  J) matrix with lp at the {(i - 1)J  + j } - t h  column and zero 
vector elsewhere for  each ( i , j )  and lp = (1 , . . . ,  1)'. Suppose that Assumptions 

1-3 are satisfied. Then ~(l) converges in probability to dl. ~[i,j] 

As an estimator of dl, we choose dl = ~-~i=lI ~-~j:lg d(l l[.,j~l/(IJ) and put / )  = 

diag(dl, dp). Replacing n(z) by (l) ^ • ' ' ,  ~ i j k  Rijk(On) for all i, j ,  k and I in (5.3), we denote 

the corresponding random variable by ~w (R(0~)) and set 

r ( R ( 0 ~ ) )  = (~,(R(#~)))~,~,=~ ..... , .  

Proceeding as in the proof of Lemma 5.2, we get 

LEMMA 5.4. Suppose that Assumptions 1-4 and 7 are satisfied. Then, 
r(R(~in)) converges in probability to r .  

Hence, combining Lemma 5.3 with Lemma 5.4, we get 

THEOREM 5.4. Suppose that Assumptions 1-5 and 7 are satisfied. Let Z = 
b { r ( R ( # n ) ) } - b .  Then, C R ( r )  is an asymptotically 100(1 - T) percent distribu- 
tion-free confidence region for  (a~).  

6. Statistical inference for main effects 

We consider statistical inference for a i ' s  and ~j ' s  in this section, but we will 
concentrate our effects on the statistical inference for a i ' s  as we recognize that 
the statistical inference for ~j ' s  can be obtained simply by reversing the first and 

~*(~)(t)'s in this second factor. We consider the statistical inference based on "°ijk 
section. The distribution of statistics under the model (1.1) does not depend on 
~, f~j's and ( ~ ) i j ' s .  

Let us put pI  column vectors S*(t)  = (lY~(t) ' , . . . ,  S~(t) ' ) ' ,  where the l-th 

coordinate of S*(t)  is S*(z)(t). Also, to reduce notational complexity, we set 

S* = S*(0), ~* = 8" (0 ,0 )  and ~ijk  = "~ijk ~"J" 

6.1 Tests 
Based on the asymptotic distribution of ~* under H*, we consider to test the 

null hypothesis H* versus the alternative A*. Using Theorem 4.2, as in the proof 
of Lemma 5.1, we get 

LEMMA 6.1. Suppose that Assumptions 1-3 are satisfied. Then under H*, 
as n ---* oo, S* has asymptotically a pI-variate normal distribution with mean 
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0 and a variance-covariance matrix  A* ® F*, where A* = E1 - 11 • l ' f f I ,  F* = 
(~/u'/J)l,L'=l ..... p and 7u' is defined by (5.2). 

• (l) ,_ 
Next,  we draw a consistent es t imator  of F*, based on Rij k ~. Let us put  

F*(R*) = (~/u,(R*)/J)l,l ,=l ..... p, where 

(6.1) 

I J n 
~/w(R*) = ~ V'X- ' f"(~)~*(z)~ -(l)~r (z'),n*(l'), ' 

/_.~A_,t~N ~'~ijk J -- aN H a N  (Uijk ) -- ~ ) } / ( N  - 1). 
i = l  j = l  k----1 

Proceeding as in the proof  of Lemma 5.2, we get 

LEMMA 6.2. Suppose that Assumpt ions  1-4 are satisfied. Then under H*, 
F*(R*) converges in probability to F*. 

We reject H* when the following statist ic is too large: AL* = S*~{A * ® 
F * ( R * ) } - S * .  Then  we get 

PROPOSITION 6.1. Suppose that F*(R*) is positive definite. Then AL* does 
not depend on the choice of generalized inverse A* ® F(R*) and is expressed as 
AL* = S * ' { E I  ® r*(R*)-I}S *. 

Then,  combining Lemma 6.1 with Lemma 6.2, we get 

THEOREM 6.1. Suppose that Assumpt ions  1-5 are satisfied. Then under H*, 
as n ~ oc, AL* has asymptotically a x2-distribution with p ( I  - 1) degrees of 
freedom. 

Next,  we consider the sequence of local al ternatives A*; a i  = ~ * / v  ~ ,  ~ *  # 

. I . . = ( A . ( ~ ) ,  A . ( p ) ~ ,  ~ i '  for some i # i '  and ~-~i=1 ~ i  -- 0, where ~ i  " " ,  i J • 
Using Theorem 4.2, as in the proof  of Theorem 5.3, we get 

THEOREM 6.2. Suppose that Assumpt ions  1-6 are satisfied. Then under A*, 
as n -+ oc, AL* has asymptotically a noncentral x2-distribution with p ( I  - 1) 

degrees of freedom and noncentrality parameter 52, where 52 : El=l[ y . . , F . - l y . . ~  z , 

V* - - - - - ( V : ( 1 ) , . . . , / ] : ( P ) ) !  and u[ (z) = dl " A*(z). 

6.2 Point  estimates 
We propose the R-es t imators  of matr ix  a* = (c~1,. . . ,  ~I )  on the model  (1.1). 

Let  llsll* I = ~-~=1 ]sil fo r / -d imens iona l  row vector s. Then  we put  

± } ~ *( R )  = 6 " :  II•*(z)(6*)ll * -- minimum under  6* -- 0 
/ = 1  i = 1  
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where O* = (0~, . . . ,0~) ,  0~" = (O~(1),...,O~(P)) ' and S*(l)(t *) = (S~(~)(t*),... ,  

S~(t)(t*)) is t h e / - t h  row vector of S*(t).  We propose some point 0"~ in f~ (R)  as 
an aligned rank estimator of c~*. It is simple to verify; 

o*: IIS*(~)( o* + ~*)ll* = minimum under O~ = 0 
l= l  i=1 

- ( 0 "  ~ ,  • a * ( R ) ) .  

If f~*(R) is a convex set, a natural choice of 0*n is the center of gravity of f~*(R). 
Even if f~*(R) is not convex, we can show 

THEOREM 6.3. Suppose that Assumptions 1-3 and 7 are satisfied. Then, 
v~-vec(0 * - a * )  has a pI-variate normal distribution with mean 0 and a variance- 
covariance matrix A* ® ~ / J ,  where ~ is defined in Theorem 5.3. Furthermore, 

lim P {  sup v ~ l l O : - O * l l , / > ~ }  = 0  ]or ~ > 0 .  
n---*oo O*Ef~*(R) 

PROOF. The proof is similar to that  of Theorem 5.3 and is therefore omitted. 
[] 

6.3 Confidence regions 
If Assumptions 1-3, 5 and 7 are satisfied, from Theorem 6.3, we find 

nJ{vec(0* oL*)}'(Es ® Z-1){vec(0 * ct*)} L 2 
- -  - -  :' X p ( l - 1 ) .  

Letting ~* be a consistent estimator of the unknown E - l ,  if we put 

= - 0~)} (Es ® ~*){vec(0* 0~)) < Xp(/_I)(T)}, CR*(~) {0*;n{vec(0* ~ * '  - 

CR*(T) is an asymptotically 100(1-  T) percent distribution-free confidence region 
for c~*. So, we construct the consistent estimator. Using Theorem 4.1, we get 

LEMMA 6.3. For some positive c, let us define, for i -- 1 , . . . , I ,  

where Ei is a p × I matrix with lp at the i-th column and zero vector elsewhere 

for each i. Suppose that Assumptions 1-3 are satisfied. Then, d*(l) converges in n(i) 
probability to dr. 

As an estimator of dl, we choose d~ = }--~i=l / I  and put D* -- diag(d~, . . . ,  
~.(l) .(l) ^. 

dg). Replacing "~jk by Ri~ k (0n) for all i, j ,  k and t in (6.1), we denote the 

corresponding random variable by ~u, (R* (0")) and set 

r ( n * ( ~ * ) )  ~ * ~* = (7,,(R (an)))~,t,=l ..... p. 
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Proceeding as in the proof of Lemma 5.2, we get 

LEMMA 6.4. Suppose that Assumptions 1-4 and 7 are satisfied. Then, 
F(R*(0*)) converges in probability to F. 

Hence, combining Lemma 6.3 with Lemma 6.4, we get 

THEOREM 6.4. Suppose that Assumptions 1-5 and 7 are satisfied. Let E* = 
D*{r(R*(0*))}-/)*. Then C R* ( T ) is an asymptotically 100(1 - T) percent distri- 
bution-free confidence region for a*. 

7. Statistical inference for overall mean response 

Throughout  this section, we add 

ASSUMPTION 8. f (x )  = OPF(x)/Oxl . . .  cox v is diagonally symmetric about 
O, that  is, f ( - x )  = f (x) .  

Since we consider the statistical inference based on R+(~ ) ( t+) 's  in this section 
and since the distributions of statistics under the model (1.1) do not depend on 
ai 's,  f~j's, or (a~)ij 's,  throughout this section it is assumed without a loss of 
generality that  

(7.1) a l  . . . . .  O~I = f~l . . . . .  ,~j = ( O t ~ ) l l  . . . . .  (Ol~)lJ  ---- O. 

Let us put p column vectors S + ( t  +) = (S+(1)(t+),. . . ,S+(P)(t+)) ' and 
~+(s  +, t +) = (S+(1)(s+, t + ) , . . . ,  :~+(P)(s +, t+))q Also, to reduce notational 

complexity, we set S + = S+(0) ,  ~+ = S+(0 ,0) ,  Yi +(0 = Yi+(0(0), R +(1) = 

R+(l)/m ijk t"J and Q+(~) +(l) = ( o , 0 ) .  

7.1 Tests 
Based on the asymptotic distribution of 8 + under H +, we test the null hy- 

pothesis H + versus the alternative A +. 

LEMMA 7.1. Suppose that Assumptions Y, 2, 3 and 8 are satisfied. Then 
under H +, as n --* oc, ~+ has asymptotically a p-variate normal distribution with 
mean 0 and a variance-covariance matrix F +, where F + = (~/+, / ( I J) )t,t,=l,...,p and 

1 

7u+ = f sign(x),  sign(y). Cz(Fl(lxl))¢v(Fv(lyl))dFu,(x,y) 
J R 2  

if  l = I ~, 

elsewhere. 

PROOF. Theorem 4.3 shows that  S + - ~+ P~ 0 under H +. Furthermore, 

it is simple to verify that  8+  L ~ Np(0, F+). Hence, the conclusion is found. [] 
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Next, we draw a consistent estimator of F +. Let us put F+(R +) --- 
(;y+(R+)/(IJ))z,L,=l ..... p and F +(Q+) = (~u +(Q+)/ ( IJ ) )g ,e=l  ..... v, where 

(7.2) 

and 

^ +  + ) 
I J n 

Z Z sign(Y/+(O) " " (Y ' '+( l ' ) )  . a+(1 ) (  l :~+( l ) .~ . . ,+( l ' ) ( .+( l ' ) .~ /~r  s l g n . . ~ j k  . k ' ~ i j k  ] ~ N  k . t i j k  ] / 1 ,  
i=1 j=l k=l 

^ +  
7u,(Q +) 

I J n 

-- Z ~ Z sign(X}J ))" sign(X}~ ~))'aN+(l) (f)+(/)','~ijk)aN+(l')'r'+(l')tt~ijk ) /N .  
i= 1  j - -1  k----1 

LEMMA 7.2. Suppose that Assumpt ions  i t, 2-4 and 8 are satisfied. Then 
under H +, F+(R +) converges in probability to F +. 

PROOF. Theorem 5.4.4 of Puri and Sen (1985) shows F+(Q +) P ' F +. By 

the proof similar to that of Lemma 5.2, we can verify that ;Y+,(R+) --Ill&~'[Q+~\ ] P ~ 0 
for all 1 and l'. Thus, the conclusion is found. [] 

We reject H + when the following statistic is too large: A L  + = S + ' .  
{r+(R+)}-8 +. 

ASSUMPTION 9. F + is positive definite. 

Then, combining Lemma 7.1 with Lemma 7.2, we get 

THEOREM 7.1. Suppose that Assumpt ions  1', 2-4, 8 and 9 are satisfied. Then 
under H +, as n --* oo, A L  + has asymptotically a x2-distribution with p degrees of 
freedom. 

Next, we consider the sequence of local alternatives A +.n,#= A+/x/~,  A+  # 0, 
where ~ +  = (A+O) , . . . ,  A+(p)) '. 

Using Theorem 4.3, as in the proof of Theorem 7.1, we get 

THEOREM 7.2. Suppose that Assumpt ions  1', 2-4, 6, 8 and 9 are satis- 
fied. Then under A +, as n -+ co, A L  + has asymptotically a noncentral X 2- 
distribution with p degrees o/ freedom and noncentrality parameter 5 2, where 5 2 = 
y + ' ( F + ) - l u  +, y + = (u+O), . . . ,  u+(P)) ' and u +(0 = d + • A+(O. 
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7.2 Point  estimates 
Using a method similar to that of Hodges and Lehmann (1963), we propose 

0+ = (~+(1) . . .  ,0+(p)), as an estimator of # = (#(1),... ,#(p)),  based on aligned 
ranks, where 

0+(t) = [inf{t+(0; S+(l)(t +) < 0} + sup{t+(0; S+(t)(t+) > 0}]/2 

for 1 = 1 , . . . ,p .  

We find that 0+ is the center of gravity of the set of admissible solutions of t + for 
which E~=I I S+(~)(t+)l = minimum. 

By using Theorem 4.3, we get 

THEOREM 7.3. Suppose that Assumpt ions  1', 2, 3 and 8 are satisfied. Then 

v/-n • vec(0 + - #) has a p-variate normal distribution with mean 0 and a variance- 
- _ = ~ , + , , . a +  .d+,,). covariance matrix  =+, where =+ ({+, / ( IJ ) )U,=I  ..... p and {u + = u ,~ t 

7.3 Confidence regions 
If Assumptions 1', 2, 3, 8 and 9 are satisfied, from Theorem 7.3, we find that 

n ( 6 n  + . ) / ( Z + ) - l ( 0 n  + _ # )  £ 2 - -  ~ Xp" 

Letting Z+ be a consistent estimator of the unknown (E+) -1, if we put 

CR+(~) = {0+; n(0  - 0~+)'~.+(0 - 0.+) < ~ ( ~ ) } ,  

C R  + (~) is an asymptotically 100(1 - T )  percent distribution-free confidence region 
for #. So, we construst the consistent estimator. 

LEMMA 7.3. For some positive c, let us define, for  I = 1 . . . .  , p, 

d +(z) = { s  +(z)(on + - c l , l v ~ )  - s +(Z)(o+~ + clp/v~)}l(2c). 

Then under Assumpt ions  1'-3 and 8, d +(l) converges in probability to d +. 

PROOF. From Theorem 4.3, we can find 

s+(l)(#n - c lp /V~) -  S+(t)(O. +clp/vZn) P'  2cd +, 

which implies the conclusion. [] 

= r~+(~)(~} +~ for all i, j ,  k We put b + d iag(d+, . . . ,d+) .  Replacing R+~ ) by *~ijk t =J 
^+ + ^+ 

and l in (7.2), we denote the corresponding random variable by "Ttt, (R  (O n )) and 
put 

= R + 0+ , r(R+(0n+)) (~u+( ( n ))) l , l  =1 ..... p.  

Proceeding as in the proof of Lemma 7.2, we get 
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LEMMA 7.4. Suppose that Assumptions Y, 2, 3, 8 and 9 are satisfied. Then, 
F(R+(0+)) converges in probability to F +. 

Hence, combining Lemma 7.3 with Lemma 7.4, we get 

THEOREM 7.4• Let E+ = / ) + { F + ( R + ( 0 + ) ) } - / )  +. Then under the assump- 
tions of Lemma 7.4, CR+(T) is an asymptotically 100(1 - T )  percent distribution- 
flee confidence region for #. 

8. ARE and robustness 

We discuss the asymptotic relative efficiencies (ARE's) of the proposed tests 
and estimators with respect to the normal theory parametric tests and classical 
unbiased estimators. For p _> 2, the ARE's are complicated, especially in the case 

A* of the tests, the ARE under An ( n, A+) depends on parameter A (A*, A+)  and 
we can discuss the ARE as in Section 4 of Sen (1971). So we give the ARE's for 
p = 1. Normal theory F-tests were reviewed by Dunn and Clark ((1987), Chapter 

7). It is simple to verify that (normalized likelihood ratio F-test) £ X 2 ) ( l -- l )(J- l)  
u n d e r H a n d  L) 2 2 X(z-1)(j-1)(~ ) under An, where ~2 __ ~ .  A'/Var(e111). Also, 

we find v/-n((o~A~) -(oLd)) p t:) N ( 0 , V a r ( e n l ) .  A), where (a~) is a least squares 
estimator and is defined in Corollary 4.2. Combining these facts with Theorems 
5.1, 5.2 and 5.3, we get 

ARE(AL, the F-test) 

= ARE(0n, (a~'~)) 

---- Var(e111) 

• [ f0 l  ~ l ( U ) " { - f / ( f - l ( u ) ) / f ( f - l ( ' a ) ) } d ~ ] 2 / f 0 1 { @ l ( Z t )  - ~l}2dzt,  

which is equivalent to the classical ARE-results of the two-sample rank test with 
respect to the t-test, where ARE(C, D) stands for the asymptotic relative efficiency 
of C with respect to D. The ARE-results of the proposed R-confidence regions for 
(a~) and the other proposed statistical inferences relative to F-tests and classical 
inferences based on unbiased estimators likewise, remain identical in the case. 

Moreover, as in Section 6 of Shiraishi (1989a), the choice of an asymptotic 
optimal score generating function can be given, and asymptotically maximin power 
tests and minimax variance estimators due to Huber (1981) can be drawn. 
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