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A b s t r a c t .  In a one-way random-effects model, we frequently estimate the 
variance components by the analysis-of-variance method and then, assuming 
the estimated values are true values of the variance components, we estimate 
the population mean. The conventional variance estimator for the estimate of 
the mean has a bias. This bias can become severe in contaminated data. We 
can reduce the bias by using the delta method. However, it still suffers from 
a large bias. We develop a jackknife variance estimator which is robust with 
respect to data contamination. 
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1. Introduction 

Consider  the  one-way random-effects  model ,  

Y i j = # + a s + e s j ,  i = l , . . . , k ,  j = l , . . . , n s ,  

where the  as and  eij are independent  r a n d o m  variables wi th  as ,-~ N(0 ,  a 2) and 
2 2 and p -- ar2/7~. W h e n  p is known, the  best  linear esj ~ N(O, a2). Let  ~r = a e + a a 

unbiased es t ima to r  of p can be  wr i t ten  as •(p) = ~ wi(p)~i (Birkes et al. (1981)), 
where 

ws(p) = [ n s / { ( n s - 1 ) p +  1}] / [ E n s / { ( n s -  1 ) p +  1}] and 

Yi = E YSj Ins. 
J 

Then,  the  var iance of the  best  linear unbiased es t ima to r  is 

var(t~(p)) = ~r E W'(p)2(P + (1 - p)lni) .  

* This research was supported by the Korea Science and Engineering Foundation. 
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However, in practice, p is usually unknown. In this case, we first estimate p 
by some method. Then, pretending that the estimate t~ is the true parameter, we 
usually use the estimator/5(~) -- E wi(t~)Yi, and estimate its variance as 

(1.1) ~( f t ( jh) )  = # E wi(jh)205 + (1 - ~ ) / n i ) .  

Kackar and Harville (1984) showed that under normality, the following equation 
holds: 

(1.2) var(~05)) : var(/5(p)) + E(~(jh) - / 5 (p ) )  2. 

This equation is true in general mixed linear models if the variance components 
estimators are translation invariant, which is true of most of them. Hence, they 
argued that the conventional variance estimator (1.1) might suffer from a down- 
ward bias since it estimates only the first term of (1.2). They suggested using the 
estimator (1.1) for estimating the first term of the equation (1.2) and the 5-method 
for estimating the second term. 

However, their discussion is mainly about the cases when p is estimated either 
by the maximum likelihood method or the restricted maximum likelihood method. 
Furthermore, their numerical studies are confined to balanced designs. Estimating 
variance components by maximum likelihood requires iteration and the computing 
would be difficult and might even be infeasible for large data sets. 

The most frequently used estimators of variance components have been 
analysis-of-variance estimators. For the one-way random-effects model, Swallow 
(1981) and Swallow and Monahan (1984) conducted Monte Carlo comparisons of 
various variance components estimators and found that the analysis-of-variance 
estimator is adequate unless the design is severely unbalanced and p > 0.5. They 
also have other appealing properties: they are familiar, easy to compute, and are 
unbiased. Hence, it would be interesting to develop the variance estimator of the 
conventional location estimator ft(t~). 

2. The delta method 

In the balanced one-way random-effects model, the best linear unbiased esti- 
mator/~(p) and the conventional estimator ft(t~ ) are identical to the overall mean 

--  ~ ~ ] y ~ j / n  ( n  = ~ ] n i ) .  Hence, the second term of (1.2) vanishes. How- 
ever, in unbalanced designs, the second term is no longer equal to zero and 
the estimator /~(/~) depends on the variance ratio estimator t). The analysis-of- 
variance estimators are obtained by equating observed and expected mean squares 
and solving the resulting equations. In the one-way random-effects model, they 

2 (SSA (k 1)s~) / ( n - E n d / n ) ,  where 2 SSE/(n k) and s a = are s e = - - - 
2 = ~-] j (Yi j  - Y~)2/(ni - 1) and SSA -- )-~n~(~ - 9) 2 SSE = ~ ( n ~ -  1)s~, s i 

(Searle (1971), p. 474). Hence, the intergroup correlation p can be estimated as 
= 8 a / ( S  a "~- j5 2 2 s~). Using the Taylor series expansion, we have 

(2.1) /~(f3) ,.o/2(p) + ( d f z ( p ) / d p ) { ( d p / d a 2 e ) ( S 2  e - a2e) ÷ (dp /da2a ) (S2  a - a2)}. 
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Therefore, the second term of (1.2) can be approximated by 

(2.2) e(/~(t~) -/~(p))2 _~ ( d f t ( p ) / d p ) 2 { ( d p / d a 2 ) 2  var(s 2) + (dp /da2)2  var(s2) 

+ 2(dp/da2)(dp/da2a)COV(S 2, S2a)}. 

In (2.2), we regard the analysis-of-variance estimator s~ as unbiased. However, 
we usually enforce non-negativity in the estimation of a2a, setting any negative 
estimate to zero. In this case, the unbiasedness property of the ANOVA estimator 
no longer holds. Therefore, one might consider replacing var(s 2) in (2.2) by the 

2 However, the problem of deriving the exact mean mean squared error of s a. 
squared error is very difficult. Hence, we use the equation (2.2) to approximate 
the second term of (1.2); replacing terms in (2.2) with appropriate estimators, we 
obtain an estimator of the second term of (1.2). An estimator for (2.2) and its 
derivation can be found in the Appendix. 

3. Jackknife methods 

Arvensen and Schmitz (1970) and Arvensen and Layard (1975) applied a stan- 
dard jackknife method to the one-way random-effects model for testing of the 
variance components ratio. Hinkley (1977) showed that  the infinitesimal jackknife 
method provides a robust variance estimator of regression coefficients even with 
a heteroscedastic error structure. Wu (1986) suggested a slight modification in 
the weights of the infinitesimal jackknife method and extended its application to 
nonlinear regression models. However, in our case, only Hinkley's method will 
be considered, since the performance of Wu's jackknife variance estimator is very 
similar. For nonlinear regression models, the performances of various jackknife 
methods have been numerically studied by Simonoff and Tsai (1986). These stud- 
ies show that  the jackknife samples do not have to be distributed identically to 
obtain a good variance estimator. 

Let the jackknife samples X1, X 2 , . . . ,  X k  be such that  X i  = (Yi, s2). Note 
that  Xi's are independent but not identically distributed unless the design is bal- 
anced. Arvensen and Layard (1975) used these jackknife samples for deriving a 
test on the variance components ratio. The standard delete-one jackknife variance 
estimator is 

#'~sJ(P(tS)) = ~ [ J i  - g ] 2 / k ( k  - 1), 

where Ji = kft([~) - (k  - 1)/2(t~)(i), J = ~ J i / k  and/2(t5)(i) is the estimator/2(t~ ) 
when the i-th sample Xi is deleted. Following the notation of Efron (1982), let 
P0 and Qi be the resampling vectors such that  P0 = ( i /k ,  l / k , . . . ,  1 /k )  and 
Qi = P0 + e(~ - P0), where ~i is the i-th coordinate vector. For any statistics 
tg, define t~(P) to be the resampled value of 0 based on the resampling scheme P. 
Note that  0(P0) is 0. Then, the estimated influence function of/2(t5 ) at X i  can be 
shown to be 
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where 
I~  = ~i~{ft(Q,,  ~(Q,)) - ft(Po, p(Q,))}/e 

=  (Po, 

I2~ = l i~{f t (P0,  f~ (Q, ) ) -  ft(P0, ~(P0))}/e  and 

 (pl, = 

Note that  I ~  can be viewed as I~, = I(ft(p), X~) Ip=~, the est imated influence 
function for ft(p) at Xi. Since ft(p) is the simple regression est imator  of the linear 
model  

z x l / 2 -  / ~ I / 2  
w(Ph Yi = w(Ph # + f,, 

where fi ~ N(O, ~r / [~]~n,/{(ni-1)p+ 1}]), w e c a n  use Hinkley's method  (1977). 
His es t imated influence function of f~(p) at  Xi for the above simple regression model  
is I(f~(p), Xi) = kwi(p)(~, - f~(p)). Hence, we use 

= x , )  I0=  = - 

From the Appendix,  we have 

I2, = dft(p*)ldp* I, '=~ { (dplds2~)S(s~, X,) + (df~lds2a)I(s~, X¢)}, 

where 

I(s  2, X,)  = {k(ni - 1)(s 2 - s 2 ) } / ( n -  k), 

I(s  2, Xi) = I(~>o) [ -  (k - 1)I(s~, Xi) 

+ k n i { ( f l , - f l ) 2 - ( l - 2 n , / n + E n ~ / n 2 ) s 2  

-(i/n,- 1/n)s2}]  / (n- E n 2 / n )  

and I 0 is an indicator function. I(s 2, X,) and I(s  2, Xi) are the es t imated influence 
2 is negative, we usually set it to zero. 2 respectively. When  s a functions of s 2 and Ha, 

2 and In this case, a little per turbat ion  in the da ta  does not affect the sign of s a 
hence, I(s  2, Xi) = O. Note that  I2i is equivalent to 

2 2 - -^  2 - - 2  2 - - 2  I2i = dft(P)ldP{(dPlda~)I(s 2, X,) + (dPldaa)I(sa, X,)} Ip-p,a¢-s~,,o-so • 

Hence, if we use Y~I(s 2, X i )2 /k (k -1) ,  ~ I(s  2, X O 2 / k ( k - 1 ) a n d  y~I(s  2, Xi ) I (s  2, 
X~)/k(k - 1) as est imates of var(s2), var(s~) and cov(s 2, s2), respectively, ~ I2J  
k(k - 1) can be considered as an est imator  for (2.2). As Efron (1982) pointed 
out, there seems to be a real similarity in derivation between the infinitesimal 
jackknife and the 6-method. However, as we can see in the numerical s tudy  in 
the next section, the performances of these two est imators  are quite different in a 
contaminated da ta  set. 

Equat ion (1.2) holds when the error assumptions are true. However, in general, 
the cross-product  term would not vanish in contaminated data.  Hence, there 
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seem to be two possible infinitesimal jackknife estimators for the variance of the 
conventional location estimator/~(t)), 

va"rlJl(~(~)) = ~ ( I l i  + I 2 i ) 2 / k ( k  - 1) and 

va'-~,j2(/~(t~)) = ~ - ~ ( I ~  + I 2 i ) / k ( k  - 1). 

4. Monte Carlo comparisons 

To compare variance estimators in a variety of designs, we generate models 
with n l  . . . . .  n k - 2  = ml and n k - 1  = n k  = m2, so that (k, ml,  m2) determines 
a design. Note that  if ml = rn2, the resulting design is balanced. For a selected 
design, random variables Xi's are generated from distributions, ~ ~ N(0, 7r{p + 
(1 - p ) ~ h i } )  and (ni - 1)s 2 ~ ~r(1 - P)X~-1,  using the IMSL subroutines GGNML 
and GGCHS. For the contaminated data, we generate yl ~ N(0, r{100p + (1 - 
p ) / n l } ) .  This is equivalent to al ~ N(0, 100a 2) and ai ~ N(0, a 2) for i = 
2 , . . . ,  k. Hence, in this case one group has a larger between-group variance than 
the rest. We have included 7r for completeness, but without loss of generality, in 
this paper, we take 7r = 100. In Table 1, the expected value of various variance 
estimators for/~(~) and their standard deviations (in parentheses) are computed 
by the Monte Carlo method using 100,000 pseudo-random samples. 

As mentioned in Section 2, for balanced cases the conventional variance esti- 
mator ~(/~(jb)) is identical to the estimator based on the &method. Even in the 
balanced case, the conventional variance estimator ~(/~(jb)) has upward bias due 

2 In Table 1, this bias gets relatively to enforcing nonnegativity in estimating ¢ra. 
larger as the value of p becomes smaller, in which case the chance of getting a neg- 

2 increases. The bias becomes severe when ative analysis of variance estimate for a a 
data are contaminated in the unbalanced design. The 5-method only trivially im- 
proves the conventional variance estimator in these cases since the 5-method itself 
is essentially based on the conventional method. These two methods provide vari- 
ance estimators with the smallest standard deviation when p is small. However, 
they suffer large bias. 

When the design is balanced or p = 1, Xi's have identical distributions. In 
these cases, the standard and the infinitesimal jackknife methods provide the same 
variance estimators. Also, /2(/~) = ~ ~i/k and the jackknife variance estimator 
becomes )-~(Yi - 9 ) 2 / k ( k  - 1), which is unbiased. Hence, we can expect that when 
p is large or the design is quite balanced, the biases of jackknife variance estimators 
are small and their performances axe quite similar. It seems that the infinitesimal 
jackknife method automatically modifies itself to give an estimator identical to the 
standard jackknife estimator when data  become balanced. In Table 1, we can see 
that these jackknife estimators are quite robust to contaminated data. When p is 
small, jackknife estimators have some bias. Among these jackknife estimators, the 
infinitesimal jackknife variance estimator v'~IJ2(p(p)) has generally the smallest 
bias and smallest standard deviation. This bias seems to become negligible as the 
number of groups k increases, as we can see in the case (k = 10, ml = 2, rn2 = 19). 
A Monte Carlo study for some other cases showed similar results. 
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Table 1. The expected value of various variance estimators.  

p 0.05 0.25 0.50 0.75 0.95 

Uncontaminated 

var (/~(~b)) 

~rsj(~(~)) 

Contaminated 

var(~(~b)) 
~ ( ~ ( ~ ) )  

~ s J ( f ~ ( h )  ) 

Uncontaminated 

var (/2(~b)) 

~aar(~(~)) 

6-method 

~sJ(~(~)) 
~arlJX (]~(P)) 

Contaminated 

var(~(~)) 
~r(~(~)) 
5-method 

~ r  s J(~([) ) ) 
~rijl(,(p)) 
~rIj2(~(~)) 

Uncontaminated 

var(p(~)) 

6-method 

~rsj(~(h)) 

Contaminated 

v~r(~(~)) 
~r(~(~)) 
5-method 

~sJ(~(h)) 
~ra"-rl j1 ( . (p ) )  

Design = (k = 6, m l  = 2, m2 = 2) 

8.78 10.46 12.55 14.64 16.31 

11.24 (.017) 11.65 (.019) 12.97 (.025) 14.88 (.030) 16.63 (.033) 

8.74 (.017) 10.41 (.021) 12.49 (.025) 14.57 (.029) 16.23 (.032) 

22.6 79.4 150.3 221.2 277.9 

27.5 (.076) 79.8 (.321) 151.7 (.640) 224.3 (.960) 282.9 (1.218) 

22.4 (.072) 78.9 (.320) 149.6 (.631) 220.2 (.942) 276.7 (1.192) 

Design ---- (k ---- 6, rnl = 2, m2 ~- 19) 

4.51 7.91 11.11 13.97 16.17 

4.09 (.008) 6.98 (.016) 10.40 (.027) 13.70 (.038) 16.29 (.048) 

4.20 (.008) 7.06 (.016) 10.43 (.027) 13.70 (.038) 16.29 (.048) 

5.69 (.014) 8.61 (.018) 11.37 (.029) 13.98 (.028) 16.10 (.032) 

5.47 (.014) 8.31 (.018) 11.26 (.029) 13.99 (.028) 16.11 (.032) 

4.84 (.012) 7.68 (.017) 10.74 (.023) 13.69 (.028) 16.01 (.032) 

16.5 74.1 146.5 219.0 277.0 

10.7 (.030) 33.7 (.124) 63.9 (.246) 94.1 (.369) 118.5 (.468) 

10.8 (.030) 33.8 (.124) 63.9 (.246) 94.1 (.369) 118.5 (.468) 

17.9 (.068) 75.0 (.316) 147.0 (.627) 219.1 (.937) 276.8 (1.185) 

19.4 (.071) 77.1 (.319) 148.6 (.628) 220.0 (.938) 277.0 (1.186) 

17.4 (.067) 74.7 (.315) 146.8 (.626) 219.0 (.937) 276.8 (1.185) 

Design = (k = 10, m l  ---- 2, m2 ---- 19) 

3.13 

3.07 (.005) 

3.16 (.005) 

3.72 (.009) 

3.40 (.008) 

3.05 (.007) 

7.19 

5.87 (.o14) 
5.96 (.014) 

7.96 (.027) 

8.40 (.026) 

7.45 (.024) 

5.28 6.98 8.52 9.71 

4.86 (.009) 6.79 (.013) 8.48 (.018) 9.75 (.022) 

4.96 (.008) 6.83 (.013) 8.49 (.018) 9.75 (.022) 

5.66 (.010) 7.11 (.011) 8.53 (.013) 9.70 (.014) 

5.32 (.009) 7.03 (.011) 8.53 (.013) 9.70 (.014) 

4.91 (.008) 6.69 (.010) 8.37 (.013) 9.67 (.014) 

28.5 55.1 81.6 102.8 

17.0 (.056) 30.7 (.110) 44.2 (.164) 55.0 (.207) 

17.1 (.056) 30.7 (.110) 44.2 (.164) 55.0 (.207) 
29.1 (.115) 55.4 (.225) 81.8 (.335) 103.0 (.424) 

29.8 (.114) 56.1 (.225) 82.2 (.336) 103.0 (.425) 

28.7 (.113) 55.2 (.224) 81.8 (.335) 103.0 (.424) 
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The infinitesimal jackknife es t imator  can be extended for variance est imators  
of the fixed effects in the general mixed linear model, and would be expected to 
have as good a performance as in the  one-way random-effects model. 
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Appendix 

Derivation of the delta method. From Searle ((1971) p. 474), we have 

4 2 2 4 (A.1) var(s 2) = aa~, cov(s2, s~) = baa~ and var(s 2) = ca~ + da~a~ + ea~, 

where a -- 2 / (n  - k), b = - 2 n ( k  - 1) / {(n - k ) (n  2 - )-~n2)),  c -- 2n2(n - 

_ , ~ 2 1)(k 1) / { ( n - k ) ( n  2 -  )-~n~) 2} d 4 n / ( n  2 -  ~ n ~ )  and e = 2{n2)--~ni + 

()-~n~) 2 -  2n~-~.n 3} / (n 2 -  )-]ni2) 2. For any parameter  0, let U(f(O)) be an 
unbiased est imator  for f (0) .  Since E{U(f(O))  ~} = f(0)2 + var (V(f (0) ) ) ,  we can 
have unbiased est imators  

U(aa~) s~/ ( l  + a), ~ 2 ~ 2 = U(aeaa) = ses a - bU(a 4) and 

V(a  4) = { S 4 a - c U ( a 4 ) - d V ( a 2 a ~ ) } / ( 1  +e) .  

Note that  U(a~) can take negative values. In this case, even though the negative 
est imates must  be  retained for unbiasedness, negative est imates are, in practice, 
often set to zero. By replacing these est imators in equations (A.1), we can obtain 
the est imators for (A.1). 

Derivation for I (s  2, Xi) .  Let ~i = {(1 - ~) E n j g j  + eknigi} / {(1 - e)n + 
ekni} = Y+Ce,i(9i-Y),  where c~# = e k n i / { ( 1 - ~ ) n + e k n i } .  Then, SSA(Qi) = ( l -  
e) ~ n j  (Yj -- ~i)2 + ekni (Yi - 9 i)2 _ ( 1 - e) ~ n j  (~]j -- ~)2 + d~# (Yi - 9) 2 , where d~,i = 
n(1-~)c2# +ken i (1 -c~ , i )  2. Note that  E{(~j  - y) 2} = ( 1 - 2 n i / n  + ~nj/n2 2)Ca+2 
(1~us - 1/n)a~. Hence, E{SSA(Q~)} = a~,ia 2 + b~#a 2, where he# = (1 - c)(k - 
1) + d~,i(1/ni - 1/n) and be,i = (1 - e)(n - ~ n~ /n)  + d~,i(1 - 2n i /n  + ~ n2/n2).  
Therefore, S2a(Qi) = {SSA(Qi) - ae#s2(Qi)}/b~,i. Let a = lim~-~o ae,i = k - 1 and 
b = lim~_~o b~# = n - ~ n~/n.  Then, 

s~(Qi) - s~(Po) = A1 + A2 + A3 + A4, 

where A1 = {SSA(Qi) - a¢#s~(Qi)}/b~,i - {SSA(Qi) - a~,is~(Po)}/b~#, A2 = 
{SSA(Q~)-a~#s~(Po)}/b~,~-{SSA(Q~)-as2(po)}/b~,~, A3 = {SSA(Q~)-as~(Po)} /  
b~# - {SSA(Q~) - as~(Po)}/b and A4 = {SSA(Q~) - as2(Po)}/b - {SSA(Po) - 
as2(Po)}/b. Since lim~__.o(ae, i - a)/e = (n - n i k ) / n  and lime~o(b¢,i - b)/~ = 
k n i ( 1 - 2 n i / n +  ~ n2/n  2) - b ,  it can be shown tha t  lim~_~o A1/~ = - a I ( s  2, Xi) /b,  
lim~-~o A2/e  = - ( n  - n ,k)s~/  (nb), lim~_~0 A3/e  = - {  kn,(1 - 2 n j n  + E n2 / n2) - 
b}s2a/b and lim~-_.0 A4/e  = {kni(~i - ~)2 _ bs 2 _ as2}/b. By rearranging these 
terms appropriately,  we have the desired results. 
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