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Abst rac t .  An iterative algorithm for the robust M-estimation of the disper- 
sion matrix of the form F + a2Ip has been given. This algorithm converges 
after some steps and reduces the effect of outliers on the covariance matrix. 
The consistency and asymptotic normality of the estimator are established. 
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1. Introduction 

The covariance and correlation matrices are used for a variety of purposes. 
They give a simple description of the overall shape of a point-cloud in p-space. 
They are used in principal component analysis, factor analysis, discriminant anal- 
ysis, canonical correlation analysis, tests of independence, etc. Unfortunately, 
sample covariance matrices are excessively sensitive to outliers. Chen et al. (1974) 
gave an example of how a principal component analysis can be sensitive to a few 
outlying observations. The remedy for this difficulty has been found by robust 
estimation of dispersion matrices, i.e. an estimate of the dispersion matrix from 
the sample data which will reduce the effect of outlying observations. In this pa- 
per, we consider the problem of the robust estimation of the dispersion matrix 
F + (r2Ip, where F is n.n.d, of rank q (< p), a 2 > 0 and both axe unknowns and Ip 
is the identity matrix of order p. The above form of the dispersion matrix arises 
in the area of signal processing. 

2. Model and assumptions 

Model. In general, the model in signal processing is as follows: 

(2.1) X( t )  = AS( t )  + n(t) 

where 

X ( t )  = ( X l ( t ) , . . . ,  Xp( t ) ) t :  p × 1 observation vector at time t, 

S(t) = (S l ( t ) , . . . ,  Sq(t))' : q × 1 vector of unknown random signals at time t, 

n(t) = (n l ( t ) , . . . ,  np(t))': p × 1 random noise vector at time t 

689 



690 MADHUSUDAN BHANDARY 

and 

A = [A(¢1) , . . . ,  A(Oq)], 

A ( ~ )  : p × 1 vector of functions of the elements of unknown ~i associated 

with i-th signal 

and 
q < p .  

In model (2.1) X ( t )  is assumed to be distributed with mean vector zero and scale 
matrix A ~ A '  + a2Ip = F + a2Ip, where F = A ~ A '  and • = covariance matrix of 
S(t). We are interested in the robust estimation of F + a2Ip. 

ASSUMPTIONS. 
(a) w(s) is a non-negative, non-increasing and continuous function for s >_ 0. 
(b) ¢(s) = sw(s)  is bounded and let K -- Sups>0 ¢(s). 
(c) ¢ is non-decreasing and is strictly increasing in the interval ¢ < K. 
(d) There exists a so such that ¢(s0) > p for s _< So and hence K > p. 
(e) There exists a a > 0 such that  for every hyperplane H, P ( H )  < 1 - p / K - a .  

3. Literature review 

There are several procedures in the literature about the robust estimation of 
dispersion matrices. Details can be found in Huber (1981). 

A few procedures are mentioned as follows: 
(i) Mosteller and Tukey (1977, Chapter 10) suggested a procedure based on 

the robust regression calculation that  result in a robust covariance matrix estimate 
S*. 

(ii) Gnanadesikan and Kettenring (1972) and Devlin et al. (1975) suggested a 
multivariate trimming (MVT) procedure as follows: 

(a) Calculate )~, S from the given data X~ (i -= 1 , . . . ,  n). 
(b) Calculate d 2 -= (X~ - J E ) ' S - I ( X i  - ]E), the squared distances of the 

observations from X in the metric of S, i = 1 , . . . ,  n. 
(c) If 42 is very large (w.r.t. the distribution of 42) then throw the i-th obser- 

vation and calculate X and S on the basis of the remaining observations, 
and so on, for i = 2 , . . . ,  n. 

(d) Continue this way until Iz (u) - z(U-1)l < 10 -3 or after the 25th iteration, 
where z (u) = Fisher z-transform of the correlation between two variables 
at the u-th iteration. 

(iii) Following Marona (1976), the estimates of $ and E are given by 

(3.1) 

-~n 

n 
~-~i:] wl(di)  

n 
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where 
p + /  2 

wl(di) = f +d2W2(di), i =  1 , . . . ,  n. 

f is the number of degrees of freedom of the p-variate t-distribution, and t and E 
are the mean vector and the scale matrix of the distribution, respectively. 

(iv) An alternative procedure considered by Huber (1977a, 1977b) is the same 
as that suggested by, Marona (1976) except that 

1 if d i < k  
(3.2) wl(di) = k/di if d~ > k and w2(d 2) = [wl(di)]/~ 

where k 2 is the 90% point of a X 2 distribution and fl is chosen so as to make S* 
an asymptotically unbiased estimator of the covariance matrix in a multivariate 
normal situation. 

Devlin et al. (1975) compared the above four methods, (i), (ii), (iii) and (iv), 
through numerical study and obtained the robust estimate of the principal com- 
ponents. 

Let us now discuss the robust estimation of the dispersion matrix F + (r2Xp. 
We will follow Marona's way (1976) and that of J6reskog (1967). 

In Section 4 we will discuss the derivation of the estimate. Asymptotic nor- 
mality and strong consistency of the estimate are discussed in Sections 5 and 6. 
Section 7 describes, through numerical study, the convergence of the iteration 
process for the estimate. 

4. Derivation of the estimate 

Let X( t l ) ,  X ( t 2 ) , . . . ,  X(tn)  be n observed p-component signals at n different 
time points which are independently and identically distributed as an elliptically 
symmetric distribution (Kelker (1970)) with mean vector zero and scale matrix 
F + ~r2Ip, where F, a 2 and Ip are explained in Section 3. 

Since F is of rank q (< p), we can assume F = BB' ,  where B is a p × q matrix 
of rank q and B ' B  = Diag(01, . . . ,  Oq), where 81 >_ 82 >_ "" >_ 8q are the non-zero 
eigenvalues of F. Hence, we can write the log-likelihood as follows: 

(4.1)  
n 

n log IBB' + a2Ipl + E l o g h ( t r ( B B '  + a2Ip)- l~x~)  log L = - 
i = 1  

where ~ = x(ti), i = 1 , . . . ,  n and h(.) is a convex function from [0, c~) to [0, c~). 
Following Lawley and Maxwell ((1963), Chapter 2), we have 

(4.2) 

OB - - (BB' + a21v) -1 

h (di) 
+ + ' +  2I)-1) 2 B  = 0 

i=1 h(di ) 

E-I(G - T)E-IB = 0 

o r  
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and 

(4.3) O log L 
062 

where 

- -  - t r ( X - ~ ( X  - T ) X  - 1 )  - -  0 

d 2 = x [ ( B B '  + a 2 I ) - 1 ~ ,  

Oh(d 2) h' (d 2) 
(4.4) h'(d2) - Od 2 , w ( d ~ ) -  h ( ~ ) '  

E = B B '  + a2I,  T = _2 £ w ( d 2 ) ~ "  
n 

i--1 

Using Rao (1983, p. 33) we can write 

i =  l , . . . ,  n, 

(4.5) E -1 = ( B B '  + cr2I) -1 

where 
B ' B  

- -  . . . , D • 0-2 = Diag(O1/a2, 0 q / 0 - 2 )  " 

Using (4.5) in (4.2) we get 

(4.6) 
D - 1 B '  (E - T)-~7 [Ip - B ( I  + ) 7 7 ] B = 0 ,  

(E - T)/~ = 0 

B 
( E -  T ) - - ~ ( I +  D) -1 _- 0, 

o r  

(4.7) T/~ = BDiag(01 + a 2 , . . . ,  0q + o ̀2 , o -2 . . . ,  o-2). 

From (4.7) it is clear that  the columns of B are the eigen vectors of T and that  
the estimates of 01 + a 2 , . . . ,  Oq + a 2 and a 2 are based on the eigenvalues of T. We 
choose the eigen vectors of T such that  these are orthonormal. From (4.3), (4.5) 
and (4.6), we have 

(4.8) 1(2 10 
It can be shown after calculation that  (4.8) can be deduced to 

[1( [1( 
(4.9) tr ~ I +  a2 a2 = 0  or tr ~5 I +  

where 

0-2 0-2 = 0 

[~ = B(O - 0-2Iq)1/2 and 
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O = Diag( /1 , . . . ,  lq), 

(4.10) li -- i - th ordered eigenvalue of T when these are in decreasing order 

and B'/~ = Iq. 

From (4.6) to (4.9) we are using the fact that  

51ogL B.=B 
5B = O. 

From (4.9) we get 

(4.11) 
1 (li - -  0 "2) l i 52 Ei=q+l li 

+ ~ ~ = 0 or - 
~=1 i=l P - q 

Thus, 

(4.12) = B ( h  - 52X)B ' + 5 2 I ;  

where, 

= (wl  : - . .  : wq), 

h = D i a g ( l l , . . . , / q ) ,  

li = i- th ordered eigenvalue of T, 

wi = / - t h  or thonormal  eigen vector of T corresponding to li, i = 1 , . . . ,  p. 

So in order to get, the  robust est imate of E we can apply the following algorithm: 
n (i) The observations are xl, x a , . . . ,  x.n. Calculate S = (l /n))-~i=1 x4x[ = 

E(o). 

1 (ii) Calculate di2(1) = x~S-lx~ and T (1) = ( / n )  ~-~.i=1 w(d2(1))x~x~ where 

w(d~(1) ) is a decreasing function and we choose, for practical purposes, w(d2(1)) = 

(m + p ) / ( m  + d2(1)) which is the max imum likelihood est imator from a p-variate 
t-distribution with m.d.f. 

(iii) Compute  the eigenvalues of T (1) and order them as follows: 11 _> 12 _> . . .  _> 
lq >_ lq+ 1 :> . . .  ~_ Ip and the  corresponding eigen vectors are w l , . . . ,  wq, Wq+l , . . . ,  
Up. Finally, compute  ~-]~(1) q = ~~i=l(li - &2)wiw[ + 52Ip, where 52 v = (E i=q+l  li)/  
(p-  q). 

2 x ~ E ( 1 ) - I ~  and T (2) 1 n (iv) Calculate di(2) = : ( / n )  Ei=I w ( d 2 ( 2 ) ) x 4 x [  • 

(v) Repeat  steps (iii) and (iv) until the i teration converges, i.e., []~(r) _ 
E(r-1)[I < e, where ~(r) = est imate of E at the r - th  iteration and e = some 
pre-assigned small numbers.  

Remark. Here, we assumed tha t  the value of q is known. If q is unknown, 
Zhao et al. (1986a, 1986b) gave some model selection method  to est imate q. 
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5. Asymptotic normality of the estimate 

The asymptotic normality of the estimate ( ~,/~n) will be proved by using 
the result of Huber (1967). 

LEMMA 5.1. Let 

(i) • be the function from R p × 0 ° into 0 ° defined by ~(x,  0) = (t~l(X, 0), 
qY2(x, 0)) where 

0 log L 
(5.1) II/l(X, 0) - 00.2 

(5.2) k~2(x, 8) - 01ogL 
OB 

_ _  _ tr[E-Z(2 - T)E-z],  

_ _  _ E - I ( E _ T ) E - 1 B ,  

0 ° = R +  x O, 

0 -- Set of p x q reql matrices, 

R+ = Set of positive real numbers. 

(ii) A(8) = (A1(0), A2(8)) = Epg2(x, #) where P is the underlying distribution 
and E denotes the expectation operator. 

(iii) The vector space 0 ° is normed with 11011 = max{0. 2, IIBII}. 
(iv) Uj(z, 0, 5) = Supll01_011< ~ Ilqtj(x, 01) - g2j(x, 0)11, j = 1, 2. 
(v) There exist positive numbers b, c and 50 such that EUj(x,  O, 6) <_ b6 and 

EU2(x, 0, 6) < c6 for 118 - 0oll + 6 <_ 50, j = 1, 2, where 8o is the true parameter. 

(vi) The derivative (DA)oo is non-singular, then xffd(O,~ - 0 0 ) L  Normal dis- 
tribution with zero mean and covariance matrix ( D A )~olC( D A ) ~o 1', where C is the 

covariance matrix of ~(x ,  00) and On = #2 ( 

PROOF. Since Ep((OlogL)/OOo) = 0, we have A(#0) = 0 and this satisfies 
the assumption (N - 2) of Huber (1967). When Pn is the emperical distribution, 
the estimator ~n = 52 ( n,/3n) is defined by E p ~ ( x ,  O) = O. Lemma 5.1 follows 
from Huber's (1967) theorem and its corollary. 

LEMMA 5.2. 

1 ¢(ix~[2) P, 
Ep n i=l 

where ¢(s) - -  sw(s), s >_ 0. 

PROOF. We have from the likelihood equation, 

(5.3) tr[E-Z(E - T)E -1] = 0. 
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If E = I v then (5.1) can be deduced to 

- -  w x~ ~ x  i = 0  or 
n 

E ¢([~12) i  = p .  
/----1 

LEMMA 5.3. Let 

EO~2 E=I C = 0 / ) '  

= [ - ( B o  @ Ip) '{(Bo ® I)P* + (Ip ® Bo)} + Ipql[Ipq - (Iq ® E T  I~:I)] 

+ (Bo ® Ip) ' (ET j~=l @Ip)'{(Bo @ Ip)P* + (I  ® B0)} 
O~]r3  

- (Bo @ I p ) ' E - ~ ,  
(113" E = I  

where P* is the permutation matrix given in Rao (1982) and Bo is such that 
Oo = (a 2, Bo) is a unique solution of the likelihood equations with cr~ 7 £ 1. Then 
C is a non-negative definite matrix. 

PROOF. 

(5.4) 

(5.s) 

We have for I 7£ 0, 

l'(Ip - E T  Ir~=t)l = l' - E w( l~12 )~  l 

= l'l - 1_ ~ E[:r.i[2w([~[2)E(l ,z/)2 
n 

i=1  

= 0 (by Lemma 5.2). 

Note that  (5.4) and (5.5) are t rue because z~ = ~ / [ ~ [  ~ uniform distr ibution 
over a unit sphere, independent ly  of I~1 and hence, E(l'z~) 2 = lll2/p. Hence the 
matr ix  Iq ® (Ip - E T  [~.=I) can be ignored w.r . t . the definiteness of the matr ix and 
it is easy to show tha t  the  matr ix  - (Bo ® Ip)'E(OT/O[~) is n.n.d, and the matr ix  
[B~ET I~=I @Ip][(Bo ® I)P* + I ® Bo] is n.n.d.; hence, Lemma 5.3. 

L E M M A  5.4 .  

where 

f . ,o0' o?' OU(x)V(z) _ (V ® + (It p) ® u) 

U(x) is a p x q matrix function of x and 

V(x) is a q x r matrix function of x. 
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PROOF. The proof of Lemma 5.4 is given in Rao (1982)• 

LEMMA 5.5. 

0~2 
- -  [ - (B @ / p ) , ( ~ - I  @ E-1){(B ® /p )p ,  + (/p N B)} + ( Iq  @ E-l)] 

• [Ipq - ( Iq  ® ~-IT)] 

+ (E-1B @ Ip)'(T ® Ip)'(E -1 @ E-1){(B @ Ip)P* + (Ip ® B)} 

E IOT  - (E-1B ® I p ) ' ( I p  ® - )~-~ 

where P* is the permutation matrix given in Rao (1982). 

PROOF. 

(5.6) 
0C~2 OE-XB O E - 1 T E - 1 B  

OB' 0[~' OB' 

NOW 

(5.7) 
OE-1B z ) '0g-x E ~ 0B - (B ® p ~ + (Iq ® - ) ~ 7  (byLemma5 .3 )  

E 1" Oq~ = - ( B  @ Ip)'(E -x ® - ) - - ~  + (Iq @ ~--]-1). 

Similarly, 

(5.8) 
O E - 1 T E - 1 B  OE-1T OE-1B 

= (P'-IB ® g)'  a~,  + (/~ ® r71T) 0B' 

® I,)' [(T I O~_j - 1  

E 1T" OE-1B 
+ ( I v ®  - ) ' ~  • 

Lemma 5.5 follows from (5.6), (5.7) and (5.8). 

THEOREM 5.1. Let 
(i) the function s¢(s) be bounded 

(ii) P be a radial distribution 
(iii) the likelihood equations have a unique solution Oo = (a~, Bo), where a~ ~ 1 
(iv) Ep{IXl2¢'(Ixl2)} > O. 

Then v/-~( On - 0o) has a limit normal distribution. 

PROOF• Here, we will apply Lemma 5.1 in order to prove Theorem 5.1. So, 
we have to verify the conditions in Lemma 5.1. If we can show that  HD~(x, O0)H < 
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d, where d (> 0) is some constant, then by the Mean Value Theorem, the condition 
(v) in Lemma 5.1 will be verified. From (5.1) we have, 

(5.9) 0~1 _ 0 [ t rE_l  _ t r E _ I T E _ I ]  
002 002 

-1  -1  i 2 t -1  t -1  = tr E - I ( 2 T E  -1 - [p)~F-Z 1 Jr ~-, ~ "W (d~)~m~E ~m~E . 
i=1 

Similarly, 

(5.1o) 

n 
2 / 2 / - 1  Ggkt/1 _ 2 E - 1 ( 2 T E - I  _ I v ) E - 1 B  + ~--1~-]--1 E d i w  ( d / ) ~ x i E  B .  

OB i=l 

Hence, 

(5.11) OB' 

From (5.2) we get, 

(5.12) 0~2 cqa 2 

( (::~ II/1 "~ 
- Vec \ - ~ ]  

= 2(~-1 (2TY] -1 --/p) ~)B I) Vec(~ -1) 

+2(s-~s-~£2' 2 ' )Vec(pTb. d i w (d i )~-ix i ® B' 
i=1 

_ O E - 1 B  0 ( E - 1 T E - 1 B )  
Oa2 002 

n 

: __ ~--ly]--i B Jr- E-lY'j,-1T]~-IB + ~-1~-1 E d2iwt(d2i)mix~E-1B 
i--1 

+ E - 1 T E - 1 E - 1 B .  

So~ 

(5.13) o 2_ Vec (0 ,h 

= - (s-x ® B')Vec(S -~) + (S-~S-IT ® m')Vec(S-b 

2 , 2 , V e c ( ~ - l )  + ~- l~- ly~ 'd~w (d~)~x~ ®B' 
i = l  

q'- ( S - I T ~  -1 e B') Vec(~ -1) 

The expression for 0~2/0 /~ '  is given in Lemma 5.5. 

(5.14) 

Now~ 

c3~2 
a G  2 

OgJ l 

0 3 '  
0~2  

OB' 

OOl °°21 
= o~2 + -E~ + ~ + - ~ r  

< B1 
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where Bi is a constant depending on II~ll and IIBII. We get (5.14) by using 
(i) (5.9), Lemma 5.5, (5.11) and (5.13), 

(ii) the fact that d~-ll~l < It~111/2, 
(iii) tIA ® BII = IIAlt" IIBII, 
(iv) the function ¢(s) is bounded for s > 0. Now, we will verify the other 

conditions in Lemma 5.1, i.e. ED~(x, O) is non-singular. 
Without loss of generality, we assume that P is spherically symmetric and we 

take E = Ip so that O0 = (ao 2, B0), where a02 # 1. 
Note that 

(5.15) w'(s) = s- i (¢ ' ( s )  - w(s)). 
Since P is spherically symmetric, we will use the property that z~ = z / / l ~  ] and 
t~t are independently distributed and z~ = ~ / l ~ l  ~ uniform distribution over 
the unit sphere. Hence, 

n 

2 / (5.16) ET I~=z = E1 Ew(l~l )~xi 
n 

i = 1  

_- _1 ~ Elx,/12w(lx~12 ) • E z / g  
n 

i = 1  

1 n 
= n ~ E¢(1~12)" E~z'. 

i = 1  

Now, from (5.9) we have, 

- -  Ogil -~ Ep tr (5.17) /~'p ~-a2 :~=.' [(2T [~=I -Ip) + ~-~w' ([x'il2)x~[x'i[2x~] 

Using (5.15) and (5.16) in (5.17) we get, 

~=l = ~ EI~2~ cOkOi E 1 ¢(Jx,/] 2) + Ix~12¢'(Ix~l 2) - p 
(5.18) E-0-~a 2 n ~=i n i=l 

> 0 (using Lemma 5.2 and Condition (iv) of Theorem 5.1). 

Now, from (5.13) we have, 

(5.19) E - ~  20~2= I = [{  (2ET Ir.=z -Ip) 

1 n 

+ - Z EI I ¢'(L 
n 

/=1 
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Using (5.11) we get 

(5.20) EO~ _0~ 2 E - o ~  • 

It can be shown using Lemma 5.5 that 

(5.21) C = E~-~7 ~=~ 

= -(Bo ® Iv)'/{(Bo @ Ip)P* + (Ip @ Bo)} 

-{Iq ® (xv - ET I~=~)} + OB' ~__~ 

+Iq ® (xp - E T  1~--~) 
+(B~ET I~=, ®Ip)[(Bo ® Iv)P* + (I v ® Bo)]. 

Now, 

(5.22) D(x, O) =  °11 1 
b E0-B-7 ~=i 

0~2 [ 
E ~  ~=i C 

a 

where b = E(OgJ1/Oa 2) ]~Z=l, a = E(O~22/Oa 2) Iz=I and C is given by (5.21). 
Now, we will evaluate the function Dk~(x, O) at some point (~r~, Vec(Bo)) 

where ao 2 E R+ and B0 E O. 
Now, 

(5.23) 

= ba ] + 3a][Vec(So)]' a + [Vec(Bo)l'C[Vec(Bo)]. 

Thus, in order to show that (5.22) is non-singular, it is enough to show by using 
(5.18) and Lemma 5.3 that [Vec(Bo)]'a >_ 0. From (5.19) we have, 

0~2 I 
(5.24) a --- E~--~ 2 ~=l 

+ - Nt~l 2. ¢'(1~12). E~z"  ® B~ Vee(Ip) 
?2 i=l 

----- [M ® B~] Vec(Iv), 
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where 

(5.25) 
n 

M = ~ ~-~{E¢(I~I 2) + E i ~ I 2 ¢ ' ( l ~ 1 2 ) } E z ~ z :  - £p. 
n 

i=1 

It is easy to show that M is positive definite. Hence, 

[Vec(B0)]'a = [Vec(B0)]'[M ® B~] Vec(Ip) 

= [Vec(Ip)]'[Ip ® B0][M ® B~] Vec(Ip) 

0 (since [Ip ® B0][M ® B~] is n.n.d.). 

Hence Theorem 5.1 follows by using Lemma 5.1. 

6. Consistency of the estimate 

LEMMA 6.1. 
t r (E-1T)  = p. 

PROOF. From likelihood equations we have, 

(6.1) 
(6.2) 

t r ( ~ ] - l ( Z  - -  T ) E  - 1 )  ---- 0 

E - I ( E -  T ) E - 1 B  = O. 

and 

From (6.2) we can write, 

(Ip - E - 1 T ) E - 1 B B  ' = O, Ip - E - 1 T  - a2E-1 + c~2E-1TE -1 = 0, 

p - t r (E-1T)  - a 2 t r ( E - l ( E  - T)E -1) = 0 or t r (E-1T)  = p. 

LEMMA 6.2. 

x ' E - l a  > ~t ~z,xj w h e r e  
- 1 

l = smal les t  eigenvalue of  E,  

z = corresponding uni t  eigen vector. 

PROOF. 

x , E _ l x  = t r E _ l ~  , > ( x ' x )  (by the Von-Neumann (1937) inequality) 
- l 

l 

> (z 'x)2 (by the C.S. inequality). 
- l 

THEOREM 6.1. Let x l , . . . ,  x~ be i.i.d, with a common distribution P.  Let 
2 and Bu are the solutions of the likelihood equations En = BnBIn + a2nlp, where a n 

based on Xl , . . . ,  x~ with Pn being the emperical distribution. Then l i m ~ - ~  E ,  = 
E a.s. 
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PROOF. Wolfowitz (1954) established that  for S c_ R m, the l i m n - ~  Pn(S) = 
P(S) uniformly in S with probability one. It is easy to verify that P~ satisfies the 
assumption (e) given in Section 2. We will prove the consistency of ~ n  by using 
Huber's (1967) result. It is easy to verify the conditions (B-l), (B-2') and (B-3) 
of Section 3 in Huber. According to Huber's Theorem 2, it is enough to show the 
existence of a compact set K _C O such that with probability one, the sequence 
E~ ultimately stays in K. It is very difficult to check condition (B-4) of Huber, 
which would entail the desired result. It suffices to prove the existence of a finite 
constant B such that with probability one, 

(6.3) 

(6.4) 

limsupll  lll < /3  or 
n ---~ ¢xD 

equivalently In 1 <_ B' < ~ ,  

where In ---- smallest eigenvalue of •n.  

(6.5) 
1 

Suppose that (6.4) is not true, i.e. 7- > B'; 
tn 

then we have from Lemma 6.1 

(6.6) p = t r (En lT)  
n 

_ i Z 
- -  n 

i = l  

= ¢(x 'E- lx)  

= Z'x:lz'~l_<c} ¢(xlE-lx)dPn + J~{x:lz'xl>c} ¢ ( x l E - l x ) d P n  

(where c > 0 is a constant) 

> Pn{ge: I %1 > c}¢(c 2B') 
(by Lemmas 6.2 and (6.5), and Assumption (c) of Section 2) 

> (_K+2P a) ( K - b )  (by Assumption (e)of  Section 2) 

for some b > 0. 

There exist b > 0 such that the expression in (6.6) is greater than p. Hence, we 
get a contradiction. 

7. Convergence of iteration in Section 4 through simulation 

In Section 4 we have introduced an algorithm for the estimation of a dispersion 
matrix, which involves an iterative procedure. In this section we give a numerical 
example to show that  the iteration converges after some steps. 

We give some simulation results as follows: 

S (°) -- Initial Covariance matrix, 

- Final Covariance matrix after iteration. 
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Table 7.1. 

Number of simulations: 1001 

n = 10, p = 27 q = 1, m = 4, e = 0.10 [0 00  =[o000 
Iteration No. Epsilon 

1 0.3116 

2 0.0571 

Maximum of I terat ion No. in the remaining 1000 simulations ---- 4. 

Table 7.2. 

Number of simulations: 1001 

n- - -10 ,  p - - 3 ,  q = l , m = 4 ,  e----0.10 

S (o) = 

0.170 0.006 0.355] 

0.509 0.517 / , 

2.823 J 

0.323 0.007 - 0 . 0 2 6 1  

= 0.063 o.ool / 
1 

0.065J 

Iteration No. Epsilon 

1 2.8956 

2 0.1472 

3 0.0931 

Maximum of I terat ion No. in the remaining 1000 simulations ---- 8. 

Table 7.3. 

Number of simulations: 1001 

n - -  10, p - - 3 ,  q - - 2 ,  m - - 4 ,  e = 0 . 1 0  

0.457 0.410 1.987] 
S (°) = 1.278 3.418 / 

I 
13.369 J 

I teration No. Epsilon 

1 14.3252 

2 0.4838 

3 0.3385 

4 0.2943 

5 0.2310 

6 0.1626 

7 0.1070 

8 0.0675 

2.040 0.038 

,S' = 0.083 

Maximum of I terat ion No. in the remaining 1000 simulations = 17. 

0.010] 

0.032 / 
0.0431 
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Table 7.4. 

703 

Number  of simulations: 1001 

n = 10, p = 4, q = 1, m = 4, e = 0.10 

S (0) = 

0.326 0.023 0.~97 1.0041 Fo.400 0.143 -0.808 -0.231 l 
0.394 0.705 0.939[ ~ = [ 0.082 - 0.308 0.0891 

4.324 5.939/, 1.757 0497/ 
8667j O lTOj 

I teration No. Epsilon 

1 12.7429 

2 0.3709 

3 0.4288 

4 0.3897 

5 0.2868 

6 0.1655 

7 0.0711 

Maximum of I teration No. in the remaining 1000 simulations = 19. 

Table 7.5. 

Number  of simulations: 1001 

n = 10, p = 4, q = 2, m = 4, ~ = 0.10 

0.878 0.810 3.693 2.047] [0.991 0.163 

S(0) = 1.449 5.058 1.999 / ~ = 0.068 

21.801 10.062 / ' 

8.123J 

Iteration No. Epsilon 

1 28.1115 

2 0.8442 

3 0.6229 

4 0.3742 

5 0.1961 

6 0.0845 

Maximum of I teration No. in the remaining 1000 simulations = 22. 

- -  1.317 

-- 0.210 

1.872 

- 0.397] 

0.021 / 

0.634 / 

0.4791 
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Table 7.6. 

Number of simulations: 1001 

n = 10, p = 4, q = 3, m = 4, e = 0.10 

S(0) = 

"0.979 0.956 3.959 

1.649 5.408 

22.506 

2.319] 

2.375 / 

10.377 / ' 

8.893J 

g= 

"0.634 0.118 

0.106 

Iteration No. Epsilon 

1 29.2105 

2 0.5352 

3 0.2494 

4 0.1375 

5 0.0821 

Maximum of Iteration No. in the remaining 1000 simulations = 23. 

- 0.753 - 0.115] 

- 0.227 0.027 / 

1.036 0.342 / 

0.494 J 
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