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A b s t r a c t .  Consider the problem of estimating the common regression coeffi- 
cients of two linear regression models where the two distributions of the errors 
may be different and unknown. Under the spherical symmetry assumption, 
the paper proves the superiority of a Graybill-Deal type combined estimator 
and the further improvement by the Stein effect which were exhibited by Shi- 
nozaki (1978, Comm, Statist. Theory Methods, 7, 1421-1432) in the normal 
case. This shows the robustness of the dominations since the conditions for the 
dominations are independent of the errors distributions. 
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1. Introduction 

1.1 Motivations 
In the problem of estimating the coefficients of a linear regression model, the 

normality assumption on the errors distribution has often been criticized as being 
too restrictive. Cellier, Fourdrinier and Robert (1989)--later denoted by CFR in 
this paper--have shown that the usual Stein domination results hold under the 
much weaker assumption of spherical symmetry. More precisely, for the regression 
model 

(1.1) Y = X fl + ~ , 
(nxl) (nxp) (p×l) (nxi) 

and for p > 3, the least squares estimator/~ is dominated by a shrinkage estimator 
if ~ has a spherically symmetric distribution (i.e. the density of s factorizes through 
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Ilell2), and the domination conditions are independent of the distribution. In this 
respect, we can speak of the robustness of the Stein effect. We give in Subsection 
3.1 an application of CFR results to the linear regression model (1.1). Note that 
the results are also valid if ~ has an elliptically symmetric distribution (i.e. when 
the symmetric matrix defining the norm is not the identity). 

Now, it may happen that several linear regression models are available with 
the same unknown coefficients 3: 

(1.2) yi = Xi 3 + :i ( i = l , . . . , k ) .  
(n~: x 1) (nixp)(pxl) (n~, x 1) 

For instance, one may want to consider the effect of several economic indicators 
(X~) on the unemployment rate (Yi) for EEC (European Economic Community) 
countries (k = 12) and believe that the weights of each factor are the same for 
every country. The number of observations for each country (hi) may differ, as 
well as the distribution of the errors (:i), due to different data collection methods 
for instance. These distributions may even be unknown but a spherical symmetry 
assumption is reasonable. 

In this paper, we investigate the estimation of the parameter ~ in the spe- 
cial case where k = 2. We establish the domination of the naive least squares 
estimators, 81 and 82, by a compound estimator for every quadratic loss (Section 
2). Furthermore, we prove that this combined estimator is itself dominated by a 
class of shrinkage estimators (Subsection 3.2). Both results are independent of the 
distributions of the errors and only depend on the spherical symmetry assumption. 

1.2 Previous results 
For the model (1.2), the least squares estimators are (i = 1, 2) 

(1.3) /3i = H[-:X~y~ 

where Hi = X~Xi, and the residual sum of squares are 

(1.4) 

The model (1.2) is called a heteroscedastic linear model as the ei may have 
different distributions, and the estimation problem of the common coefficients/3 
has been studied in several papers. For the references, see Kubokawa (1989). Of 
these, Shinozaki (1978), based on Graybill and Deal (1959), proposed a combined 
estimator 

(1.5) 3cM = + w232, 

where 

(1.6) 
W1 = (s:H2 + cs2H1)-Zcs2Ht, 

W~ = (811-12 + cs2H:)-: slH2. 
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Note that  

r 8-~]-1 [ 8-~ 8-~ ] ~CM = A H1 -4-(l--A) A /314 - (1 -A)  
L sl 

where )~ -- c/(1 + c). Therefore, the form of ~CM is quite natural, as a convex 
combination of the two original estimators, the matricial weights being inversely 
proportional to si. Note also that  Hi- 1 is proportional to the covariance matrix of 
~i (i = 1, 2) when it is defined. 

Under the assumption that  ei ~ Nni(0, a~In~), i = 1, 2, Shinozaki (1978) 
established that  

(1.7) Cov(/ CM) ~ Cov(/3i), i =  1,2, 

holds uniformly in/3, a 2, a22, if and only if 

(1.8) n l  - p + 2 2(nl - p - 4) 
2 ( n 2 - p  4) < c <  - n 2  - p + 2  

The inequality (1.7) means that  the matrix Cov(/3i) - Cov(/~CM) is nonnegative 
definite, and we call it the covariance criterion. As/31 and/32 are unbiased, /3CM 
is also unbiased (as W1 + W2 = Ip and these two matrices depend only on si, 
i = 1, 2). Therefore, (1.7) is equivalent to 

(1.9) E[(/3CM --/3)'Q(/3CM -/3)]  __ E[(/~ - /3) 'Q(~,  -/3)] 

for every nonnegative definite symmetric matrix Q; this is uniform domination over 
the class of quadratic losses. This result extends Graybill and Deal (1959) and 
Khatri and Shah (1974). As noted in Shinozaki (1978), we can choose c satisfying 
(1.8) if and only if nl  -- p ~ 7, n2 -- p ~ 7 and (na - p - 6)(n2 - p - 6) _> 16. 

In the non-normal case, similar results have been obtained by Swamy and 
Mehta (1979) (see also Cohen (1976), Bhattacharya (1981) and Akai (1982)). 
However, the domination conditions always assume a certain knowledge of the 
error distribution. In Section 2, we prove that  (1.8) is necessary and sufficient 
under the spherical symmetry assumption. 

Shinozaki (1978) also established a sufficient condition for the domination of 
/3CM under normality assumption and a quadratic loss. We give in Subsection 3.2 
the robust equivalent of this result. 

The following lemma is essential for our purpose; it is derived from CFR and 
can be shown by integration by parts. A similar result is also to be found in Berger 
(1975). 

LEMMA 1.1. Let 0 < f E Ll([0,+c~))  and h an absolutely continuous func- 
tion. Define F(x) = 2 -1 f : ~  f( t )dt  and assume that 

(a) fZ+~ Ih(x)llx - t l f ( (x  - t) 2 + a2)dx < oo, for any real a, t, 
(b) limt--.+o~ h(t)F(t  2) = O. 

Then 

(1.10) f + ~  h(x)(x - t ) f ( ( x  - t) 2 + a2)dx = [+~o h'(x)F((x - t) 2 + a2)dx. 
d-oc d-oc 
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2. Uniform domination by combined estimators 

In the model (1.2) with k = 2, we suppose tha t  el and e2 are independent  and 
tha t  for i = 1, 2, the density of ei is given by fi(ll~itl 2) where f i  E 51([0, +oo)).  
It is noted tha t  we do not assume fi to be known. Also note tha t  the spherical 
symmet ry  assumption on ci allows to deal with models where the  components  may 
be dependent  ( though they are still uncorrelated).  We now prove tha t  Shinozaki's 
(1978) result still holds under  the spherical symmet ry  assumption. 

THEOREM 2.1. Assume that E [ ~ H i ~ ]  < oc and n~ >_ p + 5 for i = 1,2. 
Then the combined est imator ~CM given by (1.5) dominates both ~1 and ~2 under 
the covariance criterion i f  and only i f  

nl - p  + 2 2(nl - p -  4) 
(2.1) 2 ( n 2 - p - 4 )  -<c-< n 2 - p + 2  

PROOF. We first write 

Cov(~cm = E[(~c~ - z)(~c~ - z)'] 
= E[WI(~I -- /3)(~1 --/3)'W~ J- W2(~)2 -- ~3)(]~2 -- fl)/W~ 

+ wl(~, - ~)(£ - ~)'w~ + w~(£ - ~)(~, - ~)'w;] 

Note tha t  there exists a nonsingular matr ix  P such tha t  H1 = P P '  and /-/2 = 
P D ~ P '  for D~ = diag(Ax, . . . ,Ap) .  Put  ul = ( u n , . . . , u l p ) '  = P@I and ul = 
(Uu , . . . ,U lp ) '  = P'/3. It can be seen tha t  there exists a nl  × nl  orthogonal 
matr ix  P1 such tha t  PlY1 u' ' - = = ( 1,V~)' and y1(I,~1 X 1 H 1 1 X [ ) y l  [[viii 2 for 
Vl = (Vll, . . ,V t • 1,~1-~) (see Nickerson (1987), p. 98, for example). Then I1~1 II 2 

IlYl XI~II 2 (~1 ~ ) ' H l ( ~ l - ~ ) + Y l ( n 1 - X 1 H l l X ~ ) Y l = I l u l - v l l I 2 + I l v l l l  ~. 

Similarly we can write us -- D~/2p@2, p2 = D~/2P '~  and IIv21t 2 = s2 and get 

(2.2) P '  Cov(~cM)P 

= E{(cs2)2[s lDx + cs2I ] - l (u l  - Ul)(Ul - Ul)'[slD~ + cs2I] -1 

1 1/2 .2),D~/2[s~D~ + csfl]-~ + s~[slD~ + csz I] -  D:~ (u2 - "2)(u2 - 
t 1/2 + C~lS~[slD~ + c~I] -~(~1 - .1)(u~ - .~) D~ [~lD~ + c~ / ]  -1 

+ CSlS2[SlDA + cs2I]- lD~/2(u2 - u2)(ul - u l ) ' [s lDx + cs2I] -1 } 

= E diag (slAj + cs2) 2 (uU - ulj)2 

s~Aj u2j)2~ ] 
+ - - -  ,2(u2J - (SlAj + cs2) ~j= l  ..... pJ 

[ { (C']V2H2)2 (Ulj __l]lj) 2 
= E diag (llvall2)~ j + cllv2ll2)2 

'lVl ][4)~J (U2j--l"2j)2 1 ] 
+ (llVlil2AJ +cllv2il2) 2 - j = l  ..... pa 
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where the second equality in (2.2) follows from the symmetry of the distribution 
of uij  - vi i .  Here using the identity (1.10) for u l j  - l]lj conditionally on the other 
coordinates gives that 

(2.3) . f /  (CllY2112)2 (Ulj -- Ul j )2 f l ( l [Ul  -- Ul][ 2 + [[Vlll2)duldVl 
(llvlll2aj + cllv21t2) ~ 

/ (cllv2112)2 ~ ,  . . . . .  .[+ll, llUl - utl[ 2 + [IVll l2)duldvl ,  (ll,lll2 :~j + cll~ll~) 2 

where dui = I-[j=lP duij and dvi = ll-Im-Pij=l dvij. Further, using the identity (1.10) 
for v2k yields 

(2.4) f f  ( cllv21I )2 (llv1112,~j + c11v2112) 2 f 2 ( l l u2  - v2112 + IIv2112)du2dv2 

_ ffn2-p= (llv1112xjc2 Ilv2112+ c11v2112)2 v2kv2kf2(llu2 - v2ll 2 + Ilv2il2)du2dv2 

f f  c2(n2 - P  + 2)(llv1112aj + cllv2112)llv2112 - 4callv2ll  4 
]] (llvtll2,~j + c11v2112) 3 

• F2(llu2 - v~tl 2 + IIv~ll2)du2dv=. 

Combining (2.3) and (2.4), we obtain that 

(2.5) E [ (cllv~ll2)2 (uu -- Vlj)2 / 
L (IIVl [l~aj + ~IIV~ II~) 2 

[fff c2(n2 - p  + 2)(llvll12,~j + cllv2112)llv2112 - 4c311v2114 
JJJJ ([1~112;~, + cll~ll~) ~ 

• F l ( l l u l  - viii  2 + IIv1112)F2(llu2 - v2ll 2 + [[v2l[2)duldvldu2dv2.  

Similarly, 

[ (I'vl''2Aj)2 'U V2j) 2 ] 
(2.6) Aj-IE (Itvlll2Aj - - - - +  c11v21122) t ~J - 

f f f f  a~(~l - p  + 2)(llvll12~j + cllv2112)llvlll 2 - 4Affllvlll 4 
J J J J  

• F l ( l l u l  - uxl[ 2 + [[Vll[ 2) 

• F,~(llu2 - v,;,ll 2 + IIv2112)du~dvldu2dv2, 
so that from (2.5) and (2.6), 

F ( ~ u  - v v )  ~ + ( ~ ;  - -~,)~] (2.7) 
EL(Ilvlll ~ ¥ c-F2112) 2 (llvlll2~j + c11v2112) 2 

=// / / ( l lv1112+~j  + CllV2H2) -3 

[ { ~ ( n :  - p + 2)11~11 ~ + a j ( - 1  - p + 2)llv111 ~} 

• (i1~1 I I ~ j  + ~11~11 ~) - 4c~llv~ll ~ - 4~11~11 ~1 

• F~( l lux  - v1112 + Ilvlll 2) 

• F2(11~2 - v2112 + IIv2112)duld~ldu2dv2. 
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On the other hand, the similar representation of P'  Cov(~a)P can be derived by 
taking c = c~ in (2.7) as 

(2.8) P' Cov( l)P 

-- IF  TI 5 2 F l ( t l u l  - ,111 = + Ilvll l =) 

• F 2 ( l l u 2  -  211 = + IIv=ll=)du,dv, d ,=dv=]Ip. 
/ 

Indeed, since E[llul II 2] < oc, we can apply the dominated convergence theorem to 
get (2.8). Hence from (2.7) and (2.8), Cov(flCM) _< Cov(fll) uniformly in fl, ~2, 
a 2 if for z = cllv2112/(Ajllvlll2), 

Z ( l +  z)-3[(n2 - p  + 2)cz(1 + z) - 4cz 2 + (nl - p +  2) (1+  z) - 4] 
c 

_~ n2  - -  p - -  2, 

which is always satisfied by the condition (2.1). Similarly, it can be verified that  
Cov(~cM) _< Cov(fl2) under the condition (2.1), and the sufficiency of Theorem 2.1 
holds. If/3CM dominates fll and/32 under the covariance criterion for any f l  and 
f2 ,  then the same domination holds for ¢1 ~ Nnl (0, a~lul ) and ¢2 ~ Nn2 (0, a~In2 ), 

so that  the necessity follows from the result of Shinozaki (1978). Therefore the 
proof of Theorem 2.1 is complete. 

Since flCM is unbiased, Cov(/3CM) = E[(flCM --/3)(/3CM --/3)'1. This is the ma- 
triciaI mean square error (MMSE), and the domination under MMSE is equivalent 
to that  under the set of quadratic losses as noted at (1.9). 

3. Further domination by shrinkage estimators 

In this section, we consider the quadratic loss function 

(3.1) L(/3, fl) = (/3 - 13)'Q(/3 - fl), 

where Q is a positive definite and known matrix. As noted above, the domination 
result in Theorem 2.1 remains true under the loss (3.1). For p _ 3, ~CM is further 
dominated by a Stein type estimator. In fact, this was demonstrated by Shinozaki 
(1978) for the normal case. Under spherical symmetry assumption, we develop a 
shrinkage estimator dominating flCM relative to the loss (3.1). Since the essence 
of the derivation is given by CFR, we first introduce their result for one sample 
regression model (1.1). Notice that  the proof of Theorem 3.1, as well as the model, 
makes things more readable than CFR original developments. 
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3.1 Robust shrinkage estimators 
Let y = X 8  + z be a regression model given by (1.1). Assume that  ~ has a 

spherically symmetric and unknown density f(ll¢ll 2) where f E LI([0, oc)). Stein 
(1956) and James and Stein (1961) exhibited the inadmissibility of the least squares 
estimator 80 = ( X ' X ) - I X ' Y  for p > .3 and Q = X ' X  in the normal case, and 
various extensions and investigations have been studied since. Recently, CFR 
showed a robustness of the Stein phenomena. Consider shrinkage estimators of 
the form 

83 = ( I -  g - l¢ (g , s )Q-1H)8o ,  

where g = 8~HQ-1H~ols ,  s = y ' ( I  - X H - 1 X ' ) y ,  H = Z ' X  and ¢ is a positive 
function. 

THEOREM 3.1. (Cellier et al. (1989)) Let p >_ 3. Assume that E[8~HSo] < 
oo and E[s2/8~Hjo] < ore. Then 8~ dominates Jo relative to the loss (3.1) if  

(a) ¢(x, y) is nondecreasing in x and nonincreasing in y, 
(b) 0 < ¢(x, y) <_ 2(p - 2)/(n - p + 2). 

PROOF. We give a simplified proof in the case when ¢ is differentiable. The 
extension to more general functions is given in CFR. The risk difference is writ ten 

A : E[(8o s - 8) 'Q(8o S - 8 ) ] -  E[(8o - 8) 'Q(8o - 8)] 

= E [ g  - 2  { ¢(g,  s) }28 'oHQ-1HSo - 2g -1 ¢(g, s)8'oH(8o - 8)] 

where R = HW2Q-1H1/2.  By the identity (1.10), for u = (Ul , . . . ,Up) '  and 
~' = ( ~ ' 1 , . . . ,  '@) ' ,  

r l tvl l  2 l u ' R u  ilvll2)us(uj_vj)] 
(3.2) E [ u-7-R-~Ru ¢ t i-~-~-~-, 

-- ,,<,,u ,,v,,0 

,,<,,u ,,v,,0 

-f-u-"i'R~Rug)<l) t ~  ' 2  ,, /'u'Ru ,,vi,2 ) (i~__lP rijuiuj)] 
• E ( t l u  - ,.,112 + Ilvll2)d~dv, 

where R = (rij) and ¢{i)(xl,x2) = (OlOxi)¢(xl,x2).  Also the identity (1.10) for 
vj gives that  for v = (Vl , . . . ,  Vn_p)', 

as 
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' v 

• r ( l l u  - ~ll ~ + I l v l l ~ ) d ~ d v .  

From (3.2), (3.3) and the condition of Theorem 3.1, 

A = / / [ ( n -  p +2)u-7~R u Hv]'2 { ¢ ( u ' R u \  ]]-~H 2'  [,vH2)}2 _ 4¢~1 ) \(u'RU']v'] 2' HvH2 ) 

II~II ~ . l u ' n ~  ilvli~) .ii~ Hvlf2)dudv - 2(p- 2)u-T~Ru,~, ii-~, ]F(ltu- + 
_< 0, 

which proves Theorem 3.1. 

It should be noted that the conditions of Theorem 3.1 do not depend on the 
distribution of ~; the Stein effect is robust with respect to the distribution of the 
errors. 

3.2 Improving on the combined estimators 
Now we return to the common mean problem defined in Section 1. Recall that 

the combined estimator /~CM given by (1.5) is better than both the uncombined 
ones 81 and 82 for the loss (3.1). Here we show that by the Stein effect, 8CM is 
further dominated by 

(3.4) A S 

i = l  

where for i = 1, 2, 

^l ! - 1  ^ ¢i aigi- l(W~QW~)-lH~, gi ~H~ = = (W~QWi) Hi~i /s i ,  

Hi = X~Xi  and al, a2, el, e 2  are nonnegative constants satisfying el + e2 ---- 1. 

THEOREM 3.2. Let p > 3. Assume that E [ ~ H i S i  ] < ~ and E[s2i /~HiS i ]  < 
oc for i = 1, 2. Also assume that for i = 1, 2, 

(3.5) O < a ~ <  2 ( p - 2 )  .chl(Q-1Hi)  
n~ - p + 2 chp(Q-1Hi)  ' 
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where chl(A) and chp(A) designate the smallest and the largest eigenvalues of a 
p × p matrix A. Then ~SCM given by (3.4) d o m i n a t e s  ~CM under the loss (3.1). 
When H1, H2 and Q satisfy the inequality 

(3.6) u'H1Q-1H2u >_ 0 for any u E R p, 

the above sufficient condition on ai is relaxed as 

(3.7) 0 < ai < 2(p - 2 ) / (n i  - p + 2). 

PROOF. Since ~s ZCM = e~{W~(I-¢~)~ + W:~} + e2{W~ + W~(f- ¢~)A}, 
from the convexity of the  loss function,  it suffices to show tha t  

(3.8) A1 = R(WI( I  - ¢1)~1 + W2~2) -- R(~CM) ~ 0, 

(3.9) A2 = R(WI~]  + W2(I - ¢2)~2) - R(~CM) _< 0, 

where R(/~) = E[(/~ - / ~ ) ' Q ( ~  - 8)]. We first prove (3.8). Note  tha t  the risk 
difference A1 is rewri t ten as 

A 1  : E[a21slgf 1 -  2a~gflD~Hl(D1- D)] 
= E[a2111VllI2g~ 1 - 2 a l g ~ l u i ( u l  - / 2 1 ) ] ,  

where 

gl = u~[slD~ + cs2I]Rl[slD~ + cs2I]Ul/{Sl(es2) 2} 

= ~-~(llvtll2~ + cs2)(llvlll2~j + cs2)rijul~ulj/{Nv~ll2(cs2)2}, 
i , j  

and  R1 = (vi i)  = p , Q - 1 p  for the  mat r ix  P defined in the  proof  of Theorem 2.1. 
Similar to (3.2) and (3.3), 

(3.10) E[g[lul  (~1 -- /~1) I Y2] 

= I I ( p -  2)gflFl(lIUl - u, II 2 + [IVl [[2)duldVl,  

(3.11) E[llVll[2gll l y2] 

• f l ( l Iu l  - ulll 2 + Ilv, ll2)duldVl. 

If (3.6) holds, t hen  E~,j(llvlll2),~ + cs2)~jr,jul~ulj >_ o, so t ha t  we get t ha t  

E[ff a--!{(n 1 --p-t-  2 ) a l -  2 ( p -  2 )}F l ( l lU l -Ul l l  2 -t-IlVlll2)duldvl], A1 
U J  gl / 
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which is less than zero for the condition (3.7), and (3.8) is proved under the 
restrictive condition (3.6). 

Next we treat the general case without assuming (3.6). Note that 

(3.12) chl(P'Q-1P)hl <- 91 <- chp(P'Q-1P)hl, 

where 
h i  = + 

For simplicity, put di = chi(P'Q-1P). From (3.10), (3.11) and (3.12), we observe 
that 

A 1 ~_ E[a~llvlil2(dlhl) -1 - 2 a l g l l u l l ( U l  - / 2 1 )  ] 

[// { } = E  lay n x - p + 2  4  (llVll]2  +cs2) ,u21, 
[dl hi (cS2hl)2 i=1 

<_/- /[al(nl-  p+ 2)d1-1 - 2 ( p -  2)d; l l~Fl ( l lu l -  viii 2 + Ilvlll2)duadVl, 
,1,1 rtl 

which is less than zero for the condition (3.5). Hence (3.8) is proved without the 
condition (3.6). (3.9) can be established in a similar way and the proof of Theorem 
3.2 is complete. 

The condition (3.7) is available if Q = (1 - a)H1 + all2 for 0 _ a _< 1. 
This type of loss is quite natural when we want to mix the two regression models 
according to their covariances. 

4. Comments and generalizations 

Theorem 3.2 shows that we can improve upon a simple composite estimator 
like ~CM by taking advantage of the Stein effect in a semi-nonparametric setting. 
In fact, we do not need to specify precisely the distribution of the errors for the 
two regression models; we have only to assume that they are spherically sym- 
metric. Moreover, the two distributions may be completely different, apart from 
the removal of the much restrictive normality assumption. This point is inter- 
esting as it allows, in practice, to make use simultaneously of obviously different 
sets of observations. The best example is when the two regression equations deal 
with two places where the data  collection methodology completely differs. In such 
cases, the error distributions are presumably different: Even under such unfriendly 
situations, we can yet improve upon estimators like f~CM uniformly. 

A straightforward generalization of this result would be to consider k simul- 
taneous regression equations with common coefficients as Shinozaki (1978) did for 
the normal case. As one can see in the proofs of this paper, the simultaneous 
diagonalization theorem we use cannot be extended to more than two equations. 
One would have then to use more complicated spectral algebra (see Fraisse et 
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al. (1987)) or to consider other techniques, as those involved in ridge regression 
analysis (Casella (1980, 1985)). However, the problem is more technical than 
fundamental, in our eyes, as the (already) long history of shrinkage estimators 
indicates that such an extension is presumably true. 

Another direction of work would be to examine the problem where the coef- 
ficients of the two regression models are presumably equal, but with some degree 
of uncertainty. In such a case, an empirical Bayes analysis could draw a bridge 
between the estimator ^s ~CM and some estimators like (~, /~)~,  i.e. estimators de- 
duced from each model separately (see Ghosh et al. (1989) or Robert and Saleh 
(1989)). 

A last step would be the removal of the spherical symmetry assumption, in 
the direction shown by Shinozaki (1984). 

Finally it is noted that a corresponding domination of the joint least squares 
estimator is impossible. In fact, if the two equations have normal errors with the 
same variance, the common least square estimator is the best unbiased estimator 
(the Gauss-Markov theorem) and thus cannot be dominated by the weighted sum 

^ 

~CM. 
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