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Abst rac t .  This paper discusses a-admissibility and d-admissibility which are 
important concepts in studying the performance of statistical tests for compos- 
ite hypotheses. A sufficient condition for (~-admissibility is presented. When 

-- l /m, the Nomakuchi-Sakata test, which is uniformly more powerful than 
the likelihood ratio test for hypotheses min(01,02) = 0 versus min(01,02) > 0, 
is generalized for a class of distributions in an exponential family, and its un- 
biasedness and c~-admissibility are shown. Finally, the case of ~ # 1/m is 
discussed in brief. 
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1. Introduction 

Let X = (X1, X2)' be a bivariate normal random vector with unknown mean 
0 = (01,02)' and the identity covariance matrix I. We consider testing H0 : 
rain(01,02) = 0 versus H1 : min(01,02) > 0. The likelihood ratio test of size a for 
this hypothesis has been given by 

1 
~ L a ( x l , x 2 )  = 0 

if x l , x 2  > z(a), 
otherwise, 

where z(a)  is the upper 100a% point of the standard normal distribution (cf. 
Inada (1978), Sasabuchi (1980, 1988a, 1988b)). The admissibility of this test was 
shown by Cohen et al. (1983) and also Nomakuchi and Sakata (1987). 

This might sound as if there exist no uniformly more powerful tests than ~LR. 
In fact it is well known that likelihood ratio tests are optimum in many testing 
problems. Interestingly, however, Nomakuchi and Sakata (1987) showed that 

l l  
~DU(Xl' x2) --~ 0 

if z ( i / m )  < Xl, x2 < z((i  - -  1)/m), i = 1 , . . . ,  m, 
otherwise, 

is a level 1 /m unbiased test and uniformly most powerful than the likelihood 
ratio test. This test is essentially proposed by Lehmann (1952). Lehmann (1952) 
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considered testing null hypothesis/-/1 versus H2 : min (01,/92) < 0 and gave a class 
of similar tests including qav. Gutmann (1987) and Berger (1989) also gave tests 
which are uniformly more powerful than ~LR. 

In this paper, we generalize the Nomakuchi-Sakata test for the distributions 
which belong to an exponential family and show its unbiasedness and a-admissi- 
bility. Since the Nomakuchi-Sakata test is not practical, our discussion might only 
satisfy theoretical interest. But it is an interesting fact that this test is optimal in 
the sense that there exists no test which is uniformly more powerful than ~v. 

2. Preliminary 

2.1 The d-admissibility and a-admissibility 
To begin with, we consider the a-admissibility and d-admissibility which are 

important concepts for the problem of testing composite hypotheses. Let {Po; 0 E 
O} be a parametric family of probability measures. The expectation of a function 
f with respect to Po is denoted by Eo [f]. The following two definitions are due to 
Lehmann (1986). 

DEFINITION 2.1. A test function T is said to be d-admissible for Ho :/9 E O0 
versus H1 : 0 E O1 if for any test function ¢ the inequalities 

E0[ ] _> E0[¢], for all/9 e O0 

(2.1) Eo[ ] <_ Eo[¢], for all 0 E O1 

imply E~[qo] = Eo[¢] for all 0 E O0 U O1. 

DEFINITION 2.2. A test function qo is said to be a-admissible for H0 : 19 E Oo 
versus H1 :/9 E O1 if for any test ~b of level a, the inequalities (2.1) imply Ee[~] = 
E0[¢] for all/9 E Oz. 

Characteristics of the d-admissibility and a-admissibility were discussed in 
Lehmann (1986). The a-admissibility guarantees the nonexistence of uniformly 
more powerful test of level a, but the d-admissibility does not. The likelihood 
ratio test ~LR i8 d-admissible but not a-admissible. Thus it is not unusual that 
the Nomakuchi-Sakata test is uniformly more powerful than q0LR. 

The d-admissibility is easier to check than a-admissibility. We introduce the 
following proposition which is obtained from Theorem 9 of Chapter 6 in Lehmann 
(1986). 

For a level c~ test ~, we put 

o ;  : {/9 e o0; E0[ ] : a} .  

PROPOSITION 2.1. We assume that O~ is not empty. I f  a level a test ~ is 
d-admissible for H~ : /9 E O~ versus H1 : (9 E 01, then it is a-admissible for 
Ho : 0 E Oo versus H1. 



PROOF. 

Eo[¢] > Eo[ ] 

Since ¢ is a level a test, we have 

Eo [~h] < c~ -- Eo [~] 
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Let ¢ be any level a test for H0 which satisfies 

for all 0 E O1. 

for all 0 E O~. 

Then the d-admissibility of qo for H i versus H1 implies 

2.2 

for a finite continuous measure # that 

dPo(x) = c(O) exp(Ox)d#(x) 

for all O E R. 

R, 

Eo[¢] = Eo[~] for all 0 E ~91. 

The lemmas 
We develop two lemmas which will be used in the next section. 

and 

LEMMA 2.1. 

and #{x; f (x)  > 0} > 0. 

{>o 
Eoo+t[f] < 0 
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(2.2) 

We assume 

f exp(Ox)d#(x) < co 

Let f be any measurable function on R such that for some a E 

> 0  for x > a, 
f (x)  ~ 0 for x < a, 

Then if Eoo [f] = 0 for some Oo E R, we have 

for all t > O, 
for all t < O. 

PROOF. 

Eeo+t[f] = C(Oo + t) f f (x )exp  {(0o + t)x}d# 
J 

f 
= C(0o + t) exp (ta) / f (x)  exp {(0o + t)x - ta)d# 

= c(Oo + t) exp (ta) [/x_a>O} f (x) exp (Oox) exp {t(x - a) }d# 

+/x_a<o} f (x )exp(Oox)exp{ t (x -a )}d#] .  

In the case that  t is a positive constant, we have 

exp {t(x - a)} > 1 if 

0 < e x p { t ( x -  a)} < 1 if 

x > a ,  

x < a .  
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According to the condition on f ,  we have 

f 
Eoo+t [f] > c(Oo + t) exp (ta) / f ( x )  exp (Oox)d# 

= c(Oo + t )exp (ta)Eoo[f]/c(Oo) = O. 

The proof of the other case is similar. [] 

Lemma 2.1 is a special case of Theorem 3.1 of Chapter 5 in Karlin (1968). 
The following lemma is due to Birnbaum (1955) and Stein (1956). 

LAMMA 2.2. Let f be any bounded measurable function on R such that for 
some a E R ,  

f ( x )  >_ O for  x > a, 

and #{x; f ( x )  > 0 and x > a} > O. Then for any Oo and some sufficiently large t, 
it follows that Eoo+t[f] > O. 

PROOF. The first integral in (2.2) approaches +c~ as t ~ +oc and the second 
integral is bounded. This completes the proof. [] 

3. Main results 

Suppose that X1 and )(2 are independent random variables such that each 
variable is distributed as one parameter exponential family {Po~ ;Oi E R}, where 

dPo~ = c(Oi) exp (Oixi)d#, i = 1, 2, 

for a finite continuous measure #. 
We consider testing/4o : min(01,02) = 0 versus H1 : min(01,02) > 0 at level 

1/m (m = 2 ,3 , . . . ) .  
We employ the test ~a b defined by 

. f 1 if (x l ,  x2) C Ai, i = 1 , . . . ,  m, 
~u(Xl ,  x2) = ~ 0 otherwise, 

where 

Ai = { (x l ,x2) ;q( i /m)  < x l ,x2  < q((i - 1)/m)}, i = 1 , . . . , m ,  

and q(~) is the upper 100a% point of P0. In the normal case ~b is nothing but 
~v discussed in the introduction. 

Now let ¢ be any test such that 

. { >_ 
<_ 

under Ho, 
under H1. 
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Since E(01,02)[ ] is continuous in (01,02), we have 

E(oa,o2) [qz~ - ¢] = f (qo~] - ¢)dPo~ (xl)dPo~ (x2) = 0 under H0. (3.1) 

Because of the completeness of {Poi; 0~ _> 0}, (3.1) is equivalent to the following 
two conditions, 

/ ( q o  b - ~b)dPo,(zi)lo,:o = xj, j ¢ i, = 1, 2; 0 for almost all i 

tha t  is, 

(3.2) f ( ~  - ¢)dlz(x~) 0 
J 

for almost all x j, j ~ i, i = 1, 2. 

PROOF. 

(3.3) 

then 

LEMMA 3.1. Let f be any bounded measurable function such that for some 
real numbers a and b, 

/ ( z l ,  x2) > 0 for xl  > a, x2 > b or xl < a, x2 < b, 
for xl  < a, x2 > b or xl > a, x2 < b, 

and that #®#{(Xl,  x2); f(2cl, x2) :> 0} > 0. If  it holds that E(01,0~) [f(X1, X2)] = 0 
for all (01,02) such that rain(01,02) = 0, then we have E(o~,o~)[f(X1,X2)] > 0 for 
all (01, 02) such that min(01,02) > 0. 

Put  

g(xl,  02) : f f ( x l ,  x2)c(02) exp (02xe)d#(x2), 

f 
E(01,02) If(X1, X2)] = J g(xl , 02)c(01) exp (OlXl)d#(Xl ). 

Fix 02 > 0. Since g(xl,  0) = 0, it follows from Lemma 2.1 that  g(xl, 02) _ 0 for 
Xl > a. We also have g(Xl,02) <_ 0 for xl < a by reversed version of Lemma 2.1. 
Since E(o,o~)[f(X1,X2)] = 0 and #{xl;g(xl ,$2)  > 0} > 0, from Lemma 2.1 we 
also have E(01,02)[f(X1, )(2)] > 0 for any 01 > 0. [] 

LEMMA 3.2. Let f be any bounded measurable function such that for some 
real numbers a, b, 

> 0 for Xl > a, x2 > b, 
f(Xl,X2) ~ 0 for  Xl > a, x2 < b, 

In order to examine the d-admissibility of ~ ,  it is sufficient to consider a class of 
the tests which satisfy (3.1) or (3.2) as competitors. 

In the sequel # ® # represents the direct product of measures. 
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and that # ® ].t{(Xl,X2);Xl > a, x2 > b , f (x l , x2)  > 0} > 0. / f  it holds that 
E(ol,02)[f(X1, X2)] = 0 for all (01,02) such that min(81,02) = 0, then there exist 
81 > 0 and 02 > 0 which satisfy E(oI,02)[f(X1,X2)] > O. 

PROOF. Let g(x1,02) be that  defined by (3.3). Since we have 

g(xl, 02) _> 0 for all 82 > 0 and xl > a, 

and #{Xl > a, g(xl,  02) > 0} > 0, the proof of the lemma is obvious from Lemma 
2.2. [] 

Nomakuchi and Sakata (1987) showed that  the ~u discussed in the introduc- 
tion is an unbiased test under the assumption of the Schur-concavity of the joint 
density function. In the following theorem the Schur-concavity is not assumed; 
therefore, the test and distribution axe generalized to the exponential family. 

THEOREM 3.1. ~ is an unbiased test. 

PROOF. We define for i, j = 1 , . . . ,  m, 

Aij = {(xl, x2); q(i/m) < xl < q((i - 1)/m),  q( j /m)  < x2 < q((j - 1)/m)}, 

1/m if (Xl,X2) E Aii U Ajj, 
fij(Xl,X2) = - -1/m if (xl,x2) e A i j U A j i ,  

o otherwise. 

Then we have 
(~r (Xl, X2) = 1/m + E f i j (Xl ,  X2). 

i<j 

Since each f~j (i < j )  satisfies the condition of Lemma 3.1 for a = b = q(j /m),  it 
holds that  

E(o~,o2) [ ~ ]  { > 1/ra if min(01, 02) > 0, 
= 1/m if min(01,02) = 0. 

Thus ~ is an unbiased test. [] 

THEOREM 3.2. ~ is a ( =  1/m)-admissible. 

PROOF. From Proposition 2.1, it is enough to show that  ~ is d-admissible, 
that  is, there exist 01 > 0, 02 > 0 such that  E(el,e2)[~] > E(el,e2)[¢] for any ¢ 
satisfying (3.2) and #®#{(xl ,  x2); ~ ( x l ,  x 2 ) - ¢ ( x l ,  x2) ¢ 0} > 0. Let f ( x l ,  x2) = 
~ ( X l , X 2 )  -¢ (Xl ,X2) .  Note that  we have 

> 0  if (xl,x2) c A i , i = l , . . . , m ,  
f ( x l , x2 )  __ 0 otherwise. 

# ®  #{(Xl, x2); f ( x l ,  x2) > 0} = 0 implies tt ® #{(Xl, x2); f ( x l ,  x2) ~ 0} = 0. Thus 
it is enough to consider the case where # ® #{(xl,  x2); f ( x l ,  x2) > 0} > 0. Let io 
be the maximum number among i's satisfying 

].t ~ ]-t{(Xl, X2) E Ai; f ( x l ,  x2) > 0} > 0. 
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Since it holds from (3.2) that  # ®  ~t{(Xl,X2);[x 1 > q((io - 1)/m) or x2 > q((io - 
1)/m)] and f (x l ,  x2) < 0} = 0, we have 

® #{(xl, x2); Xz > q( io /m) ,  x2 :> q( io /m) ,  f ( x z ,  x2) < O} = O, 

p ® p { ( X l , X 2 ) ; x l  > q ( i o / m ) , x 2  < q ( i o / m ) , f ( x l , x 2 )  > O} = O. 

Since we can ignore the set of measure zero, it holds from Lemma 3.2 that  

E(el,o2)[~] > E(ol,o~)[¢] for some 01 > 0,82 > 0, 

This implies the d-admissibility of p~. [] 

Berger (1989) gave a class of tests which are uniformly more powerful than the 
likelihood ratio test in the normal case. His null hypothesis is slightly different from 
ours and represented by/-/2 : min(91,02) <_ O. The constant tests are only unbiased 
tests and all tests are d-admissible for this hypothesis (cf. Lehmann (1952)). For 
the distributions in the exponential family, the Berger test may be generalized to 

1 if (Xl ,X2)~Ai,  i = k , . . . , m ,  
~(Xz,X2) = 0 otherwise, 

for some integer k = 2 , . . . ,  m. We apply the Berger test to our null hypothesis. It 
is easy to show that  the Berger test is uniformly less powerful than the Nomakuchi- 
Sakata test, but the d-admissibility of the Berger test is shown in the same way 
as Theorem 3.2. 

Finally, we consider the case of a ~ 1 / m  ( m  = 2, 3 , . . . ) .  
When a < 1 / m  (m = 1, 2 , . . . ) ,  it was mentioned by Nomakuchi and Sakata 

(1987) that a randomized test 

{am 
~l(xl,x2)= 0 

if (Xz,X2) E Ai, i = 1 , . . . , m ,  
otherwise 

is unbiased. But it is shown as follows that ~1 is not admissible. To begin with, 
we divide A1 into four regions 

Bij = {(Xz, x2); q( i / 2m)  < Xl < q((i - 1)/2m), q ( j / 2 m )  < x2 < q(( j  - 1)/2m)}, 

i , j = 1 , 2 .  

Let g be a function such that  

g ( x l , x 2 )  = 
min{(1 - (~m), am} 

O min{(1 - am) ,  am} 
if (Xl,X2) E Bll  U B22, 
if (Xl,X2) E B12 UB21, 
otherwise. 

Since g satisfies the condition of Lemma 3.1, the test function ~1 + g is uniformly 
more powerful than ~1. Thus ~1 is neither (~-admissible nor d-admissible. 
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Although we do not have unbiased and admissible tests for all (~ ¢ l / m ,  we 
will present an example of such tests. When ~ -- 2/3, we define a test function ~2 
with 

f 0 if (Xl, X2) C A13 k) A22 I.) A31, 
¢fl2(Xl, X2) 

1 otherwise, 

where Aij = {(xl,x2); q(i /3)  < x l  < q ( ( i -  1)/3),q(j /3)  < x2 < q(( j  - 1)/3)}. 
Since it holds that 

~2(Xl ,X2)  ---- 2 / 3  -~- ~ h i j ( X l , X 2 )  , 
l_~i<j_~3 

where 
1/3 

hij(Xl ,  x2) = - 1 / 3  
0 

if (Xl,X2) C Ai(a_j) U Aj(a_~), 
if (Xl,X2) e Ai(a-i) U Aj(a_j), 
otherwise, 

from Lemma 3.1 ~2 is a level 2/3 unbiased test. The d-admissibility of ~2 is shown 
in the same technique as Theorem 3.2. If ~ is any competitor, ~2 - ¢ satisfies the 
conditions of Lemma 3.2 except the set of measure zero. 
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