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A b s t r a c t .  In a generalized linear model, we have a linear predictor. We 
extend to a nonlinear one and propose a unified method to establish diagnostic 
procedures for such models with nonlinear links. Applications of the procedures 
to various useful models are given with examples. 
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1. Introduction 

Many investigations have been centred on the generalized linear model since 
it was proposed by Nelder and Wedderburn (1972). McCullagh and Nelder (1983) 
provided an excellent review and some future research problems. Further research 
topics were suggested by Pregibon (1984). Diagnostic procedures for checking 
assumptions in such models have been proposed and investigated. Landwehr et 
al. (1984) and Wang (1985, 1987) proposed several diagnostic plots for selecting ex- 
planatory variables in an appropriate form and detecting the effect of observations 
on the selections. Pierce and Schafer (1986) discussed useful residuals for model 
checking. Williams (1987) investigated the case influence on the test statistics for 
selecting appropriate models. 

The score statistic has been found useful to derive diagnostic procedures for 
various purposes. In the normal linear model, Atkinson (1983) used it to establish 
constructed variable plots for diagnosing the need for the transformation of the re- 
sponses, and Lawrance (1987) suggested a standardized score statistic to improve 
Atkinson's statistic (1982) for the same purpose; Cook and Weisberg (1983) used 
it and its graphical version for detecting heteroscedasticity; Pregibon (1982) and 
Chen (1983) used it to test the need for additional explanatory variables in gener- 
alized linear models (GLM). Wang (1985, 1987) used it to set up added-variable 
and constructed-variable plots for the GLM. Chen and Wang (1991) used it for 
diagnostics on Cox's regression model. More discussions on the usefulness of the 
score statistics can be found in Chen (1983, 1985). 
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In this article, we explore the score statistic for more general problems and 
obtain its graphical versions for diagnostic purposes. Some of the procedures 
mentioned above become special cases in the results. In the next section, the 
GLM is reviewed and extended to generalized nonlinear models (GNLM). In some 
cases, the latter model can be treated as an alternate for the GLM. This idea will 
be clear in Section 4. Under the framework of generalized nonlinear models, the 
score statistic and its graphical version are obtained to include certain parameters 
into the model in Section 3. The explorations of these for several useful situations 
are given with some illustrative examples in Section 4. The emphasis is on those 
GNLM whose null models become GLM such as GLM with parametrized links 
and dispersions. Section 5 gives concluding remarks. 

2. Background 

There are two components and one link function involved in a GLM. The 
random component is that in which the response y with mean E ( y )  = # has a 
probability density function 

(2.1) h(y,  O, ¢) = exp{[y8 - b(O)]/a(¢) + c(y, ¢)} 

with smooth functions a ( ) ,  b( ) and c( ) and parameters 0 and ¢. A known ¢ is 
assumed for our discussions. When it is unknown, it is replaced by its maximum 
likelihood estimate. The systematic component involves explanatory variables in 
a linear predictor 

(2.2) 71 --~ xT ~ 

where x is a vector of corresponding observed values of explanatory variables and 
fl is a vector of parameters. The link function g is then used to connect these 
two components by T/= g(#). Note that the normal linear model is the simplest 
example with the identity link in this setup. Logistic regression, Poisson regression 
and exponential regression, the three common useful models other than the normal, 
are also within the framework. The exact relation between 0 and the components 
for these cases can be found in McCullagh and Nelder (1983). 

As nonlinear regressions in the normal case, we can extend the linear predictor 
(2.2) to a nonlinear predictor 

(2.3) fl = f ( x ,  fl, 7) 

where f can be any known smooth function and 7 is another vector parameter. 
This possibility has also been discussed in Section 10.4 of McCullagh and Nelder 
(1983) and Chapter 6 of Cox et al. (1987). We call the model with the nonlin- 
ear predictor the generalized nonlinear model, because it can be viewed as the 
generalization of the nonlinear normal model. A GLM is also a special case of 
generalized nonlinear models. With some special functions f ,  the model becomes 
a GLM under certain conditions, for example, f ( x ,  fl, 7) = (xTfl)  1-~ when "~ = 0. 
In the following section, we explore the test statistic for testing if the parameters 
7 in the generalized nonlinear model are significant, and its graphical version for 
detecting the need of a single parameter and influential observations on parameter 
" y  
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3. The diagnostic plot 

Assume that  Yl,y2,. . . ,Y~ are a random sample from a specified general- 
ized nonlinear model with the corresponding values of p explanatory variables, 
x l , . . . ,  x=. The log-likelihood function for (3T,7) is 

~b 

(3.1) 1(3,7) = Z{[y~Oi -b(Si)]/a(¢) + c(yi,¢)}. 
i = 1  

Following Pregibon's (1982) derivation of the score statistic in GLM we can ob- 
tain that  for the testing of 7 = 0 in GNLM. For convenience, k~ is used to 
denote the partial derivative of function k having more than two parameters 
with respect to parameter a and "." is the differentiation sign when the func- 
tion has one parameter. Now let g* be the inverse function of 7/= g(b(O)), then 
Oi = g*(~li) = g* (f(xi,  3, q')). Under the null hypothesis that 3' = 0, the maximum 
likelihood estimate (MLE) 3 of 3 can be obtained by an iterative method, and 
then 7)i and ~i of r/i and 8i by f(xi ,  3, 0) and g*(f(xi, 3, 0) respectively. In order 
to find the score statistic for testing 7 = 0, we obtain the first derivative of (3.1) 
with respect to 7 and evaluate it at (3, 7) = (3, 0), 

(3.2) 
n 

u0)  = ~[y ,  -/@,)]0(~,)A(x,, 3, 0)~/a(¢)  = zTs  
i = 1  

where S is a vector of (yi - b(Oi))/a(¢) and Z a matrix of O(~li)f.r(xi,/~, 0). The 

information matrix for (3, 30 evaluated at (3, 3') = (3, 0) is 

(3.3) I0, o) = [I~ I~] 

with 

n 

*~ = ~ ~(~,)e2(O,)f~(xi, 3, o)f~(x,, 3, 0)T/a(¢), 
i = l  

n 

,~ = 14~ = ~ ~(O,)02(,~,)f~(xi,3,o)S~(x,,3,o) T /,@) 
i = 1  

n 

i-= l 

and 

Let V -- diag{'b(~i)/a(¢)} and X' be a matrix of ~(Oi)f3(xi,3,0) T, (3.3) can be 
simplified to be 

(3.4) ( XTVX x T v z )  
z T v , ~  z T v z  • 
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Consequently, the score statistic for testing ? = 0, U(/3)T[4 ~ - 4 ~ I ~  I137]-1U(~), 
becomes 

(3.5) sT z[(v1/2 z )T  ( I -- H) V1/2 Z]-I  zT  S 

where H = V1/2X(c~Tv,~)-I,~dTv 1/2. When the dimension of 7 is one, we can 
establish a graphical version of (3.5) for diagnostic purposes. 

Let W = V1/2X~ + V-1/2S, we contruct an approximate model 

(3.6) W = V1/2X~ + V1/2Z 7 + E, 

with E ~ N(O, a2I). The F-stastic for ? = 0 under model (3.6) is computationally 
equivalent to the score statistic in (3.5). Thus the added-variable plot for variable 
V1/2Z, which is a plot of R = V-U2S versus (I - H)V1/2Z (Cook and Weisberg 
(1982)), can be treated as a graphical version of statistic (3.5). The significant 
slope of the regression line in the plot corresponds to the significance of the param- 
eter 7 in the generalized nonlinear model. The influential observations in the plot 
would be influential on the inclusion of the parameter into the model. For later 
convenience, we call R and (I - H)V1/2Z the residuals and constructed residuals 
respectively. We used "constructed" since V1/2Z is never observed as a variable. 
Also, the parameter ~ does not necessarily correspond to a variable. We named 
the plot "parameter plot." 

4. Special Cases 

The generalized nonlinear model can be viewed as a generalization of the GLM. 
Thus the tests or diagnostic plots in GLM such as the added-variable plot in Wang 
(1985) and score tests in Pregibon (1980) and Chen (1983) automatically become 
special cases of the results in the previous section. The cases we discuss in the 
following have not appeared, explicitly at least, in the literature. 

4.1 Constructed-variable plots in GLM 
For any x, we denote x (~) as the family of power transformations proposed by 

Box and Cox (1964), 

(x + 1) x - 1 
x(: 9 = - - - -  ~ - -  if A # 0 

l o g ( x + l )  if A=O.  

Under the assumptions of a generalized nonlinear model on the response, we define 

f (x i  ' ~,~) T , (A) ~-- Xil~l ÷ (Xi2 )T ~2 

where ), = V ÷ 1 and, x T = (x T, x T) and/3 T = (13 T, 13 T) are both partitioned into 
two components: one with q elements, the other with p - q elements. Under the 
null hypothesis V = 0, the predictor f (xi ,  ~, V) becomes linear so that  the model 
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switches back to a GLM. In this case, the matrix X = [O(~li)f~(xi,~,O) T] is ma- 

nipulated to be equal to X = D X ,  with D = diag{0(Oi)} and X T =- ( x l , . . . ,  x~). 
When X is partitioned as (X1, X2), the same as/3, we simplify Z to be DU(1)T~2, 
where U (~) is the derivative of X~ ~) with respect to A. Consequently, the score 
statistic (3.5) becomes 

(4.1) ( sT z)21(VI/2 z)T ( I - H)-I  V(1/2) Z 

with H = V U 2 D X ( X T D V D X ) - a X T D V  U2, which is the same as the statis- 
tic for the constructed variable plot derived by Wang (1987), but using different 
notations. 

Notice that the constructed variable Z is different from that of Wang (1987) 
but the residuals and constructed residuals are the same hence, the parameter 
plot here is the same as the constructed-variable plot defines. The example for the 
application of parameter plot in this case can thus be found in Wang (1987). 

4.2 Parameter plots for links in GLM 
Pregibon (1980) suggested a family of power transformations g(#; a, A) = 

{(# + a) ~ - 1}/A as an alternative to the identity link for normal responses, and 
he derived a chi-square distributed score statistic to test whether a = A = 1 which 
would mean that the identity link is appropriate. Here, using the identiby link with 
f ( x ,  t3, a, A) = { (xT~  + a) ~ -- 1}/A would result in the same statistic for the same 
purpose. When a is known to be one, we have a parameter plot for diagnosing 
the need of the transformed link. A similar equivalence is valid for all models in 
the GLM as long as the f(x,/3,-y) is selected correctly. For example, when the re- 
sponses are binomial, we take the canonical link with f ( x ,  ~, A) = (r/~ - ( 1  - ~ ) ~ ) / A  
and r/i -- exp(xTfl)/[1 + exp(xT~)]. This is equivalent to the GLM with binomial 
errors and the link of 

(#/n))'  - 1 (1 - #/n)  )' - 1 
(4.2) g(#; A) 

A A 

a subfamily of transformations given for binomial responses in Pregibon (1980). 
The above establishment would provide Z -- (z~), a vector of {log2 f/i - log2(1 - 
;)i)}/2, Y = diag{n~z)i(1 - ~)i)} and S = (si), a vector of yi - n~7)~, for the statistic 
(3.5) and the corresponding parameter plot. 

To illustrate the usefulness of the procedure for binomial response, an example 
from Prentice (1976) using a beetle sample is considered. The data can also be 
found in Pregibon (1980). The response is the number of beetles killed among 
those exposed to gaseous carbon disulphide with a log dosage as an explanatory 
variable. After fitting the GLM to (4.2) for binomial responses, we find that the 
statistic for A = 1 is 7.55 with parameter plot given in Fig. 1. The indication of 
linearity in the figure suggests the need for a transformation, i.e. an alternative 
link, and no influential observation on this indication. This confirms the main 
result in Pregibon (1980). 
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Fig. 1. Parameter  plot for beetle data. 

4.3 Parameter plots for dispersions in GLM 

McCullagh (1986) suggested a method for modelling ordered categorical data 
with location and dispersion effects. Binomial data are a special case of categorical 
data and thus we use the same idea to model a GLM with dispersion effects. Use 
the link as usual and f (x ,  z, ~,'y) = x T ~ / e x p ( z T ' y )  with z, a vector of observed 
values of some explanatory variables. For practical considerations, we extend to 
the case that  some components of x and z might come from the same explanatory 
variables. ~ is referred to as the location parameter and V as the dispersion 
parameter. 

To illustrate this procedure, we used the data with binomial responses. 6 mice 
in a cage with an approximately fixed environment were administered at different 
dosage levels of chloral hydrate and ethanol. The number of animals with loss of 
righting reflex 30 rain. after drug administration within each cage was recorded 
as a response. For our illustration, just data of 25 cages chosen from Carter et 
al. (1987) are used and listed in Table 1. More detailed information about the 
experiment and data are given in Carter et al. (1987). 

We considered the levels of two drugs as location and dispersion explanatory 
variables to see if there are any dispersion effects. That is, f (x ,  z, 13, V) -- (~0 ÷ 
x1~1 + x2/~2)/exp(xlv1 + x2~f2) was considered, where xl and x2 are the dosage 
levels of two drugs injected to the animals. The score statistic for V1 = ~Y2 = 0 is 
6.25, which suggests the need to include these two dispersion parameters. However, 
the parameter plots of two parameters, given in Figs. 2(a) and (b), indicate two 
influential observations, 5 and 21, that  might affect our conclusions. In fact, when 
these two points were deleted, the score statistic reduced to 3.5. Also, the impact 
of these two observations is expected on the physical grounds, which might be 
detected by careful data examination. With a fixed 200 (mg/kg) of ethanol, the 
dosage level of chloral hydrate obtained in cage 5 was the lowest among those cages 
having mice with loss of righting reflex. A similar interpretation can be given to 
cage 21 when compared to the cages of mice injected with 100 (mg/kg) chloral 
hydrate. 
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Table  1. Mice data .  

Cage Chloral  

n u m b e r  E thanol  hydra te  Response 

(mg/kg)  (mg/kg)  

1 200 100 0 

2 200 150 0 

3 200 200 0 

4 200 250 0 

5 200 300 3 

6 900 100 0 

7 900 150 0 

8 9OO 2OO 0 

9 90O 350 6 

10 900 300 4 

11 1600 100 0 

12 1600 150 0 

13 1600 200 5 

14 1600 250 5 

15 1600 300 6 

16 2300 100 0 

17 2300 150 4 

18 2300 200 6 

19 2300 250 6 

20 2300 300 6 

21 3000 i00 6 

22 3000 150 6 

23 3000 200 6 

24 3000 250 6 

25 3000 300 6 
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Fig. 2. (a) Pa rame te r  plot for chloral hydra te  in Mice Data .  (h) Pa rame te r  plot for 
e thanol  in mice data .  
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4.4 Parameter plots for nonlinear normal regression 
We use the case where the response is normal to illustrate the usefulness 

of the parameter plot for an arbitrary function f .  In this case, we have the 
identity link and the null model is not a GLM, which is different from previous 
examples. However, the proposed procedure still works. When this simple plot 
is not satisfactory, Cook's more complicate procedure (1987) would give us more 
diagnostic information. The residuals R become the standardized residuals in the 
nonlinear normal regression while the constructed residuals are ( I -H)VZ/2Z  with 

Z, a vector of fT(xi,~,O). 
To illustrate parameter plots and corresponding statistics, we consider the 

example of Box and Hill (1974) with the model 

~ 0 ~ 2 ( x i 2  - zi/1.632) 
= + ei 

(4.3) Yi 1 +/~lXil + 132Xi2 + ~z~ 

for i = 1, 2 , . . . ,  24, where e~'s are independent N(0, a2). 
Apart from using f~ instead of ~, "y instead of 133, and the last variable Z, the 

rest of variables and case indices are the same as those given by Box and Hill who 
described a weighted analysis based on the linear version of (4.3) obtained using 
y~-I as the response. In this example, the statistic (3.5) for ~, = 0 has a value 8.725 
and the parameter plot given in Fig. 3. The information on ~/seems to be spread 
throughout the data except when case 23 stands apart from the overall trend. 
Removing case 23 reduced -~ by a factor of 3, but its standard error was reduced 
by a factor of 8. The qualitative nature of this change is, of course, consistent 
with the indication in Fig. 3. 

3.0 

2.0 

1.0 

"" Q.O 

-1.0 

-2.0 .... 

-3.0 

$ 

t 2 *** 

23 

:~1 I i T T 

-2.0 -1.0 0.0 1.0 2.0 

Constructed Residual9 

Fig. 3. Parameter plot for Box and Hill data. 

From the above discussions of parameter plots on various special cases, we can 
see that these plots can be used in much the same way as added-variable plots 
in normal linear regression. Many of the useful characteristics of added-variable 
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plots, however, carry over as only approximations in parameter plots: The slope 
of the regression through the origin of R on ( I  - H ) V 1 / 2 Z  is ~1, where ~/1 is 
the one-step estimator of 7 obtained by applying Newton-Raphson iteration with 
starting value (/~, 0). In fact, the full set of one-step estimator (/~1, .~1) is just the 
vector of starting values plus the vector of the least squares estimators from the 
constructed model (3.6). The detailed interpretations of ~/1 for some special cases 
can be obtained from cited references such as Pregibon (1980) and Wang (1987). 

5. Discussion and summary 

Nonlinear model problems are usually more difficult to understand than linear 
model problems of similar size. We have found the diagnostic procedures described 
in the previous sections to be useful data analytic tools for determining the im- 
portance of parameters in the generalized nonlinear model, although in particular 
problems, the depth of understanding provided by these methods may be sub- 
stantially less than that in normal linear regression. Part of the difficulty is that 
the methods discussed in this paper all rely, to one degree or another, on "large" 
samples and the adequacy of the approximation. In particular, the slope of the 
regression line in an added-variable plot or parameter plot under the normal linear 
model is the MLE of the coefficient of the variable considered. However, under 
the generalized nonlinear model, even a GLM or nonlinear normal regression, this 
is not true due to the need of an interative procedure for gaining MLE, although 
the slope might be a good starting estimate. 

The fitting of nonlinear normal regression can be achieved, maybe with some 
difficulties, by various algorithms. For those of generalized nonlinear models it 
might be even harder, which needs more research. Before the fitting, easy diag- 
nostic procedures such as those proposed previously to reduce them to a GLM are 
worthwhile. 

When a single variable or parameter is considered, the simultaneous use of the 
statistic and corresponding plot has been advocated by several authors, for exam- 
ple, Cook and Weisberg (1982) and Wang (1985). Here the same recommendation 
should be applied. The score statistic determines the need of the parameter con- 
sidered and the significance of the slope in the parameter plot. The plot gives the 
overall impression of the scatter of the data and detects any influential observations 
on the importance of the parameter. 
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