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A b s t r a c t .  Broyden's backward error analysis technique is applied to evaluate 
the numerical stability of the ABS class of methods for solving linear systems. 
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i . Introduction 

We study the numerical stability of the ABS-class for linear systems of the 
form 

(1.1) AT x = b (A E R n×~) 

where the matrix A T is nonsingular. The ABS-class was developed by Abaffy et al. 
(1983, 1984), Abaffy and Spedicato (1985) and Abaffy and Galantai (1986). Let 
P = [pl, P 2 , . . . ,  Phi and V = [Vl, v2 , . . . ,  v~] be n x n type nonsingular matrices 
with column vectors pj and vj (j = 1 , . . . ,  n). Denote by I the unit matrix of 
n x n type. The ABS class has the following form: 

Let x0 E R n be arbitrary. 
For k =  l , . . . ,  n 

Compute  

(1.2) 

(1.3) 

ak = v T ( A  T xk-1  - -  b) / (pT Avk)  

Xk ~ Xk-1 -- akPk-1 

end for 
where the ABS-update algorithm is given by 

Set/-/1 = I 

* Part of this work was done during a stage at the University of Bergazno supported by CNR 
(Programma Professori Visitatori). 

** Now at Institute of Mathematics, University of Miskolc, Miskolc-Egyetemvhros, 3515, 
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For k =  1 , . . . ,  n 
Compute 

(1.4) Pk = HT zk (2~Avk # O) 

(1.5) Hk+l = Hk -- HkAvkwT Hk/(wTHkAvk) (wT HkAvk ¢ O) 

end for. 
Algorithms (1.2)-(1.5) finitely terminate in n steps (Abaffy et al. (1984), Abaffy 
and Spedicato (1985) and Abaffy and Galantai (1986)). The matrix V is scaling 
the system ATx = b. The pair (P, V) is said to be the AT-conjugate (Stewart 
(1973)) if V T A T p  =- L is the lower triangular. The ABS algorithm generates all 
AT-conjugate directions for suitable choices of parameters (Abaffy and Galantai 
(1986)). Therefore the ABS class of methods coincides with those studied by 
Stewart (1973). Results on the numerical stability of conjugate direction methods 
are given by Broyden (1985) and Wozniakowski (1980). A stability analysis for 
descent methods is given in Bollen (1984). 

We investigate the stability of the ABS-class by the backward error analysis 
technique due to Broyden (1974, 1985). Some basic results given by Broyden 
(1985) are extended here. We show, for example, that the error is proportional 
to k(A)k(V) for the whole class (1.2) and (1.3), where k(A) and k(V) denote the 
condition number of matrices A and V, respectively. The condition for the residual 
perturbation to be minimal is also given. 

2. Backward error analysis of the conjugate direction methods 

The basic idea in Broyden's backward error analysis is the following. For the 
solution of some problems we consider any finite algorithm in the form 

(2.1) x +l = (k = 0 , . . . ,  

where X~+I is the solution of the problem. Assume that an error ej occurs at step 
j and that this error propagates further. It is also assumed that no other source 
of error occurs. The exact solution Xn+l is given by 

(2.2) Xn+l = %IIn{%IJn- l{"""  {~j(Xj)}" "}} - -  ~-~n--j+l(xj) 

while the perturbed solution X '+I  is given by 

(2.3) X n l + l  = ~"|n-j+l(xj "t'-~.j). 

If the quantity II X,,+I -Xn'+l II large, then algorithm (2.1) must be very -natable. 
Broyden argues that it must be small for stable algorithms. Consequently, IIXn+l- 
X '+I  II is a measure of stability for algorithms. Broyden applied this idea to the 
class (1.2) and (1.3) under the condition of AT-conjugacy. For Huang's method 
he showed that 

(2.4) IIx~+l - x'~+lll <_ k(A)llejll 
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holds, where x' denotes the perturbed solution. n + l  

Next we investigate the stability of the conjugate direction methods of the 
forms (1.2) and (1.3) with a special emphasize on the ABS-update (1.4) and (1.5). 
It is noted again that (P, V) is an AT-conjugate pair. We use a projector technique 
due to Stewart (1973). Let us introduce the notation 

(2.5) P k  T T T T = pkV k A / ( v  k A pk) .  

The matrix Pk is a projector of rank one with R ( P k )  = R(pk ) .  N ( P k )  = R Z ( A v k ) .  
The notations R and N stand for the range and nullspace, respectively. With the 
notation Pk the algorithm (1.2) and (1.3) has the form 

(2.6) Xk ---- ( I  -- P k ) x k - 1  + dk (dk = p k v T b / ( v T A T p k ) ) .  

Denote by x* the solution of the linear system. Let ek = x* -- Xk. Then we have 
the recursion 

with the solution 

Introduce the notation 

e k  : ( I  - -  P k ) e k - 1  

ek = ( I - -  P k ) " "  ( I - -  P1)e0. 

( I -  P k ) ' " ( I -  P j )  = Q k j  

for k > j .  Let us suppose that an error occurs at the (k - 1)-th step and only at 
it. The perturbed result of step k - 1 is denoted by x~_ 1. The perturbed results 

! of further steps are denoted by x j  ( j  = k , . . . ,  n) .  Then we have 

) , n(I  , i n  x n = - P ~ _ j ) X k _  1 + ( I  -- P ~ - t )  dj 
j=0 y=k 

from which it follows that the error occuring in the final step 

n - k  

X *  - -  X n! ---- X n  - -  X n! = H ( I  - -  Pn-j)(Xk-1 - x'k-1) = Qn,k(xk-1 - x ' k - 1 ) .  

j=0 

The matrix Q~,k can be considered as the error matrix. Hence we have the error 
bound 

(2.7) 

A method of the class (1.2) and (1.3) is considered to be opt imal  in the sense of 
Broyden (1985) if IIQ=,kll is minimal for all k. 

First we characterize Qn,k.  Using the AT-conjugacy property, one can show 
in order (similarly to the proof of Theorem 2.6 in Stewart (1973)), that P t P j  = 0 
(t < j ) ,  P tQnk  = 0 (k < t < n) ,  ( I  - Pt)Q, nk ---- Qnk (k < t < n) implying that 
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QnkQ,~k = Q~k, which means that  Qn,k is a projector. Note that  the projectors 
P1, . . . ,  Pn are called conjugate by Stewart (1973), if PtPj = 0 (t < j). By 
observing that R(I  - Pk) = N(Pk) and N ( I  - Pk) = R(Pk) we easily find that 

n n 

(2.8) R(Qn,k) = N N(Pj),  N(Qn,k) = E R(Pj). 
j=k j=k 

It is also easy to see that 

and 

n 

R(Qn,k) = A R±(Avj)  = R±(AVn-k+q)  
j=k 

N(Qn,k) : f i  R(Pj )  : R ( P  n - k + l l )  = R ± ( A v I k - 1 ) .  
j=k 

Here we used the Householder notations defined as follows. Given any matrix A 
the matrices A k, A Ik, A k- and A kl denote the submatrices consisting of respectively 
the first k rows, the first k columns, the last k rows and the last k columns of A. 

For the sake of completeness we show that the symmetric projectors have a 
minimum property both in the Frobenius and in the spectral norm. 

LEMMA 2.1. If  A 2 = A and A ~ 0 then IIAIIF >_ ~ (m = rank(A)) and 
IIAII = ~ if and only if A is symmetric. 

PROOF. We use the facts that the Frobenius norm is invariant under unitary 
transformations and it is possible to choose an orthogonal matrix U for which 

UT A U  -- B = On-m 

where B2 is some matrix. Consequently IIAII = IIBII _> IlIII = vfm. As B is 
symmetric if and only if A is so, the equality relation holds only for B2 -=- 0 and 
therefore only for a symmetric A. 

LEMMA 2.2. I] A 2 = A and A ~ 0 then ItAII~B > 1 and IIAII = 1 if and only 
idA = A T. 

PROOF. 

Thus IIAIIsp 
The spectral norm is also invariant under unitary transformations. 

= IIBIIsp --- [p(BTB)] 1/2. By elementary calculations one has 

[ Im B2 ] B B= 

Making use of the similarity transformation 

- B2 In-m B T In-m = 0 0 
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we find that  BTB has n -  m zero eigenvalues and m eigenvalues given by 
det{B2 BT - (A - 1)Ira} = 0. If B2 ~ 0 then B2B T is positive semidefinite, 
implying that  its eigenvalues are nonnegative and there exists at least one positive 
eigenvalue. Hence there is an eigenvalue of BTB which is greater than 1 implying 
that IIBTBIIsp > 1. For a symmetric B (or A) it is obvious that IIBIIsp = 1. 

A projector P is symmetric if and only if R(P) = N±(P).  Hence Qn,k is 
symmetric (and has minimal norm) if and only if 

(2.9) R(AV Ik-1) = R±(AV'~-k+q). 

A method is optimal in Broyden's sense if and only if (2.9) is satisfied for all k. 
The latter condition is equivalent to 

(2.10) Avi ± Avj (i ¢ j). 

In matrix formulation it means that v T A T A V  = D, where D is diagonal. 

THEOREM 2.1. The method of class (1.2) and (1.3) is optimal in the sense of 
Broyden if and only if (2.10) or equivalently VT AT AV = D holds with a diagonal 
matrix D. 

This result was originally obtained by Broyden (1985) in a different way. The 
projector technique gives us a much deeper inside look at the structure of the error 
matrix Qn,k resulting from the following estimation of the whole class (1.2) and 
(1.3) 

(2.11) IIQ ,ell _< k(A)k(V) 

in spectral or Frobenius norm. It simply follows from the fact that Qn,k, which 
is a projector onto R±(AV n-k+ll) along R±(AVIk-1), can be represented in the 
form 

(2.12) Qn,k = ( A- Tv - T ) I k - I ( vT  AT) k-1. 

Since IIBlkll _ 1181I and IIB II _ IIBII are both in Frobenius and spectral norms, we 
may bound Qnk by IlQnkll <_ IIA-Tv-TIIIIvTATII <- k(A)k(V), which is exactly 
(2.11). 

THEOREM 2.2. For the error propagation model (2.1)-(2.3) and (2.7) the 
class (1.2) and (1.3) yields the bound 

(2.13) IIx  - x ll k(A)k(V)]]Xk_l - x _l[ ]. 

If V is a unitary matrix then k(V) = 1 and IIQn,kll <- k(A). For the original 
ABS class, of which Huang's method is a special case, the matrix V -- I. Conse- 
quently the error propagation is proportional to k(A) for that class. The same is 
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valid for the generalized ABS class (Algorithm (1.2)-(1.5)) with a unitary V. It is 
noted again that  V can be considered as a scaling of the linear system A T x  = b in 
the form V T A T x  = VTb. In this context we just refer to the well-known scaling 
techniques (Golub and Van Loan (1983)). 

Defining the residual perturbation as rg = AT(xk -- X'k) , we have 

(2.14) T - T  I ' = A Q~kA r k rn 

for the model (2.1)-(2.3) and (2.7). 
A{BlkCk}D and (2.12) we find that  

Using the relation (AB)Ik(CD)k = 

(2.15) A T Q , , k A - T =  ( v - T ) I k - I ( v T )  k-1 

is a projector onto R ( ( v - T )  Ik-1) along R((v-T)n-k+l l ) .  The bound IIr'~ll <_ 
HATQ,k A - T  II I[rg [I is minimal if and only if 

(2.16) R((V-r)I = R±((V-r)"-k+l).  

An algorithm of the class (1.2) and (1.3) can be called optimal for the residual 
perturbation rg if (2.15) holds for all k. This condition is obviously satisfied if and 
only if ( v - T ) T ( v  - T )  = D -1 for a suitable diagonal matrix D from which the 
condition v T v  = D follows. 

THEOREM 2.3. The residual error r'~ is minimal for all k if and only if 
v T v  = D is satisfied for a diagonal matrix D. 

As a result of Theorem 2.3, we can see that  for a unitary V the ABS-class is 
optimal for the residual perturbation. 

The structure of algorithm (1.2) and (1.3) yields the following simple extension 
of Broyden's model. Assume that  instead of (1.2) and (1.3) we have the following 
recursion 

(2.17) xg = (I - Pk)(x'k-1 + ek-1) + dk (k = 1 , . . . ,  n) 

where ek-1 denotes the error which occured at the (k - 1)-th step. Then we have 

(2.18) 
n 

' E Xn -- X n = Qn,k£k-1 
k = l  

from which the bound 

(2.19) 1Ix.  - x ' l l  <_ IIQ.,kll II k-lll -< k(A)k(V) ~ II k-lll 
k----1 k = l  

follows. For the optimal method,  k(A)k(V)  is obviously replaced by v/m or by 1 
depending on the norm chosen. 
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THEOREM 2.4. For the extended error propagation model (2.17), the class 
(1.2) and (1.3) satisfies the inequality (2.19). 

Finally we show the result on an ABS update. First we need to recall the 
result of Egervary (1960) on the update Ilk. Namely, 

(2.20) Hk+j = Hk - HaAVk,j(W~,jHkAVk,j)-IW[,jHk 

holds for j _> 0 provided that Ilk is of rank no less than j.  The matrices Va,j and 
Wk,j denote [Vk,..., vk+j-1] and [wk, . . . ,  wk+j-1], respectively. 

According to Broyden (1974), assume now that an error occurs in the calcu- 
lation of Ilk and no further errors occur in the procedure. Denote the perturbed 
Hk by H~. Furthermore, we assume that rank(H~) -- rank(Ha) and the error 
¢ = H~ - Hk satisfies the inequality 

[](W[,jHkAVkj)-IHIIWk,j]IIIAVk,jl][]¢H < 1 - 1 /K  (K > 1). 

We recall that for any regular matrix A, (A + F)  -1 -- A -1 + ~ holds with 
satisfying I1~11---IIA-1H211EII/(1- [IA-11IIIEII) provided that I]A-IIIIIFll < 1. The 
error in Ilk results in a perturbed Hk+j denoted by H~+j. Then by an elementary 
calculation we obtain the estimation 

liH~+y - Hk+j II <- (1 + 2HHkIIA + KHHkll2A2)]]~ll + (A + 2KA2)IICH 2 + KA 2 ll!hil 3, 

where ~2 = (W[dHkAVk,j) -1 and A = I]~H]]Wk,j[f]IAVk,jl]. It is noted that in 
general no one can expect an estimation of H'k+ j like that in (2.19) because the 
update algorithm is nonlinear. 
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