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A b s t r a c t .  In  this  ar t ic le  we examine the  min imaxi ty  and admissibi l i ty  of the  
produc t  l imit  (PL) es t ima tor  under  the  loss function 

L(F, F) = / ( F ( t )  - F(t))2F~(t)(1 - F( t ) ) zdW(t ) .  

To avoid some pathologica l  and uninteres t ing cases, we restr ic t  the pa rame te r  
space to O = {F:  F(Ymin) ~ e}, where e E (0, 1) and y : , . . . ,  y~ are the  
censoring t imes.  Under  this  set up, we obta in  several interest ing results.  W h e n  
y: . . . . .  y~, we prove the  following results:  the  PL es t ima tor  is admissible  
under  the  above loss function for c~,/3 E { - 1, 0}; if n = 1, a -- t3 -- - 1 ,  the  
PL  es t imator  is min imax  iff dW({y})  = 0; and if n _> 2, c~, ~ G { - 1, 0}, the  
PL  es t imator  is not  min imax  for cer ta in  ranges of e. For the  general  case of 
a r andom right  censorship model  it  is shown tha t  the  PL  es t imator  is nei ther  
admissible  nor minimax.  Some addi t iona l  results  are also indicated.  

Key words and phrases: Minimaxity,  censored data ,  admissibil i ty,  nonpara-  
metr ic  es t imat ion,  p roduc t  l imit  es t imator .  

1. Introduction 

Nonparametric minimax estimators of a cumulative distribution function 
(cdf), F, were proposed in Phadia (1973) for the Cramer-von Mises type loss 
function, 

(1.1) L ( F ,  ~') = f (F(t) - ~ ' ( t ) ) 2 h ( F ( t ) ) d W ( t )  

* Partially supported by the Governor's Challenge Grant. 

** Part  of the work was done while the author was visiting William Paterson College. 
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where h(t) = t ~ ( 1 - t )  z with a, 13 • { -  1, 0} and W is a known weight function. No 
assumptions were made about F.  It was shown that these estimators were step 
functions taking jumps at the observed values and were independent of W. In 
particular, it was shown that when a = ~ = -1 ,  the sample distribution function 
is minimax. 

When the data is censored on the right, Kaplan and Meier (1958) proposed 
the product limit (PL) estimator as an analog of the sample distribution function 
to estimate F nonparametrically. Since the publication of this pioneer paper, a 
considerable interest was focused on constructing, among others, Bayesian (Susarla 
and Van Ryzin (1976), Ferguson and Phadia (1979)), empirical Bayesian (Snsarla 
and Van Ryzin (1978), Phadia (1980)) and minimax estimators based on censored 
data. For further references in this direction, see Ferguson et al. (1989). The 
natural question that arises is whether the PL estimator enjoys similar properties 
as the sample cdf. Recently Meeden et al. (1989) showed the admissibility of 
the PL estimator when a = .~ = -1 .  Still, the whole area of decision theoretic 
consideration in the presence of censoring is open and needs to be addressed. 

Our objective in this paper is to make an attempt,  as a beginning, to address 
this question in some specific cases. Specifically, we consider the problem of the 
minimaxity and admissibility of the PL estimator under the above loss function. 
Since the PL estimator is undefined beyond the largest observation if it happens 
to be a censored one, we shall define it to be zero, consistent with the usual 
practice. Also, if it is not zero, the risk may not be finite (e.g., consider the case 
where a = ~ = - 1  or a = 0 and ~ = -1 )  in which case the minimaxity is of no 
interest. This modified estimator is known to be a self-consistent (Efron (1967)) 
estimator. Hereafter, the PL estimator refers to this self-consistent estimator. 
Also, the problem of finding minimax and admissible estimators based on right 
censored data is considered. 

The difficulty that arises in treating the censored data is that the equalizer 
rule approach used in the uncensored data case is no longer applicable here. For 
example, consider the ease of n = 1. Let X ~ F, Y ~ G, X and Y be independent 
and assume that we observe Z = X A Y ,  5 = I (X <_ Y), where I(A), I[A] or l(A)(t) 
stands for the indicator function of the set A. The Bayes estimator (Susarla and 
Van Ryzin (1976)) with respect to the Diriehlet process prior with parameter a,  
is 

(1.2) S(t) = c~((t' +°c))  + l(-°~'z)(t) ( I  + I[z '~)( t)I(X > + 1 a((Y, oc)) 

= a + bl(_~,z)(t) + acl[z ,~) l (X > Y), 

say, where a, b and c are constants. 
Now computing the risk under the loss function, L, with a = ~ = 0, it can be 

seen that it is almost impossible to show the existence of an equalizer rule unless 
the loss function is suitably modified (one such modification is indicated by (1.5) 
in Phadia and Yu (1989)). Even then, it is not easy to specify a suitable prior or 
a sequence of priors with respect to which the proposed equalizer rule will be a 
Bayes rule, an essential step in proving the minimaxity. 
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In view of these difficulties, the approach adopted  in this paper  is based on 
the basic definitions of the  minimaxi ty  and admissibility. 

In Section 2, we consider the  case of observations censored on the right by 
Yl . . . . .  Yn = Y, and establish some minimaxi ty  and admissibility results. 
In Section 3, we consider the general case of right censorship, i.e. we no longer 
assume yl . . . . .  y~ = y. The  Appendix  contains some proofs of lemmas and 
proposit ions referred to in the text .  

2. The case Yl . . . . .  Y n = Y  

In keeping with the context  of the survival da t a  analysis, we assume the do- 
main of F to  be [0, + ~ ) ,  S(t) = P r ( X  > t) = 1 - F(t),  and F(t) and S(t) will 
be used interchangeably. In our t rea tment ,  we assume the parameter  space 

(2.1) O~ = {F:  F(ymin) _> e} for some positive e, 

where Ymin = m i n { y l , . . . ,  Yn} and y l , . . . ,  Yn are fixed known censoring times. 
This  is logical, since if F(ymin) = e = 0, we have a pathological s i tuat ion tha t  
all observations are censored. This  is, fur thermore,  consistent with the Bayesian 
point  of view tha t  if a priori the dis tr ibut ion function is known to belong to 
some restr icted paramete r  space, there  is no reason to go beyond this restr icted 
parameter  space. Indeed, in practice,  who will t ry  to es t imate  a survival function 
based on da ta  tha t ,  say, out  of 30 observations, all but  one, are censored? (this 
would imply that ,  in practice,  c _> 1/30). Obviously, the  ant icipated propor t ion  
of real observations, based on past  experience, will provide a reasonable value to 
take for ~. 

Our es t imator  of S(t) will belong to  the family of all non-increasing functions 
with range within [0, 1]. The  risk o f d  will be denoted by R(S,  d) = E{L(F,  l - d ) }  
and we use the following abbreviat ions for the  loss function defined in (1.1). 

(2.2) 

L1 = L(F, F) 

L2 -- L(F, F) 

L3 = L(F, ~') 

L4 = L(F, -P) 

where a = fl = 0; 

where a -- fl = - 1; 

where a = - 1 ,  fl = 0; 

w h e r e a = 0 ,  f l = - l .  

Our  main interest  is in L2, since the PL est imator  is minimax and admissible 
under  L2 in the uncensored da ta  case, whereas it is not  minimax under  L1, L3 
and L 4. Thus a na tura l  quest ion is whether  this is t rue  for the censored da ta  case 
as well. 

As indicated earlier we consider in this section the censoring points Yl . . . . .  
yn --- y > 0. Thus,  we are assuming tha t  F e O~ = {F: F(y) > e}, where ~ > 0. 
This  restr ict ion on the  space of F highlights the dist inction of this case in contrast  
to the case of uncensored data.  Note tha t  if e ---- 1, F(y) -- 1 and it reduces to  
the uncensored da t a  case (provided dW({y})  = 0 since dpL(y) = 0). Therefore  
we assume hereaf ter  tha t  e < 1 unless it is specified otherwise. We assume tha t  
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X1---  Xn ~ F ,  and Zi = Xi A y and 5i = 1 (Xi < y) are the observable random 
variables. Based on (Z~, ~fi), i = 1, 2 , . . . ,  n, we thus consider the problem of 
estimation of F nonparametrically. However, in our treatment since y is assumed 
to be fixed, this is equivalent to considering Xi's and y instead of Zi's and $i's. 

Unlike in the uncensored case, we have to devote special attention to the case, 
t > y. For example, if a = ~ = -1 ,  we see immediately that in order that the risk 
be finite, the estimator has to be zero for t > y. Also, at times we are forced to 
consider the estimators which give a positive value to the singleton {y}. Thus, we 
are considering W which may or may not be continuous. 

Recall that in the uncensored case, the sample cdf is minimax under the loss 
function L2. The natural question is, whether a similar conclusion holds for PL 
estimator in the censored case? We provide some partial answers in this section. 
For the sample size n = 1, we show in Theorem 2.1 that, under certain conditions 
on the weight function W, dp i  is minimax. On the other hand for n > 2, we show 
in Theorem 2.2 that for a certain range of e, dpi  is not minimax irrespective of 
the nature of W. Also in this section, we extend the minimax property of the PL 
estimator for the cases L1, L3 and La from the uncensored case (i.e. e = 1) to the 
censored case. Finally, we construct the minimax estimator under L2 for the case 
n = l .  

Meeden et al. (1989) proved the admissibility of dpi  under L1, assuming the 
random right censorship model. If the censoring times are assumed to be equal 
and known fixed value, we show a stronger result in Theorem 2.4, namely, that 
dpL is not only admissible for a smaller parameter space O¢ under L1, but also 
under the arbitrary L as (1.1) with ~, ~ c [ -  1, 1). 

THEOREM 2.1. Let n = 1, L = L~ and F C 0~. Let Dc denote the class of 
estimators with form as follows, 

= db(t) = ~ b if t = y < X, (2.3) d(t) 
dpL otherwise, I 

where 0 < b < 1 - c. Then (i) Dc is the class of all admissible estimators with 
finite risks (for any F E OE); (ii) dl-E(t) is minimax; (iii) dpL is minimax iff 
dW{y}  = 0, and dpL is admissible. 

We need the following lemma to prove Theorem 2.1. 

LEMMA 2.1. Let n = 1, L = L2 and F E 0~. Then the estimators of S(t) 
having finite risks are necessarily o] the form as (2.3) with 0 <_ b < 1. 

See the Appendix for the proof of this lemma. 
Let D denote the class of estimators of form (2.3), where 0 < b < 1. 

PROOF OF THEOREM 2.1. 
Case (i): By Lemma 2.1, it follows that the estimators with finite risks are of 
the form db. Given db E D, consider an estimator da E D, with a # b and 
R(S, da) - R(S, db)< 0 for all F.  That is 
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(2.4) R(S, da) - R(S, db) 

j~{ . . . .  y}[(1 F ( t ) - a )  2 (1 F(t) b) 2] 

• (1 - F(t))/[F(t)(1 - F(t))]dW(t) 
= dW({y})(b - a)(2 - 2F(y)  - (a + b))/F(y) <<_ 0 VF E 0~. 

If a > b, it implies tha t  2 - 2F(y)  - (a + b) _ 0 for F 6 0 ~ .  However, this will 
lead to a contradiction if we take an F0 6 0 ~  such tha t  Fo(y) = 1. 

If a < b, then  (2.4) implies tha t  2 - 2F(y)  - (a + b) < 0 for F 6 0 ~ ,  or F(y) >_ 
1 -  (a+b)/2 for all F E O~. Since F(y) >_ e, this will be so iff e > 1 -  (a+b)/2. That  
is, given rib, there is a da which is bet ter  than  db, iff a and b satisfy a+b > 2(1 - c )  
and a < b. (It is easy to see tha t  the strict inequality holds if F(y) = 1.) This 
means that  db is admissible iff b 6 [0, 1 - el. (Note tha t  the case b = 0 yields the 
PL estimator.)  
Case (ii): By Lemma  2.1, infdsuPFR(S , d) = infdeDSUPFR(S, d). Thus, it 
suffices to show that  supF R(S, dl-~)  -- infdeD S U P F  R(S, d). Since d 6 D and 
dpL differ only on the set {t = y < X}, we have 

(2.5) R(S, d) = R(S, dpL) - f E[L(F, 1 - dpn)l(y < X)]dW(t) 
J( y} 

+ / E[L(F, 1 - d ) l (y  < X)]dW(t) 
J( y} 

1 F(t) 1 -  F(t) 
= + F(t) + -F(6 y }  + 

f (  1 - F(t) - ~} -k(6 ( 1  - F(y)) 

f{ ( 1 -  F( t )  - b)2 } + • ( 1 -  F(y)) dW(t) 

/o ~- f~  1 - F ( y )  < dW(t) + dW(t) 

[ ( I - F ( y ) - b ) 2 ]  
+ (1 - F(y))  + F(~) d W ( M ) ,  

by simplifying and using the monotonici ty of F.  Writing F(y)  = x, W{(0, y)} = 
W l ,  W{(y, oc)} = w2 and W{y} = Wo, we have 

(2.6) R(S, d) <_ [w2 + (1 - b)2wo]/x + 2bwo + Wl - -  W 2  - -  WO.  

Define the RHS of (2.6) to be ¢(b, x), which is a decreasing function of x E [e, 1). 
It is easy to see (for details, refer to Phadia  and Yu (1989)) 

(2.7) sup R(S, d) = [w2 + (1 - b)2wo]/e + 2 b w 0  + W l  - w 2  - W0. 
e<F(y)_<l 
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Now minimizing ¢(b, e) with respect  to b, we have the solution b = 1 - e and the 
supremum of the risk of dl-~ is 

¢(1 - e, e) = dW + (1 - e)dW (1/~ - 1)dW. 
y} + 

To prove (iii) we see that  if dW{y}  = 0, the risk of d E D is the same as the 
risk of dpL. Hence dpL is minimax. On the other hand if dW{y}  > 0, then the 
solution, b = 1 - e, tha t  minimizes (2.7) with respect  to b, is unique. Therefore, 
dpL is not minimax since e < 1 by assumption.  The admissibility of dpL follows 
from (i). [] 

Remark 2.1. Theorem 2.1 can be extended to the case that  the  censoring 
t ime is random under certain conditions. For example, we have the following 
statement:  

Suppose that  n = 1 and the parameter  space O~ = {F: F(yo) _> e}. Let Y be 
the random censoring t ime satisfying P { Y  >_ Y0} = 1. Then 

d 1 _ ¢ =  { 1 - e  if t = Y < X  
d p L otherwise, 

is minimax. 
Recall tha t  under the  uncensored model, the sample cdf is minimax under L2 

for all n > 1. The similar result is not t rue for the PL estimator,  as the  following 
theorem shows. 

THEOREM 2.2. Let n > 2, L = L2 and F E 0~. Then dpL is not minimax 
forO < e < 1 - -1 /n .  

PROOF. The proof is in demonstra t ing suitable est imators that  beat  dpL in 
the sense of smaller supremum risk. Let 

f b 
(2.8) d(t) = 

dpL I 
for X(n-1) _< t < y A X(~) 
otherwise, 

where 1/n < b = b(e) < 2/n. Let 0 < 6 = b - 1/n < 1/n. We have to show tha t  

sup R(S, d) - sup R(S, dpL) < O. 
FEO~ FEO~ 

However, for L2, 

and 

f 
R(8, dpL) = ] (1/n)dW(t)  + [ [ ( 1 - e ) / e ] d W ( t )  sup 

F~O~ d[0,y) d[y,oo) 

o,y)(1/n)dW(t) = E/O,y)(S( t)  - dpL)2/[S(t)(1 - S(t))]dW(t), 
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which is independent of S(t) .  Thus, it suffices to show 

(2.9) 
f r 

sup I E [  [(S(t)-d)~/[S(t)(1 - S(t))] 
FeO~[ Y[0,~) 

- (S(t) - dgL)2/[S(t)(1 -- S(t))]]dW(t) 

+ < 0 .  

The quantity in the brace for a fixed F ( =  1 - S) E O~ is equal to 

(2.10) E f [(s(t) - b) 2 - (S(t) - 1/n)2]/[S(t)(1 - S(t))] 
Y[o ,Y) 

• l(x(n_l) <_ t < y A x(n))dw(t) 

+ [ [(1 - F ( t ) ) / F ( t )  - (1 - e)/e]dW(t) 
Y[u ,c~) 

= / [2(b - 1/n) (F( t )  - (2 - b - 1/n) /2)  
J[o ,Y) 

• n F  n-1 ( t )S( t )] /[F(t)S( t )]dW(t)  

+ ~o~i',~)[1/F(t) - 1/e]dW(t) 

<_ [ [2(b - 1/n) (F( t )  - (2 - b - 1 /n ) /2 ) .  nF~-2( t ) ]dW(t )  
Y[0 ,y) 

+ [ [1IF(y) - 1/e]dW(t) (since F(t)  >_ F(y)  if t > y). 
,~) 

Without loss of generality (WLOG), we can assume that the maximum of the 
integrand of the first integral of (2.10) or (2.9) is achieved at F(t)  = c, where 
c <_ F(y) .  

Thus, the quantity in braces in (2.9) is less than and equal to the supremum 
of 

since c < F(y)  if t > y. Furthermore, 3 F0 E O~ such that Fo(y) = c. Thus, the 
quantity in braces in (2.9) is less than or equal to the supremum of 

(2.11) ~,~)25(F(y)-l+5/2+l/n).nFn-2(y)dW(t)+~,~)[1/F(y)-l /e]dW(t).  

To find the maximum with respect to F(y)  C [e, 1], we take the derivative of (2.11) 
with respect to F(y)  yielding, 

f[o,y)2n6F~-3(y)  IF (Y)+  ( n - 2 ) ( F ( y ) - 1 +  ~ + 1 ) ]  dW(t )  

+ fW,~) - F - 2 ( y ) d W ( t ) "  
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Since [F(y) + (n - 2 ) (F(y)  - 1 + 5/2 + l /n) ]  < 2n, by choosing 5 sufficiently 
small, the derivative (2.11) can be made negative. This would imply that  (2.11) 
is a decreasing function of F(y)  and hence the maximum occurs at  F(y)  = ~. 
Subst i tut ing F(y)  = e in (2.11), we see that  (2.11) is negative and (2.9) holds, 
whenever e < 1 - 1/n - 5/2. Tha t  is, given the weight function W and ~, it is 
possible to choose 5 (6 (0, 2(1 - c - l / n ) ) )  sufficiently small such that  (2.9) holds. 

[] 

Remark 2.2. The above result for L2 is surprising since in the  uncensored 
case the  sample cdf is minimax for L2 loss function. It shows that  dpL is not  
minimax for 0 < e < 1 - - 1 / n  regardless of W. On the other hand, i f e  = 1, 
then F ( y )  = 1, which implies tha t  all observations are uncensored and hence dpL, 
which is the same as the empirical survival function (except for t = y), is minimax 
if dW({y} )  = 0. Thus it is suspected that  for n _> 2, dpL may be minimax for 
1 - 1In < c < 1 if dW({y} )  -- 0 (recall that ,  if n = 1, it was shown in Theorem 2.1 
that  dpL is minimax iff d W { y }  = 0 for any c > 0). But  we are unable to establish 
it as a fact. However, if d W ( ( y } )  > 0, we have the following result. 

PROPOSITION 2.1. Suppose that L = L2, F E O~, where ~ C (0, 1), n _> 2 
and dW({y} )  > O. Then dpL is not minimax. Furthermore, suPF R(S,  dl) < 
suPF R(S,  dpL), where 

d l = {  1 - e  
dpL 

if t : y < .~i'(1), 
otherwise. 

The proof  can be found in Phadia  and Yu 1989). This result however, is not 
of much real interest, since usually dW({y} )  = O. 

THEOREM 2.3. Let n >_ 1 and F E 0~. Then dpL is not minimax for the 
following cases: 

(i) L = L1 and ~ > (1 - ~ +  1 / (v /n  + 1))/2, 
(ii) L = L3 and e > 0, 

(iii) L = L4 and ~ > n / ( v ~  + 1) 2. 

In the proof  of Theorem 2.3, we seek suitable est imators that  beat  dpL. For 
all these cases, the est imator  which achieves the objective is given by 

1 - Ym(t) for t < y, 
d ( t ) =  0 for t_>y ,  

where Fro(t) is the minimax est imator for the uncensored da ta  (under respective 
loss function), obta ined in Phadia  (1973). Note that  d is essentially the t runcated 
version of Fro(t). As y --+ oo~ it reduces to the uncensored case. For details, see 
Phadia  and Yu (1989). 

Remark 2.3. Note that  when ~ = 1, it reduces to the uncensored case and it 
is clear tha t  the sample cdf is not minimax for L1, L3 and L4. The above theorem 



T H E  P R O D U C T  LIMIT E S T I M A T O R  587 

shows that this is true for the PL estimator even in a smaller parameter space O~, 
with e < 1. 

The next theorem establishes the admissibility of the PL estimator. 

THEOREM 2.4. Let n > 1, F E O~ and loss function L given in (1.1). Then 
dpL is admissible. 

PROOF. We want to show that, for any estimator d if R(S, d) <_ R(S, dpL) 
for VF E O~, then d(t) = dpL (t) except for t E [y, to], where to is a fixed point and 
to > y with dW([y, to]) = 0. Once we show this, then it follows that R(S, d) = 
R(S, dpL) for all F E O~ (whether dW([y, to]) = 0 or not) and the admissibility 
follows. 

Let O1 = {F: F(y) = 1}. Clearly O1 C O~; then for F E O1, 

R(S' d) = j(o,~) E(S(t) -d(t))2h(F(t))dW(t) + 9~[~,~) E(d(t))2h(F(t))dW(t) 

and R(S, dpL) = f[0,y) E(S(t) - dpL(t))2h(F(t))dW(t). If R(S, d) <_ R(S, dpL) 
for VF E O~, then clearly, 

(2.12) f[o,y) E(S(t)-d(t))2h(F(t))dW(t) <_ j(o,y) E(S(t)-dpL(t))2h(F(t))dW(t) 

for VF E O1. Furthermore, given a distribution F ~ O1, i.e., F(y) E [0, 1) (note 
that F might not belong to O~), then there is 

Fl(t) = 1 - Sl(t) -- { 1 F(t)  ifotherwiset < y E O1 

such that, for any estimator d, 

~o,y) ($1 (t) - d(t) )2h(F1 (t) )dW(t) = J~[o,y)(S(t) - d(t) )2h(F(t) )dW(t). 

It follows that (2.12) is true for all distribution functions (i.e. O0 instead of O~ for 
e > 0). Hence by using the argument of Cohen and Kuo (1985) (since for t < y, 
1 - dpL is exactly the same as the sample cdf), we conclude that d = dpL for 
t < y. Thus we establish the equality (instead of inequality) in (2.12). 

Now if R(S, d) <_ R(S, dpL) for VF E O~, then clearly, 

f[y,~) E(S(t) - d(t))2h(F(t))dW(t) <_ j([y,~) E(S(t))2h(F(t))dW(t) 

for all F E O~. It can be shown (see Phadia and Yu (1989)) that this implies that 

(2.13) d -- 0 for t > y provided that dW{[y, t]} > 0. 
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Note that for some tl > y, if dW{[y,t~)} = 0, d may not be equal to 0 = 
dpL. But the admissibility is not effected since on the interval [y, t l)  the integrals 
f[y,tl)(d(t) - S(t))2h(F(t))dW(t) and f[y,t~)(dpL (t) - S(t))2h(F(t))dW(t) are both 

zero (thus (2.13) is slightly stronger than the admissibility result as in Cohen 
and Kuo (1985)). The admissibility of dpL follows from (2.13) and the fact that 
d = dpL f o r t < y . [ ]  

3. The general case 

In this section we remove the restriction of equal censoring times, i.e., y l , . . . ,  
y~ are assumed to be arbitrary but fixed censoring times. In addition, we also 
consider the random censorship model, i.e., Y/'s need not be fixed constants. First, 
we assume that Z~ = Xi A y~, i = 1 , . . . ,  n, Ymin ----  mini Yi < max~ y~ = Ym~, 
O~ = {F: F(ymin) >_ e > 0}. Let (~m~x dW(t) > 0; otherwise it reduces to the Ymin 
case Yl . . . . .  Yn = Y treated in Section 2. 

THEOREM 3.1. Let L = Li, i = 1, 2 and 3 and Yl, . . . ,  Yn (n _> 2) be the 

censoring times associated with X1 , . . . ,  X~ ~ F, F • 0~. Let Zi, i = 1 , . . . ,  n be 
the observable variables. Then dpL is neither minimax nor admissible. 

It is interesting to note that under the random right censorship model, Meeden 
et al. (1989) showed that the PL estimator is admissible under L1 for O~ with e = 0. 
However, the results in Theorems 3.1 and 3.2 show that the PL estimator is no 
longer admissible if the parameter space is restricted to Oe with ~ > 0 and for L 
as in (1.1). This is understandable since the PL estimator takes on values outside 
the parameter space. In fact, by taking the special advantage of the particular 
nature of the parameter space (with its dependence on c), we find an estimator 
which is better than dpL. 

PROOF. WLOG, we assume that Yl < Y2 < "'" < Yn and dW{[yl, t)} is a 
strictly increasing function of t in (Yl, s), s > Yl. Let X = (X1 , . . . ,  X~). We 
define an improved estimator as follows. 

d = d(X, t) = ~ 1 - 5 if (X, t) • A, (3.1) 
[ d p L otherwise, 

where 0 < 5 < e/n, A = {Yl _< t < X(1) A Yn} and X(1 ) is the smallest among 
the observed uncensored observations. Note that for fixed t C (Yi, Yi+l), A is 
the event such that the first i observations, Z1 , . . . ,  Z~ are censored. Therefore 
E l (A)  = Pr{Xj > yj, j _< i; Xk > t, k > i} if t E (yi, Yi+l). Note also that d and 
dpL are the same except on the set A. Thus the difference of risks of these two 
estimators is 

(3.2) R(S, d ) -  R(S, dpn) 

• 
f y i + l  

= [(F(t) - 5) 2 - F2(t)]h(F(t))El(A)dW(t) 
i= l  JY~ 
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n--1 f Y ~ + l  

= E [ ( F ( t ) - b )  2 - F2(t)]h(F(t)) 
i=1 J Y~ 

i 

• I I ( 1  - F(y j ) ) [1  - F(t)l~-idW(t)  
j= l  

_< [(F(t)  - 5) 2 - F2(t)]h(F(t))(1 - F(y~))[1 - F(t)]n-~dW(t) 
1 

(the remaining terms are nonpositive anyway) 

which is < 0 VF ~: F(yl)  ~ 1. This implies the inadmissibility of d p L .  

To prove the minimaxity result, we first note tha t  

R(S, d) - R(S, dpL) < 0 VF ~: F(yl)  ~ 1; 

R(S, d ) -  R(S, dpL) =O VF ~: F(yl)  --1. 

Therefore suPF R(S, d) ~ SUPF R(S, dpL). By Lemma 3.1 below, we have 
suPF:F(m)= 1 R(S,  dpL) < sup F R(S, dpL), i.e. the suPF R(S,  dpL) is not achieved 
at F(yl)  = 1. There are two cases: (a) 3 F s  such that  R(Ss, d) =- suPF R(S, d) or 
(b) otherwise. If (a) is true, then it is easy to see that  

(3.3) s u p n ( S ,  d) < s u p R ( S ,  dpL). 
F F 

On the other hand if (a) is false, it can be shown that  there is a sequence of 
{Fro} c O~ such tha t  l i m m - ~  R(Sm, d) = suPF R(S, d) (where S m =  1 - Fro). 
Let us denote G(t) = limm--,o~ Fm(t), u = G(yl) and l imt~l  limm--.cc Fro(t) = 
v = limtl~l G(t). Since G(t) might not be right continuous at Yl, we have two 
possibilities: (1) u ~ v and dW({yl})  > 0; or (2) u = v or dW({yl})  -- O. 

If (1) is true, 

lira JR(SIn, d) - R(Sm, dpL)] 
m---* ~ 

< lim f [(Fm(t) - 5) 2 -  F~(t ) ]  
m ~  j{yl} 

• h(Fm(t))(1 - Fm(t))[1 - Fm(t)]n-ldW(t) 

(by (3.2) the other terms are nonpositive) 
f 

= / [ ( u -  5) 2 -  u2]h(u)(1 - u)[1 - u]n-ldW(t) < O, (u < v <_ 1), 
J{ yl} 

and (3.3) is true. 
If (2) is true, we proceed as follows• Take a sequence {tin} such that  tm ~ Yl 

and Fm( t,~) ---* v as ra ---, oe. Let 

f, Fro(tin) 
Fro1 (t) = [ Fro(t) 

if [y ,tm] 
otherwise. 
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Then 

l i m  R(Sml ,  d) - l i m  R(Sm,  d) 

= lim f [E(Sml - d)2h(Fml) - E (Sm - d)2h(Fm)]dW(t) 
~ - ~  Y[yl,tm] 

= ] '  [(1 - v -  d)2h(u) - (1 - u -  d)2h(u)]dW(t) = 0 
J{ 

if dW ( { yl } ) = O. 

i.e. if (2) is true, l i m m _ ~  R(Sml ,  d) = l i m m - ~  R(Sm,  d) = SUPF R(S,  d). This 
means tha t  we can assume tha t  u -- v simply. Then, either v = 1 or v < 1. 
I f v  -- 1 (u = v = 1), G(t) is right continuous at yl and equals 1. Also, for 
t < Yl we note tha t  both  E ( d p L  - S( t ) )2h(F( t ) )  and E(d  - S( t ) )2h(F(t ) )  are 
constant for any F E O~. Thus G can be taken to be any distribution function 
for t < yl (E(dpL - (1 - G(t)))2h(F(t))  has the same value anyway). Therefore 
we can assume tha t  G(t) is a proper distribution and case (a) is again applicable. 
On the other hand, if v < 1, 3 y  > Yl such tha t  limm~c¢ Fro(y) is very close to 
l im,~_~  Fm (Yl), for simplicity, say, equal. Furthermore,  without  loss of generality, 
one can assume tha t  Fro(y) = v for all m. Thus, ~ > 0 such tha t  for all m, 

R(Sm, d)- R(Sm, dpL) 

_< [(Fro(t) - 5) 2 - F~(t)]h(Fm(t))(1 - v)[1 - v]n - ldW( t )  < - r  I. 

i.e. (3.3) holds if (2) is true. In either case, (3.3) is true, so dpL is not minimax. 
[] 

LEMMA 3.1. SUPF:F(yl)=I 1~(8, dpL) < s u p  F R ( S ,  dpL). 

PROOF. It suffices to show tha t  the following s ta tement  holds. 
(ST) Given F2 E O~ such tha t  F2(Yl) = 1, 3 an x E (c, 1) and F1 C O~ such 

that  Fl(t)  = FI(y l )  = x for t E [yl, y~] and R(S1, dpL) -- R(S2, dpn) is 
a positive constant,  independent of the choice of F2 with F2(yl) = 1. 

WLOG,  we assume hereafter, tha t  F( t )  = F ( y l )  for Vt E [Yl, Yn] since we need 
to demonstrate  the above inequality for only one F1. This would imply tha t  no 
uncensored observation will be observed with positive probability in the interval 

[yl, Yn]. 

(3.4) 
~0 yl 

R(S,  dpL) = IF(t)(1 - F( t ) )h (F( t ) ) / n ]dW( t )  

~-1 fy~+l + ~ E y~ (S ( t ) -dpL)2h(F( t ) )dW( t )  

/? + (1 - F( t ) )2h(F( t ) )dW( t ) .  
r ~  
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For L2, first note tha t  R(S,  dpL) is a constant  if F ( y l )  --- 1. Also, the first t e rm 
on the RHS of (3.4) is a constant  and, the third term is zero when F ( y l )  = 1 and 
positive otherwise. By  Lemma 3.2 below, the second term has the derivative (w.r.t. 

F ( y ] )  when F(t) = F ( y l )  Vt e [Yl, yn]), Ei=ln-1 ~y,FY~+I - i ( 3 n  - 2i) /n2dW(t) ,  which 

is < 0 at F ( y l )  = 1. Thus, the maximum is achieved for F ( y l )  = x < 1, i.e. given 
F2 C O~ and F2(yl)  = 1, 3 an x E (e, 1) and F1 E O~ such that  Fl(t) -- FI(y l )  = x 
for t E [Yl, Yn] and R(S1, dpL) -- R(S2, dpL) is a positive constant,  independent  
of the choice of F2 with F2(yl) = 1. Thus  the s ta tement  (ST) holds. 

Similarly, we can show that  the s ta tement  (ST) holds for the other  two loss 
functions, though the first t e rm of (3.4) is no longer constant  there. This completes 
the proof. [] 

LEMMA 3.2. Suppose that F(t) = F(yl)  for t E [Yl, Yn]. The derivative of 

(3.5) fY~+l E y~ (S(t) - dpL)2h(F(t))dW(t)  

with respect to F(yl)  at F ( y l )  = 1 (i.e., left hand side derivative) is 

/ l/i̧ :,Iii ijn2dw Ll 3 - i ( 3 n  - 2i) /n2dW(t)  under L2; 

- [ (2 i  - 1)(n - i) + ni] /n2dW(t)  under L4; 

where i -- 1 , . . . ,  n -  1. 

For the proof of the lemma, see the Appendix.  

Remark 3.1. The result of admissibility in Theorem 3.1 can be extended to 
the case L = L4. However, for the minimaxity result of dpL an additional assump- 
tion is needed, for example, f[0,yl) 1/ndW(t )  < f[yl ,~)dW(t) ,  since f [0 ,y l )F( t ) /  

ndW(t)  is increasing in F(t). 

THEOREM 3.2. Let X 1 , . . .  , Xn iid F, Yi ~ Gi (i = 1 , . . . ,  n), where Gi(t)'s 
have the support [Y0, cx~) (Y0 > 0) and are continuous, Yi's are independent of 
each other and of Xi '  s. Let Zi = Xi  A Yi and Oi = l (Xi  < Y i )  i =  1 , 2 , . . . , n  be 
the observable random variables. If  F E O~ = {F: F(yo) > e > 0} and L = Li, 
i = 1, 2 and 3, then the dpL i8 neither admissible nor minimax. 

Remark 3.2. The assumption that  Gi(t) = 0 for t < Y0, i = 1 , . . . ,  n is 
justified since we want zero probabil i ty of observations being censored for values 
of t close to zero. 

PROOF. For the inadmissibility result we need to show that  3 d such that  
R(S, d) ~ R(S, dpL ) for all F E O~ and with strict inequality holding for at least 
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one F .  For simplicity, assume tha t  the Yi's are arranged such tha t  Y1 _<_ Y2 < "'" _< 
Y~ and the X~'s correspond to these rearranged Yi's. Let Y be the random vector 
induced by the Y/s. Define d as in (3.1) except tha t  the Yi's are now random. The 
difference of the risks is given by 

(3.6) R(S, d ) -  R(S, dpL) 
{ ~ rY~+l 

= E Y l  i~__l /y, [(F(t) -5)2 - F2(t)] h(F(t)) 

k 

• Pr{X~ > Yk, k = 1 , . . . ,  i, t < X(1)}dW(t) )  
/ 

= E y  [(F(t) - 6) 2 - F2(t)]h(F(t)) 
i---:1 J Y i  

i 

. I I ( 1  - F(Yk))(1 - F(t))n-idW(t) 
k----1 

--- Ey H ( 1 -  F(Yk)) [ ( F ( t ) - 6 )  2 - F2(t)] 

i=1 k=l  

• h(F(t))(1 - F(t))n-idW(t) 

which is < 0 for all F E O~ and < 0 for all F(t) such tha t  1 - F(Yk) 7 ~ 0 for some 
k E { 1 , . . . ;  i} and 1 - F(t) > O. As in the proof of Theorem 2.1 it is sufficient to 
consider for verification the case: 

(C1) 1 - F(Yi) 7 ~ 0 with positive probability and 1 - F(t) 7~ 0 for t _> Y0. 

For this purpose, take 

0 if t < Yo, 
F( t )  e + (1 - e)(1 - e -(t-~°)) otherwise. 

Then clearly 1 - F(t) > 0 for t > Yo and the rest of the verification will be ac- 
complished if we show tha t  Ey1,y2[1 - F(Y1)] > 0. However, Eyi,Y2[1 - F(Y1)] = 

f o  f o  fo  ̂ ~2 dGl(yl)dG2(Y2)dF(x) which is > 0 since G1 and G2 are nondegen- 
crate as per our assumption. Thus, we have shown the inadmissibility of dpL. 

For the minimaxity, we have additional complexity since the Yi's are random. 
However, it can be handled in view of the right continuity of F (i.e. there is a 
y~ > yo such tha t  if F(y0) < 1, then F(y~) < 1 also) and the continuity of G~'s 
(i.e. G~ gives positive mass to (y0, y~))- In this case, with positive probability 
(G~'s), 1 - F(Y1) > 0 and hence (3.6) is < 0. Therefore, as in Theorem 3.1 it is 
sufficient to show tha t  the suPF R(S, dpL) is not achieved for F(yo) = 1. To show 
this we proceed as follows. 

Consider a realization of Y = ~70 with the first coordinate Yl. In the proof of 
Lemma 3.1 it is shown tha t  given F2 where F2(Yl) = 1, there is an x E [e, 1) and 
F1 C O~ such tha t  Fl ( t )  = FI(Yl) = x for t E [Yl, yn] and 

(3.7) E(L(F1, 1 - d p L )  I Y ~- Yo )  - -  E(L(F2, 1 - d p L )  I Y = ~7o) ---- c > O, 
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where c is a constant ,  independent  of F2(Yl)  with F2(yl) = 1. There  is certainly 
an F1 e O~ such tha t  Fl( t )  = x for t e (Y0, Y~). For such an F1, (3.7) is t rue  for 
yl E (Y0, Y¢) though  c might  depend on Yl. Therefore,  R(S1, deL) > R(S2, dpL). 
Taking expecta t ion  w.r.t, the  joint  dis tr ibut ion function of (Y1, . . . ,  Y,~) we can 

show tha t  SUPF R(S1, d p L  ) > SUPF::F(yo)= 1 R(S2, d p L ) ,  concluding the proof. [] 
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Appendix 

PROOF OF LEMMA 2.1. The  risk of d may  be expressed as 

R(S,  d) 

= E{ (S ( t )  - d ( t ) )~( l (X  < t] + 1IX > t)) /[S(t)(1 - S( t ) )]}dW(t)  

+ f E{(S(t) - d(t))2(l(X __ y) + l (X > y))/[S(t)(1 - S(t))]}dW(t) 
J{ y} 

+ E { ( S ( t )  - d(t))2/[S(t)(1 - S( t ) )]}dW(t) .  
+ 

In order  tha t  the risk be finite, it is clear tha t  for t > y, d(t) must be zero, in view 
of the factor S(t)  in the denominator .  

Now consider the case, x < t < y. Suppose 3 t l  < t2 such that ,  d(x, to) > 
5 > 0 if tl  = x ~ to _~ t2 < y. Define Fo(u) = 0 for u < t l  and Fo(u) = 1 for 
u > t l ,  say, then  clearly E{[1 - Fo(u) - 5]2/[Fo(u)(1 - Fo(U))]}I(X < u) = c~ for 
t l  < u < t2. Thus,  in the above case, d(t) should be 0. Similarly, we can show 
tha t  d(t) = 1 if t < x and t < y. 

For the case, x < y = t, if d(t) ~ O, define F2(u) = arb i t ra ry  for u < y and 
F2(u) = 1 for u > y. Then  

{ E{(S2( t )  - d ( t ) )2 ( l (X  < y))/[S2(t)(1 - S2(t))]}dW(t) = oc 

if dW({y} )  > O. 

Thus the only case remaining is the case t = y < x where no such "blowing up" 
occurs as long as d(y) = b < 1, proving the characterization.  [] 

PROOF OF LEMMA 3.2. Consider a fixed t such tha t  y~ ~ t < Yi+l, we 
evaluate 

/ Y~+I 
(A.1) E (S(t) - dpL)2h(F( t ) )dW(t ) .  

¢ Yi 
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For Yi <__ t < Yi+l, there are at least i observations Z I , . . .  , Z i below t, some 
of which are censored• Assume tha t  there are exactly k observations among 
Z 1 , . . . ,  Zi tha t  are censored and the remaining i - k are uncensored. Also, some 
of the observations among Zi+l,..., Zn may lie below t. Thus, (A.1) is equal to 

f 
Yi+l 

E (S(t) - dpL)2h(F(t)) 
J Yi 

i n--k 
• E E l{exactly k observations among Z1 . . . .  , Z{ are censored 

k=O j=i -k  

and j - (i - k) observations among Z i + ~ , . . . ,  Zn lie below t}dW(t) 

= E(S( t )  - d p L ) 2 h ( F ( t ) ) l { e x a c t l y  k observations among 
J Yi k=O j=i -k  

Z 1 , . . . ,  Zi are censored}l[X(j) <_ t < X(j+I)]I[X(j ) <_ yl]dW(t) 
(for details, see Phadia  and Yu (1989). Note tha t  EI[X(j) < t < X(j+I)] 

I[X(j) > Yl] = 0 since F(t) = F(yl)Vt • [Yl, Yn]) 

---- fY~+l f i  ( ; ) ( 1 - - F ( y l ) ) k  
J Y~ k = 0  

rn -k -1  ) 
- ( i  - k ) .  F (yl)(1 - 

F(yl ) )'~-k-J 

( n - i  )Fn_k(yl)(l_F(t))n_k_(n_k) ] 
+ ( 1 - F ( t ) )  2 ( n - k )  ( i - k )  

• h(F(t))dW(t) 

(where for the last term in the bracket, we use the fact tha t  dpL = 0 w h e n j  = n - k ,  

i.e. all the mass has been accounted for). Thus, (A.1) equals 

n-k -1  ( n - i  )FJ(y l ) ( l_  F(yl))n_ j E ( j /n -F( t ) )  2 j _ ( i _ k )  
j ~ i - k  

+ Fn-k(yl)(1 -- F(t)) k+2] h(F(t))dW(t). 

(A.2) is true for any h(t). For the sake of saving space, we just give the proof of 
the lemma for the case h(t) = t-1(1 - t) -1. In the other three eases of h(t), the 
similar argument  can be used. 

Now assume tha t  h(t) = t-1(1 - t) -1. Then (A.1) or (h.2) equals 
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(A.3) 
fyi+l ~ (~) F n-k-1 

k = l  - 

• - i k / )  F ' I  1 _ - 

'1 

+ _ / 
.1 

r ~ - - 2  . 

+ ; - ~  Fi - l (y l ) (1  

+ ((n - 1)/n - F(t))2(n - i)E~-U(yl) 

+ F n - l ( y l ) ( 1  - F ( t ) )  1 d W ( t ) .  

To show that the maximum of (A,1) is not achieved at F(yl)  -- 1, we take 
the derivative w.r.t. F(y l ) ,  evaluate at F(y l )  = 1 and show that the quantity is 
negative. Thus the function is strictly decreasing at F(yl)  = 1 and Lemma 3.2 
follows. Also in taking the derivative it is obvious that we can discard expressions 
involving higher than one powers of (1 - F(yl ) ) ,  since they would vanish anyway 
upon substituting F(yl )  = 1. These considerations lead to taking the derivative 
f o r k - - l w h e n j = n - k - l a n d f o r k = 0 w h e n j = n - k - 2  ( > i), and of the 
last two terms of (A.3). The resulting expression for the derivative at F(yl) = 1 
yields fy,+l - i (3n  - 2i)/n2dW(t). [] J Yl 
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