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A b s t r a c t .  The normal approximation of the confidence level of the stap- 
dard confidence intervals leaves an error of the order O(1/n) (and not only 
0(n-1/2)). We use the first order term in the error to obtain simple lower 
bounds for the sample size. 

Key words and phrases: Confidence interval, normal approximation, Edge- 
worth expansion, bounds for the sample size. 

1. Introduction 

The interval 

(1.1) 2 4- 1.64s/n 1/2 

is a confidence interval for the population mean, #, with an approximate confidence 
level of 90%. The approximation may be bad if n is small or if the population has 
a skewness, and it is therefore desirable to have a lower bound for n. Such bounds 
exist. Cochran ((1977), p. 42) suggested the bound 

(1.2) n > 25g 2 

as a crude measure for the corresponding 95% interval in the case of simple random 
sampling. Here gl is an estimate of the skewness ')'1 ----/t3//(T3, 0"2 is the variance 
and ~3 stands for the third order central moment. Dal~n (1986) proposed a related 
bound. 

Let Fn(t) denote the distribution function of n l /~ (2 -  #)/s, and suppose that 
Fn admits the Edgeworth expansion 

(1.3) Fn(t) = O(t) + n-1/2p(t)¢(t) + n-lQ(t)¢(t)  + o(n-1). 

Here ~) and ¢ denote the standard normal distribution and density functions, re- 
spectively. P and Q are polynomials whose coefficients depend on the distribution 
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of the sample. In typical cases P(t)  = vIH(t) ,  where H depends on the sampling 
procedure, but not on the population. This explains the form of the bound (1.2). 

The expansion (1.3) implies 

(1.4) Fn(t - n -1 /2p( t ) )  = O(t) + O(n-1) .  

If (1.2) is not satisfied one can therefore use the interval 

(1.5) ~ - (1.64 - n-1/2/5(1.64))s/n 1/2 < # < 2 + (1.64 + n-1/2 /5( -1 .64) )s /n l /2  

instead of (1.1) and get an error in the order of O(1/n) .  Here/5  is an estimate of 
P.  This has been noted by several authors (see Johnson (1978), Hall (1983) and 
Abramovitch and Singh (1985)). As explained in the latter two papers mentioned, 
further corrections can be made. 

What is said above must, however, be interpreted with caution: 
If we want both tail probabilities to be close to 5%, then a bound of the 

form Kg~ is the relevant measure, and the correction term in (1.5) will in general 
improve the approximation compared to (1.1). 

If we, however, want the overall confidence level to be close to 90%, then a 
bound of the form (1.2) is not the relevant measure, and the correction term in 
(1.5) will not in general improve the approximation compared to (1.1). 

The reason as to why the overall confidence level fits better than either one of 
the two tail probabilities is that  in typical situations, the polynomial P(t)  is even 
and therefore the n -1/2 terms cancel. This simple observation is, of course, not 
new. It is made by Hall (1983), for example. 

In this paper, we shall consider uncorrected intervals, and use the principal 
error term as given by the Edgeworth expansion to obtain simple lower bounds 
for the sample size. These bounds give an error approximately equal to any pre- 
assigned small number. 

Thus for example the bound n > 31 + 18g 2 + g2 will, when the interval (1.1) 
is based on independent observations, give an error which approximately equals 
1%. Here g2 is an estimate of the excess 72 = #4/a2 - 3, where #4 stands for the 
fourth order central moment. Divide the bound by e if you accept the error e%. 
The corresponding bound which will give an error of 1/2% in each of the two tail 
probabilities is n > 486912. Divide the bound by e 2 if you accept the error e/2%. 

Note that these bounds are not arbitrary but are founded on the theorem in 
Section 2. We shall also give the corresponding bounds when 1.64 is replaced by 
the corresponding t-percentile, and thus be able to decide when the t-percentile 
will give a better approximation than the normal percentile. The bounds can 
be modified to suit other confidence intervals, other confidence levels, and other 
sampling procedures as well as discrete distributions as explained in the following 
sections. 
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2. Continuous populations 

Consider a sample x = ( x l , . . . ,  xn) from a distribution that depends on an 
unknown parameter 0, and a statistic Tn(x, 9) whose distribution function F~ 
admits an expansion of the form (1.3) with P even, and Q odd; P ( - t )  = P(t), 
Q ( - t )  - ~  -Q( t ) .  

The confidence set 

(2.1) Is  -- {~; -za/2  < Tn(x, 8) ( za/2}, 

where ~(z~) = 1 - a, has the confidence level 

1 - = - 

Introduce the two tail probabilities 

= 1 - = 

Then an = a + + a~.  If we use (1.3) and the fact that P is even, we conclude 

+ a/2  + ~ / n  1/2 + O(1/n), (~n = (~ + 5~/n + o(1/n), ~,~ = 

where 
5~ = -2Q(z,~/2)¢(z~/2), ~ = -P(z,~/2)¢(z,~/2). 

Therefore 5a /n  is a measure of the error in the approximation of C~n. Neglecting 
terms of smaller order than 1/n we conclude that the bound 

(2.2) > 

will produce an error less than e. The corresponding bound for each of the two tail 
probabilities is 

(2.3) n > ~ / e  2. 

THEOREM 2.1. Assume that Fn admits the Edgeworth expansion (1.3) with 
P even and Q odd. Let n(a, e) = [1hal/el and n+(~, e) = [/3~/e2]. / f6~ ~ 0, then 
[~n(~,~) - ~[ =- e + o(e) as e --* O. I f  Za ¢ O, then I n+(~,e) - c~/2[ -- e + O(e 2) as 
(~ "--+ 0 .  

PROOF. The theorem follows from the above expansions for c~n and c~ +, and 
the fact that  n(c~, e) --- 15~l/e + O(1) and n+(~, e) =/3~/e  2 + O(1). [] 

A weak point here is that  if we have the favourable situation of ~a = 0 then 
(2.3) takes the optimistic form n > 0. In this case the error is measured by the 
next term in the expansion of c~n +, that  is by 5~/(2n). So (2.3) has to be replaced 
by n > 15~l/(2e). I f / ~  ~ 0, t h e n / ~ / n  1/2 is a good approximation of the error 
only when n is so large that ~a/n  1/2 is big compared to the next term. That 
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is, when n is large compared to (~/2/3~) 2. Similarly, if ~a = 0 then the error is 
measured by the next term in the expansion of an, which in regular cases has the 
form ¢~/n 2. Therefore (2.2) has to be replaced by n > (levi/e) z/2. And if~i~ ¢ 0, 
then 6a/n is a good approximation of the error only when n is large compared to 

The theorem can be used in the following way: choose ~ and e. Compute, if 
possible, the sample size n(ct, ~). Draw the sample. 

A complication here is that n(a, ~) may depend on unknown characteristics of 
the population such as "~1 and ~2. If this is the case, start with a reasonably large 
sample of size no. When choosing no you can use the form of n(a, e) and what you 
think about the values of the unknown characteristics. Then, compute ~0(a, ~), 
the bound given by the theorem but  with the unknown characteristics replaced by 
estimators based on the sample. The sample is sufficiently large if no _> fi0(a, e). 
Otherwise, enlarge the sample to a sample of size nl _> ~0(a, ~). Then compute 
Ttl(O~ , E) in the same way as ~0(a, c) but where the estimators are based on the 
enlarged sample. The enlarged sample is sufficiently large if nl _> ~1((~, e). This 
is probably the case, otherwise we can enlarge the sample a second, a third, . . . ,  
a k-th time until nk ~_ nk(~, e). 

This is a background to the following: 

General rule. If you accept the error ~ in the approximation of the confidence 
level, use the bound n > Idal/c. If you only accept the error e/2 in the approxi- 
mation of each of the tail probabilities, use the bound n > (2b~/e) 2. Here d~ and 
b~ are consistent estimators of ~ and 13~, respectively. 

Note that  the rule is an at tempt to hit the exact sample size. The rule is not 
designed to be on the safe side. 

We shall consider four special cases in some detail. Three of the cases are 
based on independent observations, but with different statistics T. The remaining 
case (Case 2) is the analogue of Case 1 when the independent observations are 
replaced by a simple random sample. 

Case 1. X1, . . . ,  Xn are independent and identically distributed, a is known 
or a known function of #, T --- n 1/2 ( f ( -  #)/a, and EX~ < oc. Here )~ = (Xz + . " +  
Xn)/n. We shall also need the technical condition lim suPl¢l_.o ~ IE(exp i~X1)l < 1, 
this is always the case if the distribution of X1 has an absolutely continuous 
component. 

Case 2. X1, . . . ,  Xn is a simple random sample from a finite population of 
size N, which is continuous in the sense of Robinson (1978). a is assumed to be 
known and T = ul/2()~ - #)/(a(qN/(N - 1))1/2). Here q = 1 - p, where p is the 
sampling ratio p -- n/N. 

Case 3. X1, . . . ,  Xn are i.i.d., and, T = nl /2(X - / z ) / s ,  where s 2 ---- )--~(X~ - 
X)2 / (n  - 1). The technical condition we shall need is that  E X  s < c(~, and that 
the distribution of X1 has an absolutely continuous component. 
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Case 4. As Case 1 but  with T = nl/2(f( - #)/a(f()  where the s tandard  
deviation a(#)  is a function with the following properties: its domain contains ) f  
with probability 1 for each n, and it is two times continuously differentiable in the 
interior of the domain. We shall also assume tha t  # belongs in the interior of the 
domain. 

Below is a table displaying the bounds for the sample sizes in Cases 1, 3 and 
4 for some options of a and e (unit: %). The options for e are examples rather 
than  recomendations. Bounds for other values of e are obtained in the following 
way: B(c~, e2) = elB(C~, ei)/e2, B + ( a ,  e2) = e2B+(a, q ) / e  2. Here B(c~, e) and 
B + ( a ,  e) are the bounds tha t  give the overall error e, respectively the error e/2 in 
each tail. 

A corresponding table valid for discrete distributions can be found in Section 4. 

Table 1. Bounds for sample size in Cases 1, 3 and 4. 

a e Overall error e Error e/2 in each tml 

Case 1 1 0.5 [1.597 --2.3g2I 29g 2 

5 1 ]2.892 - -  0.892[ 3192 

10 2 10.7g7÷0.2g=[ 9g 7 

Case 3 

Case 4 

1 0.5 128+45g 2 -4.5g21 18992 
5 1 128+2592 - 1.6g21 28697 
10 2 16 + 9g 2 + 0.4g2 121g 2 

1 0.5 11.592 - 2.392 + 60gla'(5:) (5.491 - 38.4a'(.~)) 2 
- 2290"(5:) 2 + 49a"(5:)a(5:)] 

5 1 12.8g 2 - 0.8g2 + 12gla'(5:) (5.5g1 - 44.9at(5:)) 2 
- 81a'(2) 2 + 44c~"(5:)a(5:)1 

10 2 10.792 + 0.292 -- 2.391oa(5:) (2.991 -- 27.90"(5:)) 2 
- 16~'(5:) 2 + 23,y"(5:)a(5~)[ 

The corresponding bounds for Case 2 are 

(2.4) min(n,  N -  n) > 
21el 

1 + a/N + V/(1 + a/N)(1 + b/N)' 

respectively 

(2.5) min(n,  N -  n) > 
2C 

1 + 4C/N + V/1 + 4C/N" 

Here, C is the corresponding bound given by the last column in Case 1, c is the 
expression within the absolute value signs in the column for overall error in Case 
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1, b = -s ign(c) (2g2 + 6)d(a ,  e) and a = 41c I + b. Here d(1%, 0.5%) = 2.26, 
d(5%, 1%) = 0.8 and d(10%, 2%) = -0 .21 .  We have assumed tha t  N is so large 
tha t  the expressions under  the squareroot  sign are positive. 

For the stat ist ic in Case 3 the overall error will be smaller for some distribu- 
tions if we use the t-percenti le instead of the normal  percentile, z~/2. 

Table 2. Bounds for sample size in Case 3 when using t-percentile, 

a e Use t-percentile if Overall error e Error e/2 in each tail 

1 .5 39+48g12 -- 1392 > 0 1459~ -4.592 [ 1899~ 
5 1 34+62912 -4g2 > 0  125912 -- 1.6921 2869~ 
10 2 1 > 0 ]9912 +0.4921 1219~ 

The  bounds have par t icular ly  simple forms when za/2 = v ~  i.e. when a = 8%. 
Table 3 gives a general picture and facilitates the comparison between the different 
bounds. 

Table 3. Bounds for sample size when a = 8%. 

Overall error 1% Error 1/2% in each tail 

Case 1 (5/2)912 35912 
Case 2 5912 70912 

1 + 10912/N + 4 1  + 10912/N 1 + 140912/N + 41  + 140912/N 
Case 3 30 + 20912 43092 
Case 4 (5/2)1912 + 18a(~)2(dZ/d~ 2) loga(~)l 35(91 - 9#(~)) 2 

The  two-sided bound in Case 3 has to be replaced by 2092 when the t-percenti le 
is used. 

Both  Table 3 and the example in Section 3 reflect the general fact tha t  the 
bound n(a, e) is of a smaller order  of magni tude  than  n + ( a ,  e) as e --* 0. The  
sample size required to control  the overall error is modest  especially in Cases 1 
and 2. This is, however, no longer t rue  for discrete populat ions as we shall see in 
Section 4. 

The mathematics behind the tables. We shall write 

~1 = ]13/G3, "~2 = #4/a4 - 3 and 

H2(t) -- t 2 - 1, Ha(t)  = t 3 - 3t, H5(t)  = t 5 - 10t 3 + 15t. 

Case 1. Here (see for example Feller (1971), Chapter  XVI) 

P(t) = - ' h H 2 ( t ) / 6 ,  Q(t) = -'Y2H3(t)/24 - 72H5(t)/72. 
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Therefore,  

where 

t3a = 3'1B(o~ ) , 5a = ~/2Dl(~) + ~2D2(~) 

B(c~) -= H2(za /2)¢(za /2) /6  , 

Dl(C~) = H5 (z~/2)¢(zc~/2)/36, D2(a)  = H3(z , /2 )¢(z~ /2) /12 .  

Table 4 gives the values for c~ = 1, 5, 10%, and hence also the values for Case 1 in 

Table 1. 

Table 4. 

a za/2 B(a) DI(~) D2(a) 
1% 2.576 0.0136 - 0.0076 0.0113 
5% 1.960 0 .0277  -0.0275 0.0080 
107o 1 . 6 4 5  0.0293 - 0.0136 - 0.0042 

The  main reason why the bounds in Table 3 are simpler is tha t  H3(x/3) -- 0. 
It is left to the reader  to  verify Table 3 in the remaining cases. 

Case 2. Here (Robinson (1978)) 

P(t )  = -~/1H2(t)(q - p)q-1/2 /6, 

Q(t) = - ( ( 1  - 6pq)~/2 - 6pq)H3( t )q-1/24 - (q - p)2~/21H5(t)q-1/72. 

Therefore,  

~a = ~IB((~)(q - p)q-1/2,  

5~ = ~ D1 ((~)(q - p)2/q + ((1 - 6pq)'72 - 6pq)D2((~) /q. 

Note tha t  in this case the sample size n occurs even to the right in (2.2) and (2.3). 
Solving for n we get (2.4) and (2.5) respectively, provided N > - a  and N > -b .  
Here c = - ( ' ~ 2 D l ( a )  + ~/202(~))/~, a = 41c I + b, b = sign(c)(2~/2 + 6)D2(c~)/e and 
C = (~lB(O~)/e) 2. 

Case 3. Here, 

P(t )  -- ~1(2t 2 + 1)/6,  

Q(t) -- - ( t  3 + t ) / 4 -  7~(t 5 + 2t 3 - 3 t ) /18  + ~2(t 3 - 3t) /12.  

P is given by Hall (1983) and Abramovi tch  and Singh (1985). I have calculated 
Q using the me thod  described in Bha t t acha rya  and Ghosh (1978). So in this case 

/3~ = 7,C(c~), 5(~ = Eo(a )  + ")'~EI(C~) + 3'2E2((~). 
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Here with z = z~/2 

C(a)  = - ( 2 z  2 + 1)¢(z)/6,  E0(a)  = (z 3 + z)¢(z)/2, 

E l ( a )  = (z 5 + 2 z  3 - 3z)¢(z)/9, 

Table 5 gives the special values. 

E2(a)  = - ( z  3 -3 z )¢ ( z ) /6 .  

T a b l e  5. 

o~ C(a) Eo (~) E1 (~) E2 (~) 
1% - 0.0344 0.1421 0.2247 - 0.0226 

5% - 0.0846 0.2773 0.2474 - 0.0161 

10% - 0.1102 0.3143 0.1835 0.0083 

Another possibility is to use the interval 2 + t~/2 ( n -  1)sin 1/2 which is based 
on the t-distribution instead of the normal distribution. Which is best? Write 
Tn for the t-distribution with n - 1 degrees of freedom. Then Tn has the same 
expansion as Fn but  with 71 = 72 = 0. Therefore t~/2(n - 1) = z + O(n-1) ,  and 

Fn(t) = Tn(t) + n-1/2p(t)¢(t)  + n- l (Q( t )  - Qo(t))¢(t) + o(n-1),  

and hence, 
5 + = a/2 - n- l /2p(z)C(z)  + O ( n - 1 ) ,  

&n = a -- n-12(Q(z) - Vo(z) )¢(z) + o(n-1). 

Here Qo(t) = - ( t 3 +  t)/4, z = z~/2, and &n and &+ are defined as an  respectively 
a + but  with za/2 replaced by t ~ / 2 ( n -  1). The one-sided bounds will therefore be 
the same for the two intervals, but  the principal error term in the approximation 
of the overall confidence level will be smaller for the interval based on the t- 
distribution if IQ(z)-Qo(z)l  < IQ(z)l, tha t  is i fQ(z)  < Qo(z)/2. This is equivalent 
to 

9(z 2 + 1) + 7124(z 4 q- 2z 2 - 3) - ~'26(z 2 - 3) > 0. 

Note that  72 -> - 2 ,  and therefore the above inequality is satisfied for all 71 and 
72 if (9/7) 1/2 < z < 31/2. Tha t  is, if a is between 8% and 26%. 

The two-sided bounds are 

n > IE0(a) + gl2El(a) + g2E2(a)l/e, n > Ig21E1(a) + g2E2(a)l/e 

for the normal interval and the t-interval, respectively. 

Case 4. Let U = nU2(yc - # ) / a ( # ) ,  then T / n  1/2 = f ( U / n  1/2) where 

f (w)  = w ~ ( ~ ) / ~ ( ~ + ~ ( ~ ) w )  
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is defined in a neighbourhood of the origin, has two continuous derivatives and 
f ' (0)  -- 1. Therefore there is a neighbourhood of the origin, Iwl < 5, in which f 
has an inverse satisfying 

f - l ( T )  ---- T + a '(#)T 2 + (a'(it) 2 + a"(i t )a(#)/2)T 3 + O(T3). 

Hence if n is so large that f ( - ~ )  < t i n  1/2 < f(~), then [U I < ~n 1/2 and T < t if 
and only if IU[ < ~n 1/2 and U ~_ n 1 / 2 f - l ( t / n l / 2 ) .  Furthermore, the probability 
that [U[ _> $n 1/2 equals o(1/n) and can therefore be neglected. This and the 
expansion for Case 1 yield 

P(t)  = - ' /1H2( t ) /6  + a ' (#) t  2, 

Q(t) = Ql(t)  + ta( ' / la ' (#)( t  2 - 3)/6 - G'(it)2(t 2 -- 2)/2 + a"(#)a(#) /2)  

where Q1 is as Q in Case 1. 

Therefore 

5~ = V1201 ((~)+ '/292(oL)+ '/la'(it)F1 (~) + o"(it)2F2(c~)+ ~(it)an(#)F3(~), 

/~a ---- '/1B(ol) + (r'(it)G(oL). 

Here with z = z~/2 

F1 (oL) = - ¢ ( z ) z 3 ( z  2 - 3)/3, F2(oL) = ¢(z)z3(z  2 -- 2), 

F3(a) = - ¢ ( z ) z  3, G(a) -- - ¢ ( z ) z  2. 

So in this case we get Table 6. 

T a b l e  6 .  

C(~) El(a) F2(~) F3(a) 
1 %  - 0 . 0 9 5 9  - 0 . 2 9 9 4  1 . 1 4 5 3  - 0 . 2 4 7 1  

5 %  - 0 . 2 2 4 5  - 0 . 1 2 3 4  0 . 8 1 0 4  - 0 . 4 4 0 0  

1 0 %  - 0 . 2 7 9 0  0 . 0 4 5 0  0 . 3 2 4 1  - 0 . 4 5 9 0  

The bounds can now be obtained from these expressions by replacing it by 
and '/1 and "/2 by gl and g2, respectively. 

3. A n u m e r i c a l  i l l u s t r a t i o n  

Consider Case 1 when X1 is exponentially distributed with expectation #. In 
this case V1 = 2, V2 = 6 and a(#) = #. 

The interval (2.1) equals ~/(1 ± n-1/2za/2).  Here the right endpoint of the 
interval has to be replaced by oc if n < z~/2. 
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I t  is an  a m a z i n g  fac t  t h a t  }c~= - 5% I < 1% for all n > 1 w h e n  ~ = 5% w h e r e a s  

Ic~+ - 2.5% I < 0 .5% on ly  for n > 110, a n d  l(~+ - 2.5% I < 1% on ly  for n > 24. 

Le t  nE a n d  n + d e n o t e  t h e  s m a l l e s t  s a m p l e  sizes such  t h a t  I~n - c~ t < e for 

al l  n > n E  r e s p e c t i v e l y  Ic~ + - ~/21 < e / 2  for a l l  n > n +,  a n d  le t  nA a n d  n + 

denote the smallest sample sizes recommended by the rule i.e. n A  = [5./el + 1 
a n d  n + = [ ( 2 ~ / ~ )  2] + 1. F u r t h e r m o r e ,  le t  eE = max{]~ - ~l;  n >_ n E } ,  eA = 

m a x { l a n - a l ;  n > ha} ,  e + = m a x (  tan -- al  ; n > n +} a n d  (+  = m a x { l a n - a l ;  n >_ 
n + } denote the worst possible actual errors. 

T a b l e  7 gives a n u m e r i c a l  i l l u s t r a t i o n  w h e r e  a a n d  e a re  e x p r e s s e d  in %. 

Table 7. 

O~ c rt E c E n A e A ~12 n+E ~+ n~ , ~  

1 0.5 9 0.47 8 0.53 0.25 129 0.25 115 0.27 

5 1 1 0.67 7 0.60 0.5 110 0.50 123 0.47 

I0 2 6 1.85 4 3.22 1 23 0.99 35 0.84 

I f  we i n s t e a d  use t h e  s t a t i s t i c  in  Case  4 we ge t  t h e  in t e rva l  2(1 :t: n - 1 / 2 z ~ / 2 ) .  

In  t h i s  case  we ge t  T a b l e  8. 

Table 8. 

E n A ~A E/2 n ~  

1 0.5 117 0.48 0.25 758 

5 1 51 0.98 0.5 1144 

10 2 17 1.86 1 486 

Here  a n d  in T a b l e  9 we use  t h e  s a m e  u n i t s  as  in  t h e  t a b l e s  in Case  1. 

I f  we, i n s t e a d  use t h e  s t a t i s t i c  in  C a s e  3 we ge t  t h e  in te rva l  2 -#- n-1/~sz<~/2 

a n d  T a b l e  9. 

Table 9. 

~ n A E/2 n ~  

1 0.5 181 0.25 758 

5 1 118 0.5 1144 

10 2 55 1 486 

If  we, in  t h i s  case,  i n s t e a d  use t h e  i n t e r v a l  b a s e d  on  t h e  t - d i s t r i b u t i o n ,  we ge t  

t h e  t w o - s i d e d  b o u n d s  nA = 153, 90, 29 wh ich  a r e  sma l l e r ,  b u t  we have  to  know 

t h e  va lue  of  t a / 2 ( n A  -- 1). 
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Note tha t  in all three  cases the  intervals have lengths tha t  equal 2 z ~ / 2 # n - U 2 +  
O(n  -1)  a.s. 

4. Discrete populations 

W ha t  has been said above is no longer t rue  when the populat ion is not  con- 
t inuous but  X 1 , . . . ,  X n  take values in the set {a + kh; k = 0, 1, 2 , . . . } .  Here h 
is the maximal  number  with this property• It can be argued tha t  all distr ibutions 
are discrete since our  observations are measured in some smallest unit.  It will 
be seen from the  expansions below tha t  a dis tr ibut ion can be considered as being 
continuous if h / a  is small compared  to 1. Otherwise it is discrete• 

We shall in this section, only consider Cases 1, 2 and 4. In Table 10 all 
bounds can be modified to hold for other  epsilons via the formula B ( a ,  e~) = 

Table 10. Bounds for sample size in Cases 1 and 4. 

a e Overall error e Error e/2 in each tail 
Case 1 1 0.5 8(h/s) 2 (5.4191 [ + 2.9h/s) 2 

5 1 34(h/s) 2 (5.5[gll + 5.8h/s) 2 

10 2 27(h/s) 2 (2.9[gll + 5.2h/s) 2 

Case 4 1 0.5 8(h/a(Yc)) 2 
5 1 34(h/a(S:)) 2 

10 2 27(h/~(~)) 2 

([5.4gl - 38.4a'(2)[ + 2.9h/a(ye)) 2 

(15.5gl - 44.9a'(~)1 + 5.8h/a(5c)) 2 
([2.9gl - 27.9a'(~)[ + 5.2h/a(Ye)) 2 

The  corresponding bounds for Case 2 are 

(4.1) min(n,  N -  n) > 
2A 2 

1+114  
respectively 

(4•2) m i n ( n , N -  n) > 
2(A + B)  2 

1 +  
4 B ( A  + B )  

N 

i l  B2 A2 
+ + 4  N 

Here A 2 is the bound for the  overall error  in Case 1, A > 0, and (A + B)  2 is the 
bound in the last column in Case 1. We have assumed tha t  N is so large tha t  the 
expressions under  the squareroot  signs are positive• 

The  bound 
nS:(1 - :~ )  > 10, 
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which sometimes is used in connect ion with the  binomial distr ibution,  thus corre- 
spond to our  two-sided bound  when a = 1%, e = 0.5% or a = 5%, e = 1.8% or 

= 10%,  e = 3.2% for example.  The  corresponding bound  for the  hypergeometr ic  

dis tr ibut ion is 
2O 

n 2 ( 1  - 5:) > 

1 + 1 N ~ ( 1  - 2)  

Cases 1 and 2. The  expansion (1.3) can in Cases 1 and 2 be modified to  
hold even for discrete distributions. We shall not  need the Q- te rm to begin with. 

The  modified expansion is 

(4.3) F~(t) = ~ ( s )  + n - l l 2 p ( s ) ¢ ( s )  + O(1 /n ) .  

It is valid when t = (na + kh - n # ) / ( v n  11~) for some integer k. Here m = a in 
Case 1, v = a ( q N / ( N  - 1)) 1/5 in Case 2, and s = t + h / (2 rn l / 2 ) .  

Pu t  r / =  h / ( T n  1/2) and z = z~/2. Choose tj  = (na + k jh  - n p ) / ( T n  1/2) and 

real numbers  - 1/2 < Wl _< 1/2, - 1/2 _< aa2 < 1/2 such tha t  

z = tl + ( ~  - 0 2 1 )  rh - z -~ t2-F ( ~  - w 2 )  r]. 

Then,  
~+ = i - F~( t l ) ,  an = 1 - F~( t l )  + F~(t2) and 

81 : tl  + 77/2 = z + wl~, s2 = t2 + ~/2 = --z + w2~. 

Taylor expansions of the expression to the right in (4.3) around the points sl = z 

and s2 = - z  therefore yield 

= + n-ll (l   - 0 2 1 ¢ ( z ) h l r )  + O ( n - 1 ) ,  

n • oL -~- n-112(022 - wl ) ¢ ( z ) h / T  + O ( n - ] ) .  

Note  tha t  02 1 and 022 vary with # and a, and tha t  we cannot  es t imate  this variat ion 
with sufficient precision. We shall therefore maximize the principal error t e rm in 
order to be on the  safe side. The  maximum is a t ta ined  in the one-sided case when 
021 has the same sign as - ~ and modulus 1/2, and in the two-sided case when wl 
and w2 have modulus  1/2 and opposite signs. In this way we get the inequalities 

2 

(4.4) > \ ~ / 

and 

(4.5) n > \ ~ + e 

corresponding to (2.2) and (2.3), respectively. Thus  if Bd denotes the two-sided 
bound in the discrete case corresponding to e, and B d +  and Be+ the one-sided 
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bounds corresponding to c/2 in the discrete and continuous case, respectively. 
g i l l 2  ~ - -  /:t112 /~i12 Then in Case 1: ~d+ ~c+ + ~d ' 

In Case 2, (4.4) and (4.5) are equivalent to (4.1) and (4.2) respectively, pro- 
vided N > 4A 2. Here 

A -  ¢ (  , )_.z<~,2.h N - 1  and B -  I")'IB(OL) I 
cc~ N 

The bounds will change very little by replacing the quotient (N - 1) /N by 1. 
Note that,  if h is close to 0, then the one-sided bound is close to the corre- 

sponding bound in the continuous case. This is as it should be, but the two-sided 
bound degenerates to n > 0. This is so because the principal error term in the 
approximation a~ ~ a comes from the next term in the expansion (4.3). The next 
term is n-lQh(s)¢(s)  where 

Qh(S) = Q(s) - (s/24)(h/T) 2. 

Therefore, 

Ol n = Ol -~- (021 - -  022)/ /¢(~)  - -  2Qh(Z)¢(z)/n - (02~ + 0222)~2¢'(z) 

- -  (02 1 + 022)~n-]12( p' (z)¢(z) + P(z)¢' (z) ) + o(n -1) 
---- a + (w2 -- 021)r /¢(z)  + n - 1 6 , ~  + O(~n -1/2) + o ( n - 1 ) .  

The worst case gives the requirement r?¢(z) + n -115~ I < e, which is equivalent to 

(4.6) n > 
7I "°')' 

+ 2Te ] + e " 

The bounds (4.6) and (4.5) can thus in Cases 1 and 2 serve as bounds in both the 
discrete and continuous case provided we agree that  h = 0 in the continuous case. 

Case 4. Modifying the argument leading to the expansion for the distribution 
of the Case 4 statistic in the continuous case, we get in the discrete Case 4 

a .  = a + n- l l2(w~ - Wl)¢(z)h/cr + O(n-1), 
~+~ = ~12 - n - l l 2 ¢ ( z ) ( P ( z )  + 021h/a) + O(n -1) 

where I w ~ l  ~< 1/2, and where P is as in the continuous Case 4. The worst case 
then gives the bounds 

n > Ig~B(~) + o-'(~)G(,:<)l + 2~(~) ) ~2. 
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Example. Let us as a final example compare the confidence intervals Cases 
i and 4 will give for the success probabil i ty in a sequence of Bernoulli trials. In 
Case 1 we get 

2 +--~n : k z c ~ / 2 1 ~ - - -  + \  2n / (1 + za/2/n ) 

and in Case 4 

+ z /21 (1 
2) 

The two-sided bound  will in bo th  cases be 

n~(1-  ~) > ( O(z~/2) ) 2 

whereas the one-sided bounds  are 

(11 -2 llz /= - 11 + 
n~(1 - ~) > 6e 

for the first interval and 

2 ( ([1- 2~[(2z2a/2 + l) + 3)¢(za/2) ) 
n2(1 - 2) > 6e 

for the second. The former bound  is smaller than  the latter except when ~ = 1/2 
in which case they are equal. 
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