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A b s t r a c t .  The aim of the present paper is to construct a series of estimators 
and tests in the one and the two sample problems in the gamma distribution 
through the Kullback-Leibler loss. Some of them are newly introduced here. 
When the approach is applied to the case of the normal distribution, the well 
known estimators and tests are derived. It is found that the conditional maxi- 
mum likelihood estimator of the dispersion parameter plays a key role. 
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1. Introduction 

In practical applications data are often positive valued, and our main interest 
is placed on inference of the mean and the dispersion of a population. When a set 
of positive data can be assumed to be an approximate sample from a normal popu- 
lation, the widely employed standard methods based on the normality assumption 
can be applied. However, when the assumption is questionable, for example, when 
the coefficient of variation is not small, we need an alternative method. In this 
paper we discuss the use of the gamma distribution. The gamma distribution has 
favorable properties. The most desirable property among them is that the sample 
mean is the maximum likelihood estimator of the mean, and the maximum entropy 
property is also attractive (Kagan et al. (1973)). 

The gamma distribution, Ga(#, 0), has the density function, 

1 x 1/O-1 

(1.1) p(x; ~, o) = r(1/0)(~o)~/o~-~/"°' 
where the parameters # and 9 represent the mean and the squared coefficient of 
variation, and they are orthogonal (Cox and Reid (1987)), that  is, Fisher's infor- 
mation matrix is diagonal. This parametrization corresponds to the exponential 
dispersion model in Jorgensen (1987), and it is convenient for the numerical calcu- 
lation of estimators (Yanagimoto (1988)). This parametrization is different from 
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the conventional one, 7 = 1/8 and A = itS. Because of the popularity of this 
parametrization in terms of ~/we occasionally use the parameter ~/in addition to 
8 for the readers' convenience. Let a random variable X have the distribution 
Ga(it, 0), and assume that 8 is small. Then the distribution of X/i t  is well ap- 
proximated by the normal distribution with mean 1 and variance 8. Such a normal 
approximation is improved by the Wilson and Hilferty approximation, (X/#)  1/3. 
Thus the normal distribution is an alternative candidate, when 8 is fairly small. 

In spite of much work on inference of ~/and A = it8 only little attention has 
been paid to elementary procedures for inference of it in the gamma population. 
Grice and Bain (1980), Shiue and Bain (1983) and Jensen (1986) presented tests 
for # = #0 in the one sample problems and those for it1 = it2 in the two sample 
problems. Inference of 8 was developed in relation to that of the variance in the 
normal distribution. The likelihood ratio test based on the conditional likelihood 
was proposed as the uniformly most powerful similar test (Shorack (1972)). On 
the other hand, the familiar estimator of 8 is the maximum likelihood estimator. 
However, Yanagimoto (1988) claimed superiority of the conditional maximum like- 
lihood estimator over the (unconditional) maximum likelihood estimator. These 
estimators and tests were introduced individually based on different principles. 
Therefore it is useful to construct a series of elementary procedures for inference 
of it and 8 in a systematic way. They include the conditional maximum likelihood 
estimator of 8 and the conditional likelihood ratio test of 8, since these estimator 
and test show good performance. 

The aim of this paper is to construct the estimators and test statistics by using 
the Kullback-Leibler loss so as to satisfy the above requirements. Our main effort 
is devoted to presenting a test of the mean it under an unknown 0 in the one sample 
case, and that of the equivalence of means of two gamma populations under an 
unknown common 8. Extensions to the multisample problems are straightforward. 
Formal application of our approach to normal and inverse Gaussian populations 
yields known statistics for the ANOVA and the analysis of reciprocals (Tweedie 
(1957)). 

Useful properties of the Kullback-Leibler loss are reviewed and developed in 
Section 2. The methods for the one sample problems are proposed in Section 3, 
and those for the two sample problems in Section 4. In Section 5 the accuracy of 
the approximation to the critical values employed in the tests is discussed. Some 
remarks are given in the final section. 

2. Kullback-Leibler loss 

We explore properties of the Kullback-Leibler loss, which are convenient for 
constructing elementary procedures for inference of # and 8 in a systematic way. 
Let Xl , . . . ,  Xn be a sample of size n from a population with a density function, 
p(x; #, 8). Consider an estimator ft of the mean it. The Kullback-Leibler loss is 
defined by 

f II;(z ; 0) Hp(zi; 8) Hdz  (2.1) ZLn(fz; #, 8) = 2 log l_iP(z~; , ,  O) 

( = ngL(ft; it, 8)). 
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The multiplier 2 is attached for ease of comparison with the log likelihood ratio 
test statistic. This loss is equivalent with the minimum discrimination information 
statistic in Kullback (1959). When the density function is the gamma in (1.1), it 

is expressed explicitly as 

2n(_~  _~) 
(2.2) KL~([t; #, 8) = --~ - 1 - log . 

This loss appears in Brown (1968) as a typical one for an estimator of the mean of a 
positive distribution. It is known that KLn (/5; #, 8) with the maximum likelihood 
est imator/ t  for a distribution of the exponential family is equal to twice the log 
likelihood ratio test statistic, that is, 

I-Ip(x ; 9, 8) 
(2.3) gLn(fi; #, 8) = 2log 1--[p(xi; it, 8)" 

This correspondence permits us the likelihood inference interpretation of some of 
the proposed procedures. 

This loss has many favorable properties like the loss of standardized squared 
difference in the normal distribution. The most important one is 

(2.4) E KL(xi; it, 8) = ngL(5:; it, 8) + E KL(xi; ~2, 8) 
i 

:_(_; :) 2n - l - l o g  + E ~  x - l - l O g  
0 

2n 1 log + - ~  log -z, 
0 x 

with the geometric mean 2. Recall that 2 and 2/2 are independent. 
For ease of notations we write (2.4) as TKL(It, 8) = AKL(It, 8) + RKL(O), 

interpreted as, that the total variation is the average variation plus the residual. 
This orthogonal decomposition becomes equal to that of deviance in the general- 
ized linear model (McCullagh and Nelder (1989)) by disregarding the dispersion 
constant 8. Recent developments of the decomposition in the case of the reproduc- 
tive exponential family can be seen in Jorgensen (1987). We will be careful with 
the role of each term in (2.4). Consequently, the proposed procedures are slightly 
different from those based on the deviance such as the analysis of deviance. 

The above orthogonal decomposition of this loss holds for other distributions 
such as the normal and the inverse Gaussian distributions. For the normal distribu- 
tion N(#, a 2) with mean it and variance a 2 and the inverse Gaussian distribution 
IG(#, 8) with the density function of V/1/2~Ox3exp(-(x- it)2/20it2x), the ex- 
plicit forms of the Kullback-Leibler loss are n ( 9 -  it) 2/a2 and n(p/ i t  + it/t~ - 2)/Pit, 
respectively. In these distributions there are no difficulties in constructing elemen- 
tary procedures for inference of the mean and the dispersion parameters, because 
each term appearing in the decomposition corresponding to (2.4) has exactly the 
chi-square distribution. 

In the gamma distribution, however, each term has an approximate chi-square 
distribution. Thus we construct elementary procedures by using appropriate chi- 
squared approximations if necessary. 
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3. Proposed procedures---one sample problems 

All the estimators and the test statistics given here are derived through the 
Kullback-Leibler loss. It should be emphasized here that the proposed procedures 
correspond exactly with the standard elementary ones in the normal population. In 
fact the latter ones are derived by replacing the Kullback-Leibler loss of the gamma 
distribution by that of the normal distribution. Furthermore, the distributions of 
the estimators or test statistics in corresponding problems are similar to each 
other. All the procedures are summarized in Table 1. 

In this section we concentrate on the derivation of the procedures, their opti- 
mality and other interpretations of them. We use approximations of which accu- 
racies will be discussed in Section 5. The significance level, a, is assumed to be 
0.1, 0.05 or 0.01. The first value is popular in the reliability theory. 

Problem 1. Estimation of#. The parameter # is estimated so as to minimize 
TKL(/t, 8) = ~ 2n(xi//t - 1 - log xi//t)/8, or equivalently to minimize AKL(#, 8). 
This yields the estimator ft = 2, which is free from 8. It is also the maximum 
likelihood estimator. 

Problem 2. Estimation of 8. The parameter 8 is estimated by solving the 
equation RKL(8) = E(RKL(8)) = 2n{~(8) -~ (O/n )} /8 ,  where ~(8) = - ~ ( 1 / 8 )  - 
log8 with ~(-) being the digamma function. The similar idea was found in 
McCullagh ((1983), p. 63), though it was not developed widely enough. This 
estimator is the conditional maximum likelihood estimator given the sample mean 
2. An optimality of the conditional maximum likelihood estimator is given in 
Godambe (1980), and superiority of it over the (unconditional) maximum likeli- 
hood estimator is discussed in Yanagimoto (1988). 

Problem 3. Test for H0: /t = /to against /t ~ /to when 8 is known. The 
rejection region is given by AKL(po, 8) = 2n{2//to - 1 - log 2/po}/8 > ca for 
a suitable value ca. This test is the likelihood ratio test. The critical value is 
approximated by ca - {2n{(8/n)/8}. X12(1 - a) with X~(1 - a) being the (1 - a)- 
th point of X~, if n/8 is greater than 1 for a = 0.1 or 0.05, and 3 for a = 0.1, 0.05 
or 0.01. Recall that it is easy to calculate the exact critical value, if it is desired. 

Problem 4. Test for H0: # = #0 a~]ainst Hi: /t ~ / t  o when 0 is unknown. The 
rejection region is given by AKL(#o, 0) = 2n{2/#o - 1 -  log 2//to}/O > ca(O) with 

being the estimator of 0 in Problem 2, that is, the conditional maximum like- 
lihood estimator. In the gamma case, different from the normal case, the critical 
value ca (8) depends on the unknown parameter 8. The value is approximated by 
ca(8) - (2n/8)~(8/n)t~(o)(1 - a / 2 ) ,  where the adjusted degrees of freedom f(8) is 

(3.1) f ( 8 )  = 2 n ( ( ( 8 )  - ( ( 0 / n ) / n ) .  

The value still depends on 0. A method for determining a critical value is to replace 
8 by 0. Another practical method is to select an appropriately fixed value of 8. 
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When 0 is expected to be small, we set f(O) - f(0) = n - 1. Such a conventional 
guess of 0 looks useful in practice. As discussed later, t~(0)(1 - a )  is not much 

sensitive to the variation of f(O), and f(O) changes slowly with respect to 0. 
This test is a newly introduced one. The test statistic is equal to 2 log{l-Ip(x~; 

ft, 0)/[Ip(xi; #o, 0)}. Note that the rejection region based on the usual likelihood 
ratio is different from ours, though both the rejection regions are common in the 
normal population. 

This test may be called the t2-test of the mean in the gamma population to 
emphasize the relation with the t test of the mean in the normal population. A 
similar test was proposed in Jensen (1986) and a one-sided test was proposed in 
Grice and Bain (1980), which will be discussed briefly in the final section. 

Problem 5. Test for H 0 : 0  = 00 against 0 > 00. The rejection region is 
given by RKL(Oo) = 2n(log 2/~)/0o > ca for a suitable value ca. The test is the 
uniformly most powerful similar test (Shorack (1972)). Glaser (1976a) presented 
a method for calculating the exact value of ca, but it requires a large amount 
of computation, and a special program is necessary. Using the first and second 
moments of RKL(Oo), Bain and Engelhardt (1975) gave an approximate value of 
ca as (2n/Oo){~(Oo) -~(Oo/n)}x2f(1 - a ) / f  where the adjusted degree of freedom 
f is 

(3.2) 
2n{~(O0) - !(Oo/n)} 2 

f = 0 ~ @ - - - ~ ' ~ ) "  

This approximation is sufficiently accurate if n _> 10 and 00 < 2. 

4. Proposed procedures--two sample problems 

Prior to presenting procedures for the two sample problems, we give the or- 
thogonal decomposition of the loss function corresponding to (2.4). Let X l , . . . ,  xn 
and Yl , . . . ,  Ym be samples of sizes n and m from the gamma populations having 
p(x; it1, O) and p(y; #2, 0), respectively. Then it holds that 

(4.1) E KL(xi; #, O) + ~ KL(yi; #, O) 

= (n + m)KL(~; #, O) + {nKL(Y:; 5, O) + mKL(~I; 2, O)} 

2 ( n + m )  - l - l o g  + ~ (nlog + mlog z )  
0 

• 
+ ~  nlog=x + m l ° g  , 

with 2 = (n~ ÷ m~)/(n + m). We subsequently write (4.1) as TKL(#, O) = 
AKL(#, O) + BKL(O) + RKL(O); the third term on the right-hand side is also 
written as RKLx  (0) + RKLy(O). From the analogy with the usual ANOVA the- 
ory these terms are regarded as the total, average, between samples and residual 
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variations. These four terms of the right-hand side are mutually independent. 
This decomposition can be extended straightforwardly to the general k sample 
problems, but we will not pursue the problem any further. 

Problem 6. Estimation o f f  --- ~1 = ~2. The parameter #, under the assump- 
tion that # = #1 = #2, is estimated so as to minimize TKL(#, 8), or equivalently 
AKL(#, 8), which yields t~ = 2. This is the maximum likelihood estimator. 

Problem 7. Estimation of 8. The estimator of 8, which is common to both the 
populations, is given by RKL(8) -- E(RKL(8)) = [2n{{(8)- {(O/n)} q-2m{{(8) - 
{(8/m) }]/8. This estimator is the conditional maximum likelihood estimator given 
the sample means, • and ~. 

Problem 8. Test for H0:~1 : ~2 against Hi: ttl ~ #2 when 8 is known. The 
rejection region is given by BKL(8) > ca. This is the likelihood ratio test. The 
critical value is approximated by ca - b(8; n, re)X2(1 - a) with b(8; n, m) = 
(2/8){n~(O/n) + m~(O/m) - (n + m)~(O/(n + m))}, if both n/8 and m/8 are 
greater than 1. 

Problem 9. Test for H0:#1 --- ~2 against Hi: #1 ~ #2 when 8 is unknown. The 
rejection region is given by BKL(O) > ca(8). The critical value is approximated 
by ca(O) - b(8; n, m)t~(0)(1 - a /2)  where S(8) = kn(8) + k,~(O) with kn(8) being 
the right-hand side of (3.1). Again as in Problem 4, c~(8) depends on 8. We can 
apply the same treatments to an unknown 8 as those in Problem 4. 

This test statistic is derived as a type of the likelihood ratio test as in Problem 
4. The two sample test for the equivalence of the means is most important in 
practice. This test may be called the two sample t2-test in the gamma population. 
A similar test was proposed in Jensen (1986), and another test was proposed in 
Shiue and Bain (1983). 

Problem 10. Test for Ho: 81 = 82 against Hi: 81 > 82. In this prob- 
lem we assume that  the two samples come from the gamma populations having 
Ga(#l, 81) and Ga(#2, 82). The rejection region is given by { R K L x ( 8 ) / ( n -  
1 ) } / {RKny(8 ) / (m-  1)} > c~(8) for a suitable value c~(8). This test is equivalent 
to the conditional likelihood ratio statistic given the sample means, ~ and ~, and 
is the uniformly most powerful similar test. The critical value is approximated by 
ca(O) - FA(o),$2(o)(1 - c~), where the adjusted degrees of freedom fl(O) is given 
by 

(4.2) 2n{{(8) - 

s1(8) = 

and f2(8) is given by replacing n by m in (4.2). We either replace 8 by 0, or by a 
preassign value, say 8 -- 0, as in Problem 4. The first procedure is recommended 
by Shiue et al. (1988). 
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5. The accuracy of approximations 

In the previous two sections we used various approximations to obtain critical 
values of the test problems. We will discuss the accuracy of the approximations of 
Problems 3, 4, 5 and 10 case by case. It is known that  the log likelihood ratio test 
has asymptotically the chi-square distribution. The accuracy of the approximation 
is sharply improved by adjusting the first one or two moments with cx~ for suitable 
values c and d. These adjustment constants axe usually referred to as Bartlett 's 
adjustment constants. In all the cases the accuracy depends on both n and 8, and 
it becomes higher as either n or 1/8 increases. 

In Problem 3 the distribution of A K L ( # o ,  8) is a function of O/n = 1 /nT .  The 
proposed approximation is given by adjusting the first moment. Fortunately this 
approximation is accurate as seen in Table 2. The condition O/n < 1 presents 
sufficient accuracy for ~ = 0.05, and that  O/n < .33 does for ~ = 0.01. 

Table 2. The probability Pr{ A K  L(#o, O) > cx21(1 - a)} with xi ~ Ga(#, 0), i = 1 . . . . .  n, and 

the Bartlett adjustment factor c = (2n/O)~(O/n). 

(~ 

OIn 
0.1 0.05 0.01 

.2 .1000 .0500 .00997 

.25 .1000 .0500 .00995 

.33 .1000 .0499 .00992 

.5 .1001 .0499 .00980 
1. .1001 .0493 .00921 
2. .0994 .0470 .00771 

The approximate critical value of Problem 4, or equivalently that  of Problem 
9, looks less satisfactorily accurate than the others. However, since these problems 
are most important in practice, it is worthwhile to pursue the actual accuracy. We 
conducted simulation studies to confirm the accuracy. Prior to presenting the 
result of the simulation studies we give the backgrounds for yielding the proposed 
test statistic and approximation. A notable fact is that  0 given in Problem 2 
only has a small bias, which was suggested in Yanagimoto (1988). We present 
simulation results on the bias of ~ in Table 3, which show that the relative bias 
is less than 2% for n > 10. Note that  the relative bias of the unconditional 
maximum likelihood estimator of 1/0 is much larger than that of our estimator of 
O. The usual asymptotic theory of 0 leads to an approximate variance 2 0 2 / f ( 0 )  
with f(0) in (3.1). Thus the numerator is approximated as (2n/O)~(O/n)x~,  and 
the denominator as X~ (O). Taking account of the independence of both the terms, 
we obtain the approximation suggested in the previous section. 
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Table 3. Est imated mean and variance of ~/~? with 10,000 replications. The last column presents 

the approximation of variance due to the usual asymptotic theory. 

n ~ E(~/~)  V(~/~) Approx. 

10 .2 .9803 .1934 .2072 

.5 .9827 .1769 .1891 

1. .9812 .1624 .1686 

2. .9882 .1450 .1470 

20 .2 .9765 .0933 .0984 

.5 .9872 .0841 .0902 

1. .9947 .0789 .0807 

2. .9982 .0711 .0706 

The approximate distribution still involves an unknown parameter. The degree 
of freedom, f(8),  is sensitive to 8, but fortunately the critical value t~(o)(1 - (~/2)  
is not very sensitive to 8, which is illustrated in Fig. 1. The above reasoning of 
the approximation may not be sufficiently persuasive. To check the accuracy, we 
conducted simulation studies, using the technique in Grice and Bain (1980). Table 
4 presents the result, which shows the satisfactorily accurate approximation when 
8 is moderate for a = 0.1 or 0.05. 

f (8 )  

18. 

t~(e)  ( 1 - ~ / 2  ) 

i 
e 

i 

i 
L. 5 .  

f 

' ~ 9 
o. , .  ~. 3. 

Fig. 1. Behaviors of degrees of freedom f(~) (solid) and the critical value t ~ ( e ) ( l - a / 2 )  

(dotted) in the case of n ---- 10 and a ----- 0.05. 
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Bain and Engelhardt  (1975) discussed the accuracy of the approximat ion sug- 
gested in Problem 5. Al though the exact critical value can be computed  as in 

Glaser (1976a), the access to  the  computer  program is restr icted.  Table 4 in Bain 
and Engelhardt  (1975) and our s tudy based on Glaser (1976b) show tha t  the con- 
ditions n _> 3 and 0 <_ 2 assure the satisfactory accuracy for a = 0.05 as well as 
the  acceptable one for a = 0.01. Though  their  Table 1 contains adjusted coeffi- 
cients for small values of 7 = 1/0, we guess tha t  the approximat ion is poor  in such 
situations. 

Table 4. The estimated rejection level of the approximated tests by simulations with 40,000 
replications for n = 10 (the upper) and for n --~ 20 (the lower). 

.05 

.1 

Approximation of degrees of freedom 

Estimated 0 = 0 

.2 .0506 .0494 
.0505 .0499 

.5 .0512 .0485 
.0508 .0494 

1. .0517 .0473 
.0507 .0485 

2. .0522 .0462 
.0506 .O478 

.2 .1013 .0999 
.1006 .0998 

.5 .1022 .0991 
.1009 .0994 

1. .1028 .0979 
.1016 .0993 

2. .1028 .0966 
.1013 .0987 

A useful fact of Problem 10 is tha t  the rat io of (2n/O){~(O) - ~(0/n)}  to 
(2m/0){~(8) - ~(0 /m)}  is well approximated  by (n - 1 ) / ( m  - 1), if 0 < 2 and n / m  
is not  largely different from 1. Thus  the coefficient is approximate ly  free from the  
paramete r  0. Using this fact together  with the approximat ion in Problem 5, we 
obtain (4.2). 

6. Concluding remarks 

Th e  proposed procedures  may at first appear  to require e laborate  computa-  
tions for obtaining approximate  values. However we can apply simple, accurate  
approximat ions  of the values. Therefore  no difficulty results in practice,  if a per- 
sonal compute r  is available. In terms of the asymptot ic  formula of the  d igamma 
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function the function ~(8) is well approximated by ~(0) - 0/2 + 02/12 - 04/120, if 
0 is small, say less than  3/4. An approximation with wider range of applicability 
is given by the following, 

1 log(1 + 0 + 0.3302). - o - 

The first derivative of ~(8) can be approximated by that  of the above approximate 
functions. As Yanagimoto (1988) shows, an approximation of 0 in Problem 2 is 
given by 

0- -  ~((2n + 1)z/2(n- 1))-~(z/2(n- 1)), 

with z being log2 /~  and ~(z) -- z + (1/3) log(1 + 3z + 5z2/2), which is a good 
approximation of ~-1 (z). 

Grice and Bain (1980) and Shiue and Bain (1983) gave other approximate 
one-sided tests similar to those of Problems 4 and 9. In the test for # = #0 under 
an unknown dispersion parameter  discussed in Problem 4, their test is based on 
the fact that  x/#0 belongs to the gamma distribution with mean 1 and the dis- 
persion parameter  O/n. Their first approximation is 2/#0 ~ Ga(1, O~/n) with the 
unconditional maximum likelihood estimator 0~. Unfortunately, this approxima- 
tion is poor as they showed. Therefore they obtained approximate critical values 
by evaluating the distribution at 0 = 0. The accuracy of the approximation looks 
incidental. Our methods have an advantage, that  they are derived in a systematic 
way. Consequently the use of 0c is reasonable in relation to the estimation and 
the test of O. In contrast no theoretical background is given for the use of 0~ by 
the above authors. 

Using the fact that  the conditional distribution of 2 given t = 2~#o-log 2/#o- 
1 + log2 /2  is free from 0, Jensen (1986) proposed a similar test for Problem 4. 
Since the distribution is complicated, he discussed an approximation. Although the 
numerical computat ion of the conditional distribution is possible (Glaser (1976a, 
1976b)), the accuracy of the approximation is not studied widely enough. The 
theoretical background for this test is not strong. In fact, the statistic t contains 
#0, and the rejection region is not presented explicitly. Another defect is that  
the test is introduced separately from other problems such as the estimation of 
p. In fact, it does not seem easy to show whether the sample mean attains the 
maximum of the conditional likelihood or not. Consequently, further research will 
be necessary to recommend this similar test for practice, though it looks promising. 
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