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Abs t r ac t .  Suppose that the log-likelihood-ratio sequence of two models with 
different numbers of estimated parameters is bounded in probability, without 
necessarily having a chi-square limiting distribution. Then BIC and all other 
related "consistent" model selection criteria, meaning those which penalize the 
number of estimated parameters with a weight which becomes infinite with the 
sample size, will, with asymptotic probability 1, select the model having fewer 
parameters. This note presents examples of nested and non-nested regression 
model pairs for which the likelihood-ratio sequence is bounded in probability 
and which have the property that the model in each pair with more estimated 
parameters has better predictive properties, for an independent replicate of the 
observed data, than the model with fewer parameters. Our second example also 
shows how a one-dimensional regressor can overfit the data used for estimation 
in comparison to the fit of a two-dimensional regressor. 

Key words and phrases: Model selection, linear regression, misspecified mod- 
els, AIC, BIC, MDL, Hannan-Quinn criterion, overfitting. 

1. Introduction 

Box and Jenkins ((1976), p. 17) formulated the principle of parsimony in 
modeling as the use of the "smallest possible number  of parameters for adequate 
representation" of the data.  Model adequacy can usually be determined only with 
the aid of later da ta  which are not available when the model is fitted. So it is likely 
tha t  most modelers think of this principle as asserting that ,  given several models 
which fit the da ta  equally well, the one with fewest est imated parameters should 
be preferred. This formulation of the principle can be subjected to a mathemat ical  
analysis if the notion of fit is made mathemat ica l ly  precise. For linear least squares 
regression models, a natural  measure of fit, which we adopt, is the large-sample 
limit of the sample variance of the regression residuals. Wi th  this measure, two 
fitted models whose Gaussian log-likelihood-ratio stays bounded in probability as 

* An earlier version of this article was presented at the Symposium on the Analysis of Statis- 
tical Information held in the Institute of Statistical Mathematics, Tokyo during December 5-8, 
1989. 
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(1.1) 

and 

the sample size N increases have the same fit, because the log-likelihood-ratio is 
proportional to N times the log of the ratio of the sample variances, see below, so 
this latter ratio must converge to one. 

When the log-likelihood-ratio sequence of two models with different numbers 
of parameters is bounded in probability, then model selection criteria like BIC, 
whose penalty for estimated parameters becomes infinite with N, will obey the 
principle of parsimony in the strong sense that the probability of selecting the 
model with fewer parameters approaches one as N increases. This property has 
sometimes been assumed to establish the superiority of such criteria over a criterion 
like AIC, see Kashyap (1980) and Raftery and Martin (1988), because for AIC, the 
large-sample probability of selecting a correctly parameterized model instead of an 
over-parameterized model is a bit less than one, see Shibata (1976) and Woodroofe 
(1982), for example. 

Of course, arguments based upon the assumption of a correct model are some- 
what remote from the situation of practicing statistical modelers. This paper 
demonstrates in a quite elementary fashion that the principle of parsimony for- 
mulated above is not generally valid when incorrect models are compared, and it 
shows that this principle can fail in a way that makes the strong parsimony prop- 
erty of criteria like BIC disadvantageous. An implication of this fact for model 
selection theory is suggested in Section 5. 

Our examples are misspecified regression models for univariate data Yt, 1 <_ 
t ~ N, which are estimated, given column vector regressors xt, 1 < t < N, of 
dimension dim xt, by maximizing a Gaussian log-likelihood function, 

N 

LN[a2, A] =_ _ N  log21rc3 - 1 E ( y  t _ Axt)2. 
2 2or 2 

t=-I 

We use - to indicate the definition of a symbol. This maximization leads to the 
least squares estimates 

- 1  

A(N) ==- E y t x ' t  xtx' t 
t = l  t----1 

N 
5(N) 2 =-_ N - 1 E ( y  * - f l(N)xO 2, 

t = l  

and to the maximized value 

N 
LN =-- LN [5(N) 2, .4(N)] = - ~ log 2~re&(W) 2. 

Several well known regressor selection criteria have the form 

(1.2) CRIT(N) ~ - -2Lx + W n ( d i m x t  + 1), 

where WN is a sequence of positive numbers. For example, the AIC of Akaike 
(1973) is obtained when WN ------ 2, and the BIC of Schwarz (1978) is obtained when 
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WN ---- logN. For the criterion of Hannan and Quinn (1979), WN =- 21oglogN. 

When two competing regressor processes x~ 1) and x~ 2) are being compared by (1.2), 
the one with the smaller criterion value is favored. (Such criteria are admissible, 
see Takada (1982).) Observe that 

(1.3) CRIT (1) (N) - CRIT (2) (N) 

-_ N log{b( i ) (N)2 /b (2 ) (N)2  } + WN(d imx~  1) - d i m x ~ 2 ) ) .  

Therefore, if WN -~ c~ with N, and if the log-likelihood-ratio is bounded in 
probability, 

(1.4) N log{b 0) ( N ) 2 / b  (2) ( / ) 2}  ..~ Op(1), 

then the regressor with smaller dimension, and therefore fewer estimated coeffi- 
cients, will be preferred with probability tending to one. Criteria with this property 
will be called strongly parsimonious. The somewhat differently defined MDL and 
PLS criteria of Rissanen (1978, 1986, 1989) and the FIC criterion of Wei (1991) 
also have this property. 

In the next two sections, examples will be given to demonstrate that  such a 
consistent preference for a more parsimonious model can be undesirable according 
to a cost function which is a natural measure of prediction error, which we now 
describe. Let E denote expectation with respect to the joint distribution of the 
observed data. The measure assumes that the y-values being predicted and the 
regressors used for prediction are an independent replicate y~*, x~, 1 < t < N of 
the data  used to determine fi,(N) (whose expectation operator is denoted by E*). 

$ If xt is non-stochastic, then x t = i t .  This cost function concerns mean square 
prediction error over both replicates, 

{ }} C*(N)  = E E* y; - f~(N)x;)  2 . 

Greater cost means worse predictive performance. 
For comparing regressors x~ 1) and x (2) t , we are interested in the ultimate sign 

of the cost difference, 

(1.5) A*(N) = C * ( 1 ) ( N )  --  C * ( 2 ) ( N ) .  

2. A nested comparison with fixed regressors 

Suppose that the correct model for yt is given by 

(2.1) yt = ~ at-l~2 + et, 

where a 2 > 1 and et, t = 1, . . .  is a sequence of independent Af(0, 1) variates. A 
relevant result is 

N 

(2.2) lim N - u 2  E l t - 1 / 2  = 1, 
N--,c~ 2 

t - -1  
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which can be derived by considering the integral of (1/2)t  -1/2 over [1, N]. 

For simplicity, we begin by comparing the null regressor x~ 1) - 0, which 
requires no coefficient estimation and is equivalent to the constraint ~(1)(N) -- 0, 

with the constant mean regressor x~ 2) = 1. Then AO)(N) = 9(N)  =- N - l ( y l  + 
• " + YN). It follows from (2.1) and (2.2) that,  in distribution, 

(2.3) N1/2~(N)  ~ A/'(a, 1). 

For later reference, we note that  

N N 

(2.4) E y  2 - E ( y t  - ~ (g) )  2 = N~(N)  2. 
~=1 t = l  

For the independent replicate y~ , . . . ,  Y~v of y l , . . . ,  ym, we calculate 

A*(N) -- E E* y~,2 _ (y; _ O(y))2 
t ,  t----1 t = l  

= 2 N E *  {~* (N)}E{9(N)} - N E { 9 ( N )  2} 

1 2 1,2) 1 
t = l  

whose limiting value, A*(oc) = a 2 - 1 ,  is positive. Thus, when N is large, the use 

of the regressor x~ 1) results in greater prediction error, as measured by C*(N) ,  

than the use of x~ 2), which, unlike x~ 1), involves a coefficient estimate. 
Now we will verify (1.4), with 

N 

2 --- N-lZY , 
t = l  

N 

b(2)(N)2 - N - 1  E ( y  t - ~(N)) 2. 
t = l  

In fact, from (2.3) and (2.4) we obtain N{b(1 ) (N)  2 - b(2)(N) 2} ~ Op(1). Since, 
with probability 1, 

(2.5) b O ) ( i )  2, b(2)(N) 2 --~ 1, 

we can conclude that  

(2.6) ZN -- {b(1)(N)2/b(2)(N)2 - 1} ~ Op(N-1) .  

Note that  with ZN so defined, we have 

Nlog{b(1) (N)2 /b(U)(N)  2} = Nlog(1 + ZN). 
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From the Taylor expansion 

1 (1 + ZN)-Iz 2, log(1 + Z N )  = Z u - -~ 

where Z N  is between ZN and 0, and from (2.6), it follows that 

(2.7) N log{~ 0) (N)2/~ (2) (N) 2 } ,- N Z N  

and that (1.4) holds. In (2.7) and in (3.5) below, ~ indicates that the difference 
between the expressions tends to 0 in probability. Since (1.4) holds, strongly 

parsimonious criteria will select x~ 1) with asymptotic probability 1. 
By contrast, the minimum AIC criterion will lead to a choice of the better 

predicting regressor x~ 2) with a probability which can be made to be as close to 
1 as desired by choosing a 2 large enough: indeed, by (2.4), (2.5) and (2.7), the 
log-likelihood-ratio has the same limiting distribution as N~(N) 2, which, by (2.3) 
is non-central chi-square, X~ (a2) • Hence 

lira pr{AIC(1)(N) - AIC(2)(N) > 0} = pr{x2(a 2) > 2}, 
N--*cx~ 

which ranges between 0.4517 and 1.0 as a 2 ranges between 1.0 and c~. 
There are also other analyses which confirm the superiority of x~ 2). Consider, 

for example, the minimum mean total squared error of the i-th regressor, 

N 

MSS (i) - m~nE E ( y  1 - Ax~i)) 2 (i = 1,2). 

It is easily verified that limN_~{MSS(~ ) - MSS~ )} = a 2 > 0. 
With modest additional computational effort, the reader will be able to verify 

that the same limiting results hold when x~ a) = ( -1)  t and x~ ~) - - [ ( - 1 )  t 1]'. 

3. Non-nested, incorrect autoregressions 

Now we let Yt denote a mean zero, stationary, Gaussian autoregressive process 
of order 6, with variance E(Y2t) = 1, whose first three partial autocorrelations are 
zero, 

(3.1) (~11 = q~22 ~- q)33 ~-- 0. 

If we set Pk = E(yt+kYt),  k = 0, + 1 , . . . ,  then it follows from the Levinson-Durbin 
algorithm, see Durbin (1960) or Levinson (1946), that (3.1) is equivalent to 

(3.2) Pl = P2 = P3 = 0. 

As a consequence, if zt - (Yt-1 Yt-2 Yt-3) t, then, with probability 1, 

N 

(3.3) lim N - 1  E t / N--~c~ z t z t  = 13 = g z t z t '  
t = l  
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the identity matrix of order 3. 
For a given permutation (Jl, j2, J3) of (1, 2, 3), we define the regressors 

x~ 1) = y~-j l ,  xl ~) -= [y~-j~ y~-~] ' .  

It follows from the formula (1.1) and from (3.3) that the associated coefficient 
estimates A(1)(N) and A(2)(N) are consistent estimates of pjl and [py~ pj~]. 

The details omitted from the argument that we now sketch can be found in 
Findley and Wei (1988, 1991). Set 

N--jk  

Pjk(g) -- N -1 Z Yt+jkYt 
t=l  

and recall from Anderson ((1971), p. 478) that, since PJk : O, 

(3.4) N--,oclim NE{~2k(N)} = Vjk , N1/2~jk(N ) d~st.J~f(o, Yjk), 

where, with f(A) denoting the spectral density of Yt, Vjk is given by 

Vjk _~ 41r cos 2 Ajkf2(A) dA. 
~T 

Using the formula for ~ 1 Y t X ~  i), i = 1,2 implied by (1.1), 

N N 

reduces to 

5(N) ~ E ( y t -  A(1)(N)x~I)) 2 - Z ( y t -  A(2)(N)x~2))2 
t : l  t----1 

N N 

5(N) -- -A(1) (N)2 ~ x~ 1): + -4(2)(N) E x~2)x12)'tl(2)(N)'" 
t = l  t = l  

By contrast, since Yt and x~ ~), i = 1, 2 are uncorrelated, and since (3.3) holds, we 
obtain that 

~*(N) - E* (Y; - A(')(N)x~I)*) ~ - Z ( Y ;  - A(~)(N)x~2)*): } 

simplifies to 
6" (N) = N.4 (1) (N) 2 - NA (2) (N).4 (2) (N)'. 

Since the quantities N1/2~jk(N ) are bounded in probability, see (3.4), it follows 
from (3.3) and these formulas that 

(3.5) 6*(N) ~ -5 (N)  ~ N~21 (N) - N~22(N) - N ~ 3 ( N  ). 
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The results (3.4) and (3.5) suggest that  the limiting value A*(~)  of A*(N) = 
E~*(N) (see (1.5)) is given by 

(3.6) : % 1  - - Y 3, 

whereas A(oc) _= limN~o~ E~(N) has the value 

(3.7) A(cc) = -A*(c<)). 

A complete verification of (3.6) and (3.7) requires a rather subtle argument, see 
Findley and Wei (1988, 1991). 

A Taylor expansion argument analogous to that  of Section 2 shows that  
N log(# (1) (N)2/~ (2)(N) 2) ~,, 6(N). Since the quantities N1/2~j k (N) converge in 
distribution, it follows from (3.5) that  (1.4) holds. Thus, all strongly parsimonious 

criteria will have a consistent preference for xl 1). By (3.6), this will be undesirable 
for large N whenever 

(3.8) Vj~ > Vj~ + Vj3. 

We examined this inequality for 1000 AR(6) processes determined by choos- 
ing ¢44, ¢55 and ¢66 independently and uniformly in ( -1 ,  1) and imposing (3.1). 
The integrals defining the Vjk's were carefully evaluated numerically. The inequal- 
ity (3.8) was determined to hold for 577 of the 1000 process, for some permuta- 
tion (jl,j2,j3). For example, with ¢44 = 0.80, ¢55 = -0.41,  ¢66 = -0 .64 and 
(jl,j2,j3) = (2, 1, 3), we obtained 

~ 1 : 2 6 . 3 ,  ~ 2 = 2 . 9 ,  ~ 3 = 2 . 4 ,  

so that  (3.8) is satisfied. These different variance values illustrate the principle 
underlying the existence of such counterexamples to the principle of parsimony: 
when incorrect models are considered, the costs associated with estimating differ- 
ent coefficients are not always the same, even when the coefficients are negligible 
asymptotically, see Findley and Wei (1988) for general formulas. 

For this example, the asymptotic probability that  AIC chooses the better 
regressor x~ 2) can be shown to be 0.17. 

Now we consider (3.7), which describes an overfitting principle: worse pre- 
diction performance with an independent replicate is precisely matched by an 
increased (over)fit to the data used for estimation. This is a general principle 
in that  (3.7) can be shown to hold whenever the difference between the optimal 
mean square fits MSS~ ) and MSS(N 2) (defined at the end of Section 2) vanishes 
with increasing N. Our examples satisfying (3.8) demonstrate therefore that  a 
one-dimensional regressor can be overfitting in comparison with a two-dimensional 
regressor. In other words, parameter parsimony can increase overfitting. 
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4. Other situations 

The situations considered above, in which the log-likelihood-ratio sequences 
were bounded in probability, are a small subclass of the situations in which two 
competing regression models have the same degree of fit asymptotically. Consider 
the case in which Yt, x~ 1) and x~ 2) are zero-mean, jointly stationary, ergodic time 

series, with Yt univariate and x~ 1) and x~ 2) multivariate. The least squares coeffi- 

cient estimates A(1)( / )  and A(2)(N) of the regression of Yt on x~ 1) and x~ 2) will 
converge to the coefficient vectors A (1) and A (2) given by 

A( 0 ,~ _(i),r ~,_(i)_(i),~- 1, --r~yt~t k ~ t  ~t ) i = 1 , 2 .  

The competing regression models will fit the data  equally well, according to the 
measure of fit used earlier, if and only if the error processes 

el ~) - Yt - A(i)x(i)t , i = 1, 2 

have the same variance, 

(4.1) 

It can be shown, see Findley and Wei (1988), that  the log-likelihood-ratio is 
bounded in probability if and only if the condition 

(4.2) e~l)= e~ 2) (almost surely, for all t) 

holds, which is in general stronger than (4.1) for non-nested regressors. 
If (4.1) holds, but not (4.2), then the log-likelihood-ratio is of order N 1/2 in 

probability. More precisely, it can be shown as in Theorem 8.4 of Findley (1990), 
AI-1 /2S] (1 )  ~.(2) l see also Theorem 5.1 of Vuong (1989), that  ~, t - N  - - -N S will have a Gaussian 

limiting distribution with mean zero. In this situation, adjustments to the log- 
likelihood-ratio of the form W N ( d i m  x~ 1 ) -  d i m  x~ ~)) with Wlv = o ( N  1/2) will have 
negligible effect asymptotically. Hence AIC and BIC will lead to the same choice 
of regressor in large samples, with each model having asymptotic probability 0.5 of 
being selected. Therefore finite-sample analyses would be required to distinguish 
between the properties of these criteria, or analyses like those of Shibata (1980, 
1981) in which the model classes become larger with the sample size in such a way 
that  (4.2) is achieved in the limit. 

The other situation in which AIC and BIC have identical preferences with 
large N is where (4.1) fails. (Techniques for detecting this are presented in 
Findley (1990).) Then the log-likelihood-ratio goes linearly in N towards +co 
or -0% carrying with it the AIC and BIC differences. Thus (4.2) characterizes 
the situation where these criteria can exhibit different large-sample behaviors. 
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5. Concluding remarks 

Motivation for the principle of parameter parsimony is closely tied to the 
situation in which the models being considered are close to the correct model. 
Although much of the conceptual paradigm of classical mathematical statistics for 
correct models can be carried over into situations where one avoids the unrealistic 
assumption that a model class under consideration is correct, see White (1990), 
our examples reveal that this is not the case with parameter parsimony. 

The deep investigations of Shibata (1980, 1981) already showed that strongly 
parsimonious criteria can lead to regressor selections which lack predictive power 
relative to AIC's selections in certain situations in which the true model is specified 
by infinitely many parameters. Our examples address the principle of parsimony 
more directly and simply than these papers, which are concerned with optimality 
properties of AIC. 

We were motivated to look for these examples by criticisms of AIC like those 
mentioned in the Introduction and by a train of thought something like "if AIC is 
so frequently successful in applications and lacks the (strong) parsimony property, 
then this property must have limited value." It does not follow from our results 
that a strongly parsimonious criterion cannot be useful. What follows, we suggest, 
is that if a strongly parsimonious criterion is useful in a variety of applications, 
its utility will be better explained by some deeper principle which can be formu- 
lated without the assumption that one of the models considered is correct. Both 
Akaike's Entropy Maximization Principle motivating AIC (see Akaike (1985)) and 
Rissanen's Minimum Description Length Principle (1978, 1986, 1989) have such 
formulations. Also, Poskitt (1987) has given a derivation of a Bayesian decision- 
theoretic criterion in this spirit which penalizes for parameter estimation similarly 
to BIC (WN ---- logN + Op(1)) and which might therefore help to explain good 
performance by BIC. 
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