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Abstract .  This paper formulates a nonlinear time series model which encom- 
passes several standard nonlinear models for time series as special cases. It also 
offers two methods for estimating missing observations, one using prediction 
and fixed point smoothing algorithms and the other using optimal estimating 
equation theory. Recursive estimation of missing observations in an autoregres- 
sive conditionally heteroscedastic (ARCH) model and the estimation of missing 
observations in a linear time series model are shown to be special cases. Con- 
struction of optimal estimates of missing observations using estimating equation 
theory is discussed and applied to some nonlinear models. 

Key words and phrases: Kalman filter, missing observations, nonlinear time 
series, optimal estimation, robustness. 

1. Introduction 

Quite often data analysts are faced with the problem of missing data. Data 
that  are known to have been observed erroneously can fairly safely be catego- 
rized as missing. Erroneous data can also wreak havoc with the estimation and 
forecasting of linear or nonlinear time series models. Abraham (1981) proposed a 
procedure to interpolate the adjacent missing values on the basis of the known seg- 
ments of an autoregressive intograted moving average (ARIMA (p, d, q)) process. 
Recently Jones (1985) proposed a state space Kalman filter approach to handle 
unequally spaced data in linear time series models. 

In Section 2 we are concerned with the so-called conditionally Gaussian sys- 
tem which is treated in a filtering theoretic context in Shiryayev (1984) and in 
Ruskeepaa (1985). Exploiting this theory, we develop a state space approach and 
discuss a general framework for estimating missing observations in a nonlinear 
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time series model. In Section 3 we discuss a number of special cases of the model 
in Section 2. 

In Section 4 we describe the method of optimal estimation of Godambe (1985) 
to estimate missing observations in a nonlinear time series model. This approach 
extends the work of Ferreiro (1987) to nonlinear heteroscedastic time series models. 

2. Nonlinear state space models 

The linear state space system is given by 

(2.1) Ot+l = c~tOt + f tu t+] ,  Yt = At - lOt  + B t - l v t  

where Ot and ut are p × 1 vectors, yt and vt are q × 1 vectors, at and f t  are p x p 
matrices, and At and Bt a r e  matrices of dimensions q x p and q x q, respectively. 
{yt} represents the observed time series, whereas at,  At, f t ,  Bt  are known matrices 
of nonrandom functions while the vectors {ut} ,  {vt} are independent, each being 
a sequence of independent normal random vectors having components with zero 
mean and unit variances. In order to handle various deviations which may occur 
in practice, several generalizations of (2.1) have been suggested. Among these 
are conditionally Gaussian sequences given in Shiryayev (1984), nonlinear state 
space models treated in Broemeling (1985) and Priestley's state-dependent models 
(1980). 

In this paper we consider the model in (2.1) with random coefficients. We 
allow the coefficients in (2.1) to depend on past observations: at = a(t ,  YtY), 
fit = f ( t ,  -~t),  A t - ]  = A ( t - 1 ,  -~t-1) and Bt -1  = B ( t - 1 ,  .T~t_l) , where ~tt denotes 
the a-field generated by the observations up to time t. We refer to (2.1) under 
these settings as the generalized model (2.1). This generalized model encompasses 
some of the nonlinear time series models that have been proposed in the literature. 

(i) ARCH models: Suppose that at = a, At-1 = A and Bt =- 0 so that 

Ot+l = ogOt -+- f tUt+l ,  Yt = AOt. 

This is the ARCH model described in Engle (1982). 
(ii) Dynamic linear state space models: When {at}, {ft} and { B t }  are con- 

stant matrices and At -1  is a matrix of "known functions" at t - 1, (i.e. At -1  is 
~tt-1 measurable) the generalized model (2.1) becomes 

Ot = aOt-1 + ut, Yt = At -10 t  + vt 

which is the state space model described in Harrison and Stevens (1976). 
(iii) Doubly stochastic time series model (aft Tj0stheim (1986)): When at = 1, 

f t  = 1, Ut+l = et+l - et-1 and Bt = 1, (2.1) becomes 

Ot+l ~- Ot + U t + l ,  Yt = At - lOt  + vt. 

This corresponds to the doubly stochastic time series model 

Ot = 0 + et + et-1, Yt = Otf(t ,  .r~t_l) + et 
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considered in Thavaneswaran and Abraham (1988). When f ( t ,  "~'Ytt--1) = Yt--1, this 
turns out to be a special case of the RCA model of Nicholls and Quinn (1982). 
Moreover, if we take Ot = oft-lOt-1 Jr ut, Yt = Ot with at -1  = ¢ + 7rexp(-Ty2_l) 
then the generalized model (2.1) describes the exponential autoregressive model 
of Ozaki (1985). 

The following theorems give prediction and fixed point smoothing algorithms 
for the generalized model (2.1). 

THEOREM 2.1. Let Ot = E[Ot I J~t_l], Et = E ( ( O t -  ~ t ) (O t -  Or) T I .fi'tY_l). 
Then 

~t+l ---- OQ~t q- ]gt[Yt -- Yt], 

Et+l = 13tO T + (a t  - k t A t - , ) E t ( a t  - k t A t )  T + ktBt-lBT_l kT, 

T + = where  k ,  = a t E t A T I [ A t _ I E t A T  1 + Bt-IBt_I] and $t E ( y t  I ~tt_l); M T and 
M + denote the transpose and the pseudo inverse, respectively, of a matrix  M .  

PROOF. A straightforward extension of results in Brockwell and Davis 
(1987). 

We now introduce another theorem on fixed-point smoother to obtain recursive 
estimates of m missing observations say, Ym = ( Y t l , ' ' ' ,  Y q , ' ' ' ,  Ytm)" The basic 
idea here is the same as that in the derivation of the recursive estimate of a 
parameter Oq (j = 1 , . . . ,  m), based on the observations up to time t (t > t j) ,  as 
a function of the estimate based on t - 1 (t > t j  q- 1) and the observation at time 
t. This will also enable us to get an idea of how the estimate of the parameter 
(missing value) changes when a new observation becomes available. 

THEOREM 2.2. For t > ta, let ~t, lt = E[Oq ] $-~t ] be the estimate of  Ot~ based 
on the observations up to t ime t, Et be the covariance matrix  

and 

T h e n  

z ;  = El(O,, 

- O , , ) ( e ,  - 0 , )  I 

-  tjlt)(etj -  tjlt) T I 

where  

~tj l t  : ~tj[t--1 -}- k t ( Y t  - A t - l ~ t ) ,  t > t j  

~ T + kt = E t A T I [ A t - I E t A T - 1  + B t - l B t _ l ]  , 

~ t+ l  = ~t[Oet -- k t A t - 1 ]  T ,  E*t_l  = E t  

Y]~ : Y]';-1 - EtAT1 ~:T, t >_ tj. 
f o r  t < tj  and 

PROOF. A straightforward generalization of results in Brockwell and Davis 
(1987) or Shiryayev (1984). 
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3. Applications to missing data 

Missing values in time series have been usually estimated using two differ- 
ent approaches. The first one, a Bayesian approach, uses the Kalman filtering 
technique, while in the second one, a non Bayesian approach, the missing values 
are treated as parameters (fixed). In this section we follow the Kalman type re- 
cursive approach to estimate the missing values by replacing them with normal 
random variables. This approach may be viewed as one which uses a prior for the 
parameter which replaces the missing value. 

3.1 ARCH type models with one missing observation 
Now we indicate an appropriate way to modify a given nonlinear time series 

to reflect the fact that the observation at time m is missing. Let {Xt} be a time 
series in which Xm is missing and X~ = (X1, . . . ,  Xm-l ,  Xm+l, . . . ,  X~). If we 
know the first two conditional moments E[Xt+I I 5r~] and Var[Xt+l I ~'~], then 
Xt+l can be written as 

(3.1) x,+ ,  = I JT]  + - I JT] .  

Suppose that the time series Xt satisfies 

(3.2) E[Xt+I I .T'~] = at - lX t  and Xt+, - E[Xt+, I .~] =/3t-lUt+l 

where at-1 and f i t - 1  a r e  ~'~z measurable and {ut} is an i.i.d. N(0, 1) sequence. t - 1  
Then Xt+I has the ARCH representation 

(3.3) Xt+ l --- olt-l g t  -+- f l t - l U t + l .  

Note. The restriction in (3.2) is introduced to apply the recursive approach. 
However, the method of Section 4 can be applied in the more general set up in 
which the coefficients of Xt and Ut+l are $7 measurable. 

Now we consider the estimation of a missing observation as a parameter esti- 
mation problem in a particular formulation of the generalized model (2.1): 

0 t + l  ---- OQ-lOt -Jr •t-lUt+l, 

(3.4) Xt = At-  1/9t, 

Yt = At-IO~ + Bt- lvt  

with Am-1 = O, Bin-1 = 1, At = 1, t ¢ m -  1; Bt - -  0, t ¢ m - 1. Then Y = 

(X1, . . . ,  Xm-1, v,~, X m + l , . . . ,  Xn) is the extended observed series. Here Vm is 
a normal random variable replacing the missing observation. Such a formulation 
was also considered in Brockwell and Davis (1987). 

Using Theorems 2.1 and 2.2 we have 

2 2 + = h- Bt_l] , kt o~t- lEtAt- l[At- lEt  

~ t + l  = ~t-12 q_ ( a t - 1  - ktAt-1)2~t q- ks2Bt_1.2 
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This implies tha t  kt = a t - l ,  Et+l  = ~ 1 ,  t # m and 

2 O/2rn_ 1 ~rn .  km = 0 and Em+l = ]~m--1 + 

Moreover, 
~ t + l  = ~t[O~t--1 -- ktAt-1] = 0 for t # m, 

~ m + l  ~ m O l m - 1  E m a r n - 1  2 ~_ = = Olm_ l~rn_  2 . 

Hence, 

(3.5) 

so tha t  at t = m + 1 

where 

Omit = Omlt-1 + kt[Yt - At-lOt] 

Omlm+l = Omlm + km+l [Ym+l -- AmOm+l] 

- 2 

k m + l  - -  ~ m + l  __ ~m-2Olm-1 
~ m + l  2 2 2 " ~m--1 + am-1 /~m- -2  

Thus the est imate of the m- th  observation based on X,~+I is 

2 O/ flzm-2 m - 1  
(3.6))~mlm+l = a m - 2 X m - i  + [Xm+l -- a .~- la .~-2Xm-1] 

~2m_l_ {_ 2 2 O l m _ l ~ m _ 2  

2 X flZm-. - - i  = fl~m--2OCm--1 m + l  + 2 1OLin 2 X m  ' 
2 

O~rn_ 1 ]~rn_ 2 
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Zm[t = 2mlm+l  for t > m + 1. 

In the special case of a model with a constant  conditional variance, /~2 m = 
~2m_ 1 = a 2, the est imate of the missing value is given by 

~ = O l m - l X m + l  ~- O t m _ 2 X m _  1 
2 (3.7) Xmlm+l 1 + am_ 1 

When/~m = const and am = ¢, the est imate of the missing value (Xm) for an 
AR(1) model, Xt+l  = CXt + Ut+l, becomes 

¢ [Xm+l + Xm-1]. Xmlm+t = 1 + ¢2 

Moreover, for a nonlinear model of the form 

X~+I = C X t - I X t  + ut+l 

It should be noted t h a t  ~ t + l  = 0 for t # m and hence kt+l = 0 for t # m. 
Therefore, (3.5) yields 
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in which the m-th observation Xm is missing, the estimate of Xm based on ~'~+1 
or Y=~ is given by 

Xmlm+l - ~ ) X m - 1  1 + ¢2X2 [Xm-2 + Xm+l]. 
m--1  

Autoregressive models with deterministic time varying coefficients: 
Models of the form 

(3.8) X t -- O~(t, ( / ) )Xt-1  = ut  

have been found to be quite useful, in particular in signal processing (c.f. 
Charbonnier et al. (1987)). As in (3.7), it can be shown that the estimate Xmlm+l 
of the missing observation based on 9r~+1 is given by 

- a(m + 1, ¢)Xm+ 1 q- a(m, ¢)Xm-1 
Z m  I re_i_ 1 = 1 + a 2(m + 1, ¢) 

Bilinear models: 
Consider the model 

Xt - CXt-1 = cut + flXt_2u~ 

The estimation of a missing observation, X,~, can be obtained by writing the 
model as 

Xt  = a t -2X t -1  + fl~-2ut 

where 
a t -2  = ¢ and fit-2 = c + flXt-2. 

Hence the estimate of Xm, f~mlm+l = E[Xm I 9v~+1] can be obtained as in the 
case of model (3.8) and is given by 

2 2 
~)flm_ 2 X m +  l Jr- ~gfl~Zn_ l X m - 1  

X-, I - ,+1  = 2 
~ - 1  + ¢2~-2 

3.2 Two consecutive missing observations 
We now consider a slightly modified form of the model (3.3): 

Xt+l = ~t-2X~ + flt-2ut+l 

where fl~ = a 2, Xm and X,~+I are missing and a~ is ~'~ measurable. The problem 
is to estimate Xm based on the available data (X1, X 2 , . . . ,  Xm_], Xm+2, . . . ,  
Xn).  The corresponding state-space model may be written as 

0t+l = at-20t + fl~-2u~+l, Xt  = At_lOt, yt = A~_IO~ + Bt-lv~ 

where A,~-I = 0, Am = 0, Bm= 1, Bm-1 = I and Bt = 0, At = i for t ¢ m, m - 1 .  
Then using Theorems 2.1 and 2.2 it is easy to show that for t ¢ m, m - l ,  kt = a t -1  
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and km = 0 = km+l. Also it can be shown that for t # m, m + 1, Et+l = a 2 and 

~ ' t + l  ---- ~ ' t [ a t - - 1  - -  k t A t - 1 ]  = O. 

Em+l = ~r2(1 + a2m_2), 

~ m + l  ---- O'20~m--2, 

Also i¢t= 0, t # m + 2 and 

2 OL2 0~2 ] E ra+2  ~-- O'211 + O:m_ 1 -[- m--2 m- - l l ,  

~ m + 2  ----- O'20~m-10~m-2 • 

O~m--  l OLm-- 2 

~ : . ~ + 2 =  [1 2 2 2 • -~- Otm_ 1 -~- OLm_lOlm_2] 

Then the estimate of Xm based on 9c~+2, is given by 

(O~rn--2 -[- O~ m - 3 O~ 2m _ l ) X m - 1  -}- O~ m - l Ol rn - 2 X rn + 2 

1 +  I_1(1 +  I-2) 

It should be noted that when st  = ¢ and the model becomes AR(1), the estimate 
of the m-th observation becomes 

-~[m[m+2 ---- (¢  -4- ¢ 3 ) X r n -  1 -I- ¢ 2 X m + 2  
1 + ¢2 + ¢4 

(1 - ¢ 4 ) ¢ X m _  1 -+- ¢2(1 - ¢2)Xm+2 
(1 - ¢6) 

Similarly, we can also obtain Xm+lrm+2. These estimates are the same as those 
obtained by Abraham (1981) and Miller and Ferreiro (1984). 

As noted before (see the note after equation (3.3)), the approach presented 
in this section can only handle some of the nonlinear models mentioned before. 
Hence we consider a more general approach in the next section. 

4. Optimal estimation of missing observations 

Following Godambe (1985), the optimal estimation of parameters in adaptive 
as well as nonadaptive nonlinear time series has been discussed in Thavaneswaran 
and Abraham (1988). In this section, we briefly describe the estimation of missing 
observations considering them as parameters. 

Let Yl , . . . ,  Yn be an observed time series with Ym (1 < m < n) missing 
and the parameters 8t be those known from the generalized model (2.1). Then, 
when considering Ym as a parameter we can obtain its optimal estimate as in 
Thavaneswaran and Abraham (1988). 

Example 4.1. (ARCH model) Consider the model Yt+l = o~tYt + ~tUt+l, 
where at = a(t ,  Ttt, 8), ~t -- ~(t, $-t ~, 8) and {ut} are a sequence of i.i.d, random 
variables having mean zero and finite variance a 2. Here it should be noted that 
we are not making any distributional assumption on the errors. It can be shown 
that the optimal estimate of Ym satisfies 

n 

(4.1) a;(yt÷l  - = 0 
t = l  
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where 

(4.2) a~ = 

~t20 -2 

In the special case of an AR(1) model, yt+l = CYt + ut+], the estimate of Ym turns 
out to be the solution of 

(9~ - CYm-1) - ¢(Ym+l - ¢~)m) = 0 

and the optimal estimate is 

Ym 
¢(ym+l + ym-1) 

1 + ¢ 2  

This is the same as what we obtained in Subsection 3.1. 

Example 4.2. (RCA model) Let 

yt = (¢+f l t )y t -1  + u t  

where {ut} and {/3t} are zero mean square integrable independent sequences and 
2 and Y(flt) = a~; fit is independent of {ut} and {yt-1}. Then the V ( u t )  = 

optimal estimate of Ym (treated as a parameter) can be given as a solution of the 
nonlinear equation 

(4.3) [(ym - 0.2 2 0.~)] ¢ (Ym+l  - C Y m ) / (  0-2 -'b Yrn ~3) = O. CYm-1)/( ~Ym-1 + - . 2 0-~, 

It can also be seen that the least square estimate of Ym is the solution of 

(4.4) ( y m  - C y m - 1 )  - - Cv ) = 0 

and is given by 
/)m(LS) = ¢(Y,~-1 + ym+l)/(1 + ¢2). 

This is the same as that previously obtained for an AR(1) process. However, the 
optimal estimate will not be the same in both cases. 

This estimate depends on the conditional variance of the observed series which 
in turn depends on the missing value, Ym. Hence we first find the least square 

2 2 2 estimate ~m(LS) of Ym and then use it to obtain the weights wl = a~ + af lym_ 1 

2 a2~2(LS) to calculate the optimal estimate. al ld  w2 = au  + fl 
We propose to find the optimal estimate using the following steps. 
Step 1. Obtain ~)m(LS) 
Step 2. 

¢(w2ym-1 + WlYm+l) 
9m(op) = 

wl + w2 

2 2 2 2 ^ where wl a~ + w2 + a~y~(LS).  -~- o ' ~ Y m _  l , ~ G u 
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2 and a~ are In this algorithm we assume that the model parameters ¢, 0-~ 
known. Such an assumption about the model parameters is not uncommon in the 
context of estimating missing observations (for example, see Abraham (1981)). 
However, in practice, model parameters may be estimated using part of the data 
(Abraham (1981)). Such an approach for optimal estimation in nonlinear models 
will be pursued in a subsequent paper. 

The extension of the results to the p-th order RCA model 

P 

i=1 

is immediate. 

Example  4.3. (Doubly Stochastic Time Series) Consider the model 

(4.5) Yt -= CtYt-1 + Ut 

where Ct is a moving average sequence of the form 

(4.6) Ct = ¢ + et + et-1 

such that {¢t}, {et} are square integrable independent sequences; {et} and {u t}  
2 and 2 Then are zero mean independent Gaussian sequences with variances a~ a~. 

#t = E(e t  I .T~t) and 7t = E[(~t - #t) 2 I 5~t] satisfy the recursive algorithms (see 
Thavaneswaran and Abraham (1988)), 

2 2 ,0-2 +7t_1)],  (4.7) #t = 0-~ Yt-1 [(Yt - (¢ + #t -1) )Yt - l ] / [0-  2 + Yt-1 ( 
2 2 0.2 2 2 (4.8) 7t = 0-~ - (Y t -1) / [  ~, + Yt-l(0-~, + 7t-1)] 

2 and #o 0. Suppose that  y,~ is missing, then #t with the initial values 7o = 0-~ = 
and Vt can be computed up to t = m - 1 using (4.7) and (4.8). It can be shown 
that the optimal estimate for Ym is the solution of 

(4.9) [y,~ - (¢ + ~ m _ X ) ~ m _ l ] / W m _ l  - (~9 ~- ~ m ) [ Y m + l  - ( ¢  2(- ~ tm)Ym] /W m ~_ 0 

2 /0-2 2 + Ym[  u + ~/m). Since t h e  e s t i m a t o r  depends on  the  u n k n o w n  Pm where w,~ = 0-u 
and "~rn we propose to use the following algorithm to estimate ym. 

Step 1. Use Ym = (¢ + #m--1)Ym--1 as an initial value for Ym and obtain #m 
and 7m- 

Step 2. Obtain the least square estimate of Ym: 

9m(LS) = [(¢ + #m--lYre--i) + y,~+l]/[1 + ¢ + #m]gm- 

Step 3. Calculate the weight 

2 = + + 7m) 

and obtain the optimal estimate from (4.9) by replacing Wm with Win. 
Limited experience with this algorithm indicates that few iterations are nec- 

essary before the final estimate is obtained. As in Example 4.2, we assume that 
the model parameters are known. These parameters may be estimated using part 
of the data (see the last part of Example 4.2). 
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5. Concluding remarks 

The occurrences of missing observations is quite common in time series and the 
generalised model (2.1) may be used to characterise such situations. This paper 
offers two alternatives for estimating missing observations. The methodology in 
Section 3 can be applied for a restricted class of models whenever the normality 
assumption is made on the errors while the optimal estimation method in Section 
4 is more general and is useful when a practitioner has doubts about specifying 
a particular distribution for the errors. As can be seen from Sections 3 and 4, 
these procedures yield some of the known results as special cases. For example, 
the well known results of Abraham (1981) and Miller and Ferreiro (1985) for linear 
time series models become special cases of the results obtained here. It should be 
noted, however, that the procedures may not cover all the non-linear time series 
situations and the methods should be adapted to meet particular needs. 

Appendix 

A.1 Proo f  o f  Theorem 2.1 
Let vt -- Yt - fit. Then 

Yt -= A t - l ~ t  + B t - l v t  - A t - l O t  

- -  A t - l ( ~ t  - Or) --}- B t - l V t .  

E[u tvT  l ~Yt_l] = A t _ I E t A T 1  + B t _ I B T 1 ,  E[OtuT l I~t_l] = E [ ( O t -  @t)vT ] ~t_l] 
s i n c e  E [ ~ t v  T I ~ t t -1]  = 0. Moreover it follows from the definition of •t that 

E[(et  - ~ ) , , r  I ~ , - 1 ]  = E[(et  - ~ , ) { A , _ I ( 0 ,  - ~t) + B t - l v t }  T I ~ - 1 ]  

= E t A T 1 .  

Using the fact that the a-field generated by the observations up to time t, namely 
/~,, is the same as the a-field generated by vt, t ,  we have 

Using the properties of normal random vectors we have 

where k, = a tE[e~T I W~_~][E[~,~T I ~_1]] ÷. Hence 

T + 0t+l  = at@t + kt(yt - 9~) and kt = a t r . ,AT_~[At - z r~ tAL~  + B t - ~ B , _ I ]  • 

Moreover 

8 t + l  --  0 t + l  = a tS t  --}- b t l t t+l  - a t~ t  - k t ( Y t  - flt) 

= at(Ot - ~t) + btut+l - k t [A t - l (Ot  - Or) + B t - l , t ]  

= b t u t + l  + (at - k tA t -1 ) (Ot  - Or) - k t B t - l , t .  
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Thus 

E t + l  = E[(Ot+l - Ot+l)(Ot+l - Or+l) T I .~ff] 

= b bT + - - + k Z - BL C. 

Hence the theorem follows. 

A.2 Proof  of  Theorem 2.2 
For  a fixed t j ,  we observe  the  following 

Otjlt = E[Otj l Yt y] = E[Otj [ .Tt~l ,  ut] 

where  ut : Yt - Yr. A p p l y i n g  aga in  the  resul ts  f rom n o r m a l  t h e o r y  we have 

Otjl t = Ot~lt-1 + ~tl]t 

where 
kt = E[OtjuT I j~t_j{E[utuT I Jzt-1]}+. 

Note that the second factor remains the same as the "innovation" variance as in 
kt. Hence it can be obtained as in Theorem 2.1. The rest of the proof is similar 
to that  of Theorem 2.1 and hence is omitted. 
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