
Ann. Inst. Statist. Math. 
Vol. 43, No. 3, 469-492 (1991) 

FREQUENCY DOMAIN CHARACTERISTICS OF LINEAR 
OPERATOR TO DECOMPOSE A TIME SERIES INTO 

THE MULTI-COMPONENTS 

T. HIGUCHI 

The Institute of Statistical Mathematics, ~-6-7 Minami-Azabu, Minato-ku, Tokyo 106, Japan 

(Received April 19, 1990; revised March 18, 1991) 

Abstract .  Frequency domain properties of the operators to decompose a time 
series into the multi-components along the Akaike's Bayesian model (Akaike 
(1980, Bayesian Statistics, 143-165, University Press, Valencia, Spain)) are 
shown. In that analysis a normal disturbance-linear-stochastic regression prior 
model is applied to the time series. A prior distribution, characterized by 
a small number of hyperparameters, is specified for model parameters. The 
posterior distribution is a linear function (filter) of observations. Here we use 
frequency domain analysis or filter characteristics of several prior models para- 
metrically as a function of the hyperparameters. 
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1. Introduction 

A Bayesian approach for a time series analysis has been introduced in Akaike 
(1980) and additionally developed by others: see, for example, Gersch and 
Kitagawa (1988). There is mainly due to the development of a general Bayesian 
approach which facilitates fitting a large amount of the time series model param- 
eters. Since the number of parameters in a Bayesian time series model generally 
exceeds that of observation, such parametric time series model is satisfactorily 
flexible to the observation data. The Bayesian approach is characterized by spec- 
ifying a prior distribution of the time series model parameters (Akaike (1980), 
Silverman (1985), Titterington (1985)). Moreover the Bayesian model contains 
tradeoff parameters which balance the tradeoff between the infidelity of the model 
to data and the infidelity of the model to the constraints expressed by the prior 
models. In Bayesian terminology, this tradeoff parameter is referred to as the hy- 
perparameter (Good and Gaskin (1980), Akaike (1980)). We use this terminology, 
"hyperparameter", hereafter (Lindley and Smith (1972)). 

By a proper choice of hyperparameters, our estimate of the time series model 
parameter satisfies both the goodness of fit to the data and the conformabitity to 

469 



470 T, HIGUCHI 

the prior constraints. The proper choice of hyperparameters was opened to the 
investigators (Titterington (1985)). One is to calculate the marginal density (Good 
(1965), Leonard (1978)). Akaike (1980) has developed a Bayesian smoothness idea 
to yield a likelihood computation for determining the smoothness hyperparameter. 
The critical idea in smoothness prior approach is the likelihood of a Bayesian 
model and the use of the likelihood as a measure of the goodness of fit of the 
model. Other criteria for choosing a hyperpara.meter were presented and can be 
referred in Titterington (1985). Among them, the method of "cross-validation" is 
popular and widely used, particularly for the spline smoothing approach to curve 
fitting (Wahba and Wold (1975), Silverman (1984b, 1985), Wahba (1990)). 

Akaike (1980) also gave an explicit solution to the smoothing problem when 
both the prior and the conditional data distributions are normally distributed, 
and then extensively exploited applications to several important statistical data 
analysis problems. This procedure can be interpreted as one of the maximum pe- 
nalized likelihood (MPL) method (Good and Gaskin (1971, 1980), Leonard (1978), 
Kitagawa and Gersch (1984), Titterington (1985), Silverman (1985, 1986)). It 
should be noticed that Akaike's approach is reduced to be the constrained least 
squares problem because the Bayesian model is linear with Gaussian system and 
observation noise is also assumed to be Gaussian (Lindley and Smith (1972)). 
His colleagues, primarily at the Institute of Statistical Mathematics, Tokyo, ex- 
tensively applied this Bayesian smoothness approach to a variety of statistical 
problems (Ishiguro and Arahata (1982), Kashiwagi (1982), Ishiguro and Sakamoto 
(1983, 1984), Tanabe and Tanaka (1983), Nakamura (1986), Tamura (1987), 
Sakamoto and Ishiguro (1988), Gersch and Kitagawa (1988)). 

An effort to efficiently obtain the best parameters in describing a time series 
model has been extensively implemented. The smoothness prior approach to a non- 
stationary time series with trend and seasonality by Akaike and Ishiguro (1983), 
which originates from Akaike (1980), has computational complexity O(N3). This 
complexity was also implemented to be O(N) by the efficient scheme for the com- 
putation (Ishiguro (1984)), and by the computationaily efficient recursive Kalman 
filter (Kitagawa (1981)). In the Kitagawa's procedure, the flexibility to the ob- 
served data is, of course, achieved by a state space modeling (SSM). In that model, 
the minimum AIC procedure (Akaike (1973), Sakamoto et al. (1986)) is used to 
determine the alternative best model. Although there is somewhat difference be- 
tween Akaike's and Kitagawa's works in formulation, they are essentially the same 
modeling and give approximately the same estimates of parameters. Hence, from 
the computative efficiency, the procedures induced by Kitagawa probably favor 
the sequent data type such as the time series. His procedure using recursive 
Kalman filter and AIC criterion is widely applied to various data analysis such 
as the estimations of power spectrum density (Kitagawa (1983)) and time varying 
AR coefficients (Kitagawa and Gersch (1985a)), and transfer function estimation 
(Gersch and Kitagawa (1989)). According to an unprecedented development of 
computational facilities, the Bayesian approach is applied to various field data, 
and now becomes a handy and useful method for the analysis of the time series 
only if the prior is a linear model. 

The Bayesian smoothing approach to a trend estimation in the discrete setting 
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is typically used to remove a small fluctuation from the observational data (Akaike 
(1980), Kitagawa (1981), Kashiwagi (1982), Akaike and Ishiguro (1983), Tanabe 
and Tanaka (1983), Green (1987), Higuchi et al. (1988)). Namely, we apply this 
procedure to reject the higher frequency components, which contribute to the 
irregularities and jitter in the original time series. The Bayesian smoothness model, 
therefore, works as a lowpass filter. A spline smoothing approach is also used 
to smooth a curve (Wahba (1975, 1990), Wahba and Wold (1975), Ishiguro and 
Arahata (1982), Silverman (1984a, 1984b, 1985, 1986)) and then can be interpreted 
as a lowpass filtering procedure (Silverman (1984a, 1985)). Silverman (1984b, 
1985) has shown analytically that this spline smoothing corresponds approximately 
to smoothing by a kernel method and that the local bandwidth can be given as a 
function of the hyperparameter. 

There is also a Bayesian model which is interpreted as a bandpass filter 
(Higuchi et al. (1988)). This prior was proposed so as to extract a sinusoidal 
wave with a characteristic frequency and time varying amplitude. The observed 
data obtained by the rotational instruments, such as a rocket, balloon, and satel- 
lite, always suffer from such quasi-sinusoidal noise. The time domain filtering by 
using the Bayesian approach was successfully applied to the observation data by 
the rockets, and its usefulness and flexibility in data analysis were demonstrated 
in comparison with the conventional filtering procedures (Kita et al. (1989)). 

Major purpose in this paper is to study the frequency domain or filter char- 
acteristics of the Bayesian time series model, and to show the performance of this 
model in frequency domain parametrically as a function of the hyperparameters. 
In this study, we consider the decomposition of the observed time series into multi- 
components with the observation noise. In Section 2, the model for decomposition 
is treated. The prior is imposed on each of the multi-components. Here we assume 
only that the Bayesian model is linear and Gaussian system. The definite form of 
prior is unnecessary for discussions in Section 2. We will show a frequency domain 
characteristics of the linear operator for a decomposition. The several models for 
priors are specifically presented by the definite forms in Section 3. In addition 
to the smoothness priors, the other priors, which work as filters, are explained. 
Numerical examples that illustrate the methodology presented in both Section 2 
and 3 are demonstrated in Section 4. The relationships between the performance 
of the linear filters by the priors and the hyperparameters are closely examined in 
this section. 

2. Method 

2.1 Background: The Bayesian model and the least squares analysis 
Given the observations {y(i), i = 1 , . . . ,  N}, we consider the multi-component 

model, 

(2.1) y(i) - ~  81(i) Jr s2(i) + ' ' "  + SM (i) + e(i) (i = 1 , . . . ,  N) .  

In (2.1) e(i) is an i.i.d, white noise sequence with e(i) ~ N(0, 92). The reader 
should note that in (2.1) N x M parameters are to be estimated from the N 
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observations. Then, the result of the least squares computat ion is poor. To miti- 
gate this difficulty, Akaike (1980) has presented a clear and complete least squares 
computational-Bayesian analysis. He has introduced the smoothness prior con- 
straint on N x M parameters in (2.1). As a general form for the smoothness 
priors, the "signals", Sin(i) (m = 1, . . .  ,M)  should each follow in this s tudy an 
autoregressive (AR) model 

(2.2) 
Jm 

Z arn(j)sm(i - j) = Urn(i), 
j=o 

where each urn(i) is a white noise sequence with urn(i) ~ N(O, a2/T2), and the 
{am(j)} axe the AR coefficients for the m- th  component model and am(0) = 1 for 
all m. Jm is the order of AR model for m component.  

e(i) represents an observation noise and urn(i) describes a system (or pro- 
cess) noise for Srn(i) (Kitagawa (1981)). r 2 is the hyperpara.meter which balances 
the infidelity of the model (2.1) to the data and the infidelity of the model to 
the constraints on Sm(i) in (2.2) (Akaike (1980), Kitagawa and Gersch (1985b)). 
This hyperparameter is sometimes called a smoothing parameter in smoothing 
(Silverman (1984a, 19845, 1985, 1986), Wahba (1990)), or a roughness penalty 
within a framework of the penalized likelihood method (Good and Gaskin (1971, 
1980), Green (1987)). Since the variances of the observation and the system noises, 
respectively, are a 2 and a2/r2m, r2m is interpreted as observation-noise to system- 
noise ratio. As r~m increases, Sm(i) tends to follow a noise-free AR process. For 
simplicity, we use hereafter the notation r 2 = [T 2, T22,..., r~t ]. 

By using vector-matrix notation, the model (2.1) can be expressed by 

(2.3) y = Xs + e, 

where 

(2.4) y = [y(1), y (2 ) , . . . ,  y(N)]', 

(2.5) e = [e(1), e (2 ) , . . . ,  e(N)]', 
! t (2.6) s = [sl,s2,. . . ,s~]' ,  

and X is a (N x NM) matrix given by 

(2.7) X = [ I , I , . . . , I ] ,  

where I is a (N x N) identity matrix. Here the apostrophe symbol ' denotes the 
matrix transpose. In (2.6) we used the notation 

(2.8) s,~ = [Sm(1), s in(2) , . . . ,  sin(N)]', 

for each m. Accordingly, y, e and sm (m = 1 , . . . ,  M) are a (N x 1) vector, therefore 
s is a (NM x 1) vector. Similarly, the model (2.2) is also given in vector-matrix 
representation as follows: 

(2.9) D m s r n  = Urn, 
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where 

(2.10) Um= [urn(l), urn(2) , . . . ,  u,~(N)]', 

and Drn is a (N × N) known design matrix defined by 

(2.11) Dm 
f~m (1, 1) 
/3m (2, 1) 

Zm(Jm, 1) 
am(Jm) 

~m(2, 2) 

f~m( J m ,  2) 
a m ( J m  - 1) 

a r a ( J m )  a m ( J m  -- 1) 

]3m(Jm, Jm)  

am(l) 

a m ( J m )  a m ( J m  - 1) 

am(0) 
a.~(1) am(0) 

".. ",. 

. . . . . .  am(l) am(O) 

where fire(i, j) are significantly small numbers that  are chosen to satisfy initial 
conditions: i.e., they are boundary conditions necessary for sin(i) (i <_ Jm). 

Here we consider the constrained least squares problem which, for fixed value 
of r 2, minimizes 

N M 

i-----1 m----1 

In vector-matrix notation, the minimizor of this quanti ty is given by 

(2.13) 

I]. ]] denotes the Euclidean norm. Introducing the following (NM × NM) matrix 
given by 

(2.14) 

(2.2) is equivalent to 

(2.15) 

/ T1D1 / 
D = 72D2 

" .  

rMDM 

where u = [TlUI,T2U~,...,TMU'M]'. 
(2.15), (2.13) can be rewritten as 

D 8  -~- u ,  

Using vector representations of (2.3) and 

(2 .16)  [[y - xs[I 2 + IJDsJ[ 2. 

We denote s which minimizes (2.16) for fixed value of w 2, by 6. 
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The solution for the constrained least squares problem presented by (2.16) is 
easily given by 

(2.17) = (XIX  + D I D ) - I X ' y  

(Kitagawa and Gersch (1985b)). This solution for the "signal", ~, is the expected 
value of the posterior distribution if we interpret this estimation procedure in 
a Bayesian way (Lindley and Smith (1972), Akaike (1980), Silverman (1985), 
Witterington (1985)). 

2.2 Representation in a time domain 
In (2.17), we denote an ( N M  x N) matrix, (X~X + D~D)- IX  ~, as T and use 

the notation T = [T1, T2,. . . ,  TMy, where Tm is of an (N × N) matrix. Accordingly 
an optimum solution for m-th component, ~m, can be expressed as 

(2.18) ~m = Troy. 

This means that the resulting estimate of the unknown model parameter, sin, is 
a linear function of the observations. Tm has the following convolution structure. 
From (2.18), 

N i - 1  

(2.19) ~m(i) = E T'~#'J y(j) = E Cm#(p)y(i - p), 
j = l  p = i - - N  

where Tm,i.j is the (ij) component of Tin. In (2.19) we set Tm#.(i-p) = Cm,i(P). 
The form of (2.19) to estimate the signal sin(i) appears in the spline smoothing 

approach to nonparametric regression (Wahba (1975), Silverman (1984a, 1986)). 
In that case, Cm#(p) (or Tm,i.(i_p) ) is called a weight function. Silverman (1984a, 
1985) has shown that this weight function is closely related to a kernel (or convo- 
lution or moving average) smoother and that a weight function for estimating the 
data points of i is independent of i under the following conditions: 

(A1) large N, 
(A2) small value of the hyperparameter (in this study T~), 
(A3) not too close to the boundary (i.e., data point i is within certain range 

of A + I < i < N - A ) .  
The condition of (A2) is intrinsically required for the smoothing problem. 

Under the conditions of (A1 and A3), C,~,i(p) can take the similar form nearly 
independent of i for certain range of A + 1 < i < N - )~, and shows Cm#(p) -- 
0 for p < -A and A < p. Obviously, the value of A depends on the value of 
hyperparameters. Outside this range of i (within i < ~ and N - ~ < i), Cm#(p) 
suffers from the boundary effect of data set. Within the range of )~÷ 1 < i < N -  A, 
(2.19) is approximately rewritten as 

(2.20)  m(i) -- c m ( p ) y ( i  - p) .  
p=-- )~ 
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(2.20) exactly indicates that  ~m(i) is obtained by convoluting Cm(') with y(.). For 
simplicity, we rewrite (2.20) in vector notation as 8m = Cm ® y, where Cm is 
a column vector defined by [Cm(-A), Cm(-)~ 4- 1) , . . . ,  Cm(0) , . . . ,  Cm(A)]' and ® 
denotes a convolution operator. 

2.3 Representation in a frequency domain 
We now consider the characteristics of the linear operator Tm in a frequency 

domain. Let a (N × N) matrix of a discrete Fourier transform be F.  Since F is 
a unitary matrix, F -1 is given by F ~. The operator Tm in the frequency domain, 
Tin, can be given by 

(2.21) T *  = F T r n F  -1 = FTmF'. 

T* transforms y* into ~*, where y* and ~* are the representations for y and ~ in a 
frequency domain, respectively: y* = Fy and ~* = F£ It should be noticed that  
since Tm is not unitary, T*  is also not unitary. Let F be as follows: 

(2.22) 
1 

FI,j= v'~' 

V/-~NN " f 21rij 

1 
FN,j - v ~  cosQrj), 

/-2 [ 27rij ~ 
i = 1 , 2 , . . . ,  N 1) 

2 

for j = 1, 2 , . . . ,  N, where Fij denotes the (ij) component of F.  
When the operator, Tin, selectively screens or filters certain frequency com- 

ponents of a signal, T*  can be thought  of as filters. We now consider the charac- 
teristics of T~ in terms of the terminology of a digital filter: gain and phase. As 
previously mentioned, the commonly used linear filter takes the form of a kernel 
(or convolution) smoother. Convoluting in a time domain corresponds to multi- 
plication in a frequency domain (according to the convolution theorem). Hence a 
convolution in a time domain is, in the frequency domain, equivalent to multiplying 
the discrete Fourier transformation (DFT) of a convolution function (Karl (1989)). 
In this study, we adopt (2.22) as one way for DFT,  and thereby a multiplication 
in a frequency domain takes the following form: 

Ao 
A1 -B1 
B1 A1 

A2 -B2 
(2.23) Z =  B2 A2 

AN/2-1  -- BN/2 - 1 
BN/2-1  AN~2-1 

AN~2 
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In this case, a gain and phase for a frequency f ( f  = k/N), G(I) and ¢(1), are 
defined by 

(2.24) 
G(f) = G(k/N) = ~Ak 2 + Bk 2, 

¢(f) = ¢(k/N) = tan-l ( B-~k ) • 

For k = 0 and k = N/2, G(f) and ¢( f )  are defined by setting Bk = O. 
Although there exist somewhat effects from the finite data number, the ac- 

tually calculated •* through (2.21) with (2.22) in general takes the same form 
as (2•23) when the prior model is given by the linearly local constraints on sin(i) 
such as (2•2) and 2A/N is sufficiently small• Namely, when the number of data 
points which suffer from the boundary effects, 2•, is much smaller than N, the 
convolution function Cm(p) exists for a wide range of i (A + 1 _< i < N - ~) 
and accordingly the values except for Ak and Bk in (2.23) are very negligible as 
compared with those of Ak and Bk. Hence, we hereafter assume that  T*  follows 
the form expressed by (2.23). Comparing the elements of T*  with (2.23), here we 
define the following frequency domain quantities: 

(2.25) 

and 

= T *  ore(o) I m,111, 
= , 2 , 2  m(f) v/(T, ,2k÷12k) + 

( k : l , 2 , . . . , N  1) 
2 

T *  din(l/2) Im,N.NI 

(2.26) 
Cm(0) = ¢(1/2) = 0, 

Cm(f)=~(k/N) = t a n  -1 \ T ~ ,  2k+l2k+l k =  1,2, . .  N 1 
* 2 

0 ( f )  and ¢( f )  are defined on 0 < f < 1/2. Ore(f) and Cm(f), respectively, 
represent the gain and phase for the linear operator in frequency domain, T*.  

3. Models for signal constraints 

Several Bayesian linear models such as (2.2) are considered here• First, the 
models which are widely used for smoothing are presented• We classify these 
models as a smoothness model. Secondly, we show the models which work in a 
frequency domain as a bandpass filter• These are sometimes used as one method of 
searching for a signal with known frequency buried in broadband noise. In addi- 
tion, we demonstrate the seasonal component models which are naturally adopted 
to represent a signal clearly showing a seasonal pattern. 
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3.1 Smoothness model 
Consider a model with smooth or lowpass filter behavior. In this case, a 

naturally adopted smoothness constraint is that the k-th order difference of Sm (i), 
Vksm(i) = urn(i), is assumed to be normally distributed zero-mean sequence with 
variance a2/T~. For example, for k = 1 and k = 2 those constraints are expressed 
in terms of the following am(i): 

(model dl) am(O) = 1, am(i)  = -1 ,  

and 

(model d2) am(0) = 1, am(l)  = -2 ,  am(2) = 1. 

The design matrix Dm in (2.11) is accordingly defined by am(j). The resulting 
filtered data, hence, shows a smooth behavior. Then, the smoothness constraint 
is interpreted to work as a lowpass filter. 

3.2 Bandpass filter 
A bandpass filter is generally used to extract a sinusoidal signal with a char- 

acteristic frequency fc from the original data. However, a general bandpass filter 
does not work well for a quasi-periodic wave which shows a gradual change in its 
amplitude and/or  an abrupt shift in its phase. Such situations often occur in data 
taken aboard a rotational body such as a spacecraft, rocket, and balloon. 

Assume a quasi-periodic signal is with the model 

(model qpl) am(O) = 1, am(l)  = -2cos(27rfcAt), am(2) = 1, 

where At is a sampling time (Higuchi et al. (1988)). The subscript in qPl, 1, 
indicates that a signal consists of one quasi-periodic wave. Since the model qPl 
specifies a local relationship around sm (i) and the dependence of s,~ (i) on Sm (i +h) 
for the larger value of h becomes smaller, this model satisfactorily represents a de- 
caying (or growing) sinusoid. This model can describe a sinusoid whose amplitude 
gradually changes as a function of time (Higuchi et al. (1988)). 

When the signal consists of multi-quasi-periodic signals, the regression coeffi- 
cients am(j) are obtained by comparing the coefficients of Sm(') in the following 
equation: 

2p p 

(model qpp) E am(j)Sm(i -- j )  = I I  (1 -- 2cos(21rf~,jAt)B + B2)sm(i), 
j = 0  j = l  

where f~,j is a characteristic frequency of j - th  component and B is a backward 
operator: Bsm(i) = sm( i -  1). 

In. association with the model qpp, we here present a model which describes 
a signal consisting of multi-decaying (and/or growing) sinusoids. The coefficients 
am(j) of this model can be obtained by the following manner. When s,~(i) is de- 
scribed as a set of decaying (and/or growing) sinusoids, sin(i) satisfies the following 
linear difference equation: 

p 

1-I(z j -  B)(z~-  B)sm(i) =O, 
(3.1) j=l  

zj = exp (2r(gj + ifj)At), 
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where gj and f j  are the growth rate and frequency of j - th  component,  respectively 
(Kay and Marple (1981)). Here, B is the backward operator as in model qpp, 
and the dagger represents the complex conjugate operation• By setting 7j = 
exp(2zrgjAt), (3.1) can be rewritten as 

P 

(3.1') 1-I ( B2 - 2"7j cos(27rfjAt)B + "y~)sm(i) = O. 
j= l  

• 2 p  • • • Setting ~-]j=o a m ( 3 ) S m (  ~ -- 3 )  -~ O, we compare the coefficients of S m ( i  --  j)  with 
those in (3.1), for each j ,  and then get the coefficients of am(j) consequently. 

3.3 Seasonal component model 
For a signal with a "cyclic" behavior with a period of r, the following season- 

able component model is satisfactorily useful. The seasonal component model is 
realized by the following a,~(j) 

(model sir) am(0) = 1, am(l)  = 1 , . . . , a , ~ ( r -  1) = 1 

(Kitagawa and Gersch (1984)). For example, when sin(i) is monthly data  and 
clearly shows a strong seasonal pattern, sin(i) satisfies the constraint which mini- 
mizes EN=12[ 11 [2 ~ j = 0  sm(i - j) This constraint has been applied to the economic 
data  (Akaike and Ishiguro (1983), Gersch and Kitagawa (1983), Kitagawa and 
Gersch (1984)) and to observational data  (Koike (1990))• For a seasonal compo- 
nent model with a period of r, the following simple constraint is naturally available: 

(modelsdr)  am(O)= l , a m ( 1 ) = O , • . . , a m ( r - 1 ) = O ,  am(r) = - i  

(Akaike and Ishiguro (1983), Ishiguro (1984))• It is impossible for the sdr model 
to eliminate the DC level component,  because the solution of sin(i) = s m ( i -  1) 
can also satisfy this sdr condition (Kitagawa (1986)). Accordingly, the resulting 
decomposed signal by using this model for a seasonal component model intuitively 
contains the DC level component• When a signal is decomposed into a trend, 
seasonal and other components, the constraint of sd~ for a seasonal component 
should be used together with that  of sir because the trend component can not be 
uniquely defined, for a fixed value of the hyperparameters, without using the sir 
model (Akaike and Ishiguro (1983)). 

4. Numerical examples 

4.1 Smoothness model 
First we consider a simple model with M -- 1 and one hyperparameter T 2 : 

[~-~]. That  is, we decompose a time series into two components: y(i) = sl (i) d- e(i). 
For sl (i), we adopt a model of d2. 

Since we use the discrete Fourier transformation expressed by (2•22), a fre- 
quency resolution, A f ,  is given by 1/N. A function in frequency domain, there- 
fore, can be expressed in detail with increasing N. In the following results, we use 
N -- 200. 
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We present the time domain form of linear operator, Tin,i.d. Since M = 1, 
we omit m = 1 in Tm,iq, and simply denote T[i,j]. Figure 1 shows five curves 
of T[i,j] for i = 1,25,100, 175 and 200 as a function of j .  The vertical value is 
normarized by the maximum value of T[i, j]. Here we set r 2 = [28]. T[i, j] for 
each i reaches its maximum value at j -- i. There is little difference among three 
curves of T[25, j], T[100, j] and T[175, j]. T[1, j] and T[200, j] reflect the boundary 
condition and they are approximately a mirror image each other. 

O 

¢5 

Fig. 1. 

T[i, Jl 

i = 1  i = 2 0 0  

i = 2 5  

I 

0 50 

i = i00 i = 175 

100 150 200 

T[i,j] for i -~ 1, 25, 100, 175 and 200 as a function ofj. 

Since for 0 -2 = 2 s, T[i,j] is almost independent of i for 30 < i < 170, it is 
reasonable to consider that  T[100, j] represents the convolution function C1 (p) in 
(2.20). Figure 2 illustrates CI(p) normalized by 6'1 (0). The essential support of 
C1 (p) is roughly -30  ___ p < 30 in this case, that is, A in (2.20) is approximately 
30. Accordingly C1,/(p) in (2.19) is independent of i only within 30 < i < 170. 

We obtain the frequency domain characteristics of T[i, j], T* [i, j], by utiliz- 
ing the aforementioned procedures, and thus calculate the gain G l ( f )  and phase 
¢1(f)- Here we demonstrate a typical example of T*,i. j to easily understand an 
interpretation of T*#.j as a commonly used digital filter. Figure 3 shows a fre- 
quency domain behavior of the linear operator of the model d2, T*[i,j]. For the 
purpose of easier visual understanding, we exhibit in Fig. 3 only a part of T* [i, j]: 
T* [i, j] (i -- 1 , . . . ,  81 and j ~ 1 , . . . ,  81). The frequency range shown in this figure 
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is, hence, limited to f _< 0.2. It is clear that  T*[i,j] is nearly zero except for diag- 
onal elements, and that  the diagonal element, T*[i, i], is tapering toward zero with 
increasing i ( /) .  These results sufficiently support  the anticipation that  T*[i,j] 
can be interpreted as a lowpass filter. From T* ti, Jt = 0 for i ~ j ,  it follows that  
the phase in (2.26), q~ ( f ) :=  0. 
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We display in Fig. 4(a) the gain of T* [i, j], G1 (/)2 approximately correspond- 
ing to an envelope ofT*[/, i] in Fig. 3. The value of Gl(f) is calculated by (2.25), 
and normalized by G1 (0). From (2.25), the definition range of frequency is, as 
previously mentioned, limited within 0 _< f _< 1/2. Figure 4(a) clearly shows that 
this linear operator, T[i,j], works as a lowpass filter in frequency domain, and 
that the components with a frequency larger than 0.1 are rejected by T*[i, j]. We 
note that Gl ( f )  monotonously decreases; i.e. T[i, j] rejects higher frequencies. In 
Fig. 4(b), the phase ¢1(f) on the definition of (2.26) is illustrated in degree. The 
phase is almost confined within the small range from -30  to 0, particularly, in the 
frequency range of f < 0.1, it approximately takes the value of 0 °. This means 
that T*[i,j] has almost zero phase shift at frequencies less than 0.1. In addition, 
since ~1(0) = ¢1(1/2), T*[i,j] is thought to have a minimum phase (Karl (1989)). 
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Fig. 4. (a) The gain Gl(.f) and (b) phase ¢1(f). 

0.5 

The gain presented in Fig. 4(a) is obtained with T 2 = 2 s for the model d2. 
Obviously, as mentioned in Section 2, the form of Gl ( f )  completely depends on 
the value of T 2. Increasing T 2 increases the smoothing action on y and reduces the 
cutoff frequency. 

To examine a dependency of the function form of Gl ( f )  on T 2, Fig. 5 shows 
Gl ( f )  vs. f for five values of T12:72 = 212, 28, 24, 20 and 2 -4 with each curve 
normalized by its 61(0). We also specify the normalized gain by (~l(f). Each 
curve peaks at f -- 0, and displays a monotonically decreasing response. As shown 
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The gains for several values of 7-2: ~-~ = 212, 2 8, 2 4, 2 0 and 2 - 4 .  

in the figure, the lowpass filter achieved by using d2 model with small T~ ha~ a 
broad transition zone, where the transition zone is a frequency range of Gl( f )  = 
1 ~ (~l(f) = 0; (~l(f) for small ~-~ displays a gradual decrease. 

For small r 2 (T~ < 24), (~l(f) has no cutoff. Because (~l(f) is obtained 
numerically, it is inevitably contaminated with numerical errors. Then, instead of 
the cutoff, we now adopt 

(4.1) fl/2 ---- G11(1/2). 

Namely, to examine the dependency on T 2, we use the frequency at which gl (f) 
takes a half value ((~1(fl/2) = 1/2). 

Figure 6 is a curve of the half value frequency, fl/2, against T12 on doubly 
logarithmic scale (the base of logarithm is 2). It is clearly seen that  log 2 fl/2 
linearly decreases with increasing log2 T 2. The correlation coefficient between them 
is -0.9995. Using a least square straight line fit to log 2 T 2 VS. log 2 fl/2 plots yields 

(4.2) log2 fl/2 = -2.565 - 0.2534 log 2 T~. 

Accordingly, the relation between T~ and fl/2 is approximately given by 

1 
(4.3) fi/2 ~- 6v ~ .  



FREQUENCY DOMAIN CHARACTERISTICS 483 

Fig. 6. 

2 
, ¢  

¢q  

¢~ l r r I I I 

-2 0 2 4 6 8 10 '12 

log= v~ 
Corr.. -0.999$ 

The logarithm of the half value width, log 2 fl/2, against log 2 T~. 

Using this relation, the desired lowpass filter can be constructed in the following 
manner. If we give a value of fl/2, the hyperparameter 7~ is directly defined 
according to (4.3). The resulting ~-~ gives a form of T[i, j]. 

4.2 Quasi-sinusoidal model 
In the next example, we try to examine the performance of the qPl model as 

a bandpass filter. We here add one component s2(i), which follows a qpl model, 
to the model previously used as a lowpass filter; we consider the model such that 
y(i) = sl(i) + s~(i) + e(i), where sl(i) and s2(i) follow the d~ and qPl models, 
respectively. Two hyperparameters, T1 ~ and 72, are required to represent this 
model. To examine a performance of the model corresponding to the bandpass 
filter, we fix the value of T 2 which controls the property of the lowpass filter: 
T~ = 1. In the qPl model, we set a characteristic frequency fc to be 1//8. 

Figure 7 shows four curves of G2(f) for T 2 : 2 °, 2 4, 2 8 and 2 12, where (~2(f) 
denotes the value normalized by G2(]c) for each curve. It was previously men- 
tioned that  as the hyperparameter ~-22 becomes larger, the constraint on s2(i) is 
intensified to emphasize the pure sinusoidal pattern. Accordingly, for 7"22 ---* +~c, 
it is expected that s2(i) is completely a sinusoid. In this case, only the component 
with the frequency of fc is extracted by T2. This is a consequence of the fact that 
G2(f) is given by ~(f  - fc), where ~(.) is a delta function. Clearly, Fig. 7 supports 
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normalized by 62 (0). 

For each v. 2, the value is 

this expectat ion for large T22. For example, G2( f )  for T22 = 212 is nearly to a delta 
function with a sharp peak. The smaller T 2 shows that  s2(i) is more weakly sub- 
ject  to restriction for the sinusoidal pat tern,  and the Per iodgram of 82(i) shows a 
broader  band around f o  This means that  for smaller T22, G2( f )  exhibits a broader  
skirt. Figure 7 clearly supports ,  as expected, these anticipations on a dependence 
of (~2(f) on ~-2 2. 

In the further step, we present a model  with four components:  y(i) = s l ( i )  + 
s2(i) + s 3 ( i ) + e ( i ) .  Three hyperparameters ,  T 2, T 2 and 7 2, are therefore required to 
represent this model. Sl (i) follows a d2 model, and bo th  s2 (i) and s3 (i) are required 
to obey a qpl model. In construct ing qPl model, we specify the characteristic 
frequency, fc, for s2(i) and s3(i) components  by fc2 and fc3, and here set to 1/4 
and 1/8, respectively. Although many models can be considered according to a 
value of a set of the  hyperparameters ,  T 2 = IT12, ,2 ,  T2], we now give two examples. 

Figure 8(a) shows three curves for (21(f),  G2( f )  and G3(f ) .  The values 
of hyperparameters  are set to be  T 2 = [2 -2,  26, 210]. Gin(f) indicates the value 
normalized by a maximum value of Gm(f) for each m. As seen in Fig. 5, the  small 
value of r 2 leads bo th  a broad transition zone and a high half value frequency 
fl/2. However, on comparison with Fig. 5, we should note tha t  the frequency 
components  just  with f = 1/4 and f = 1/8 are completely rejected through T1 [i, j]. 
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Figure 8(a) distinctly shows that these frequency components with f = 1/4 and 
f = 1/8 are, respectively, extracted by T2[i,j] and Ta[i,j]. Because of the very 
large value of T32, (~3(f) comes near the delta function. The constraint of the 
smoothness prior is weak due to the small value of r 2. fl/2 seen in Gl ( f )  is high 
thereby. 

In addition, we exhibit in Fig. 8(b) three gains for three components with 
~.2 = [22, 26, 22]. The model and characteristic frequencies are the same used in 
Fig. 8(a). Because of the same value of 72 = 26, G 2 ( f )  is identical to G2(f) shown 
in Fig. 8(a). The support of (~3(f) becomes wider according to small value of T32. 
That  is distinctly different appearance from that in Fig. 8(a), which is nearly to 
the delta function. Since V~ is relatively large, the smoothness constraint becomes 
stricter and the cutoff frequency is reduced to the lower frequency. 

4.3 Decaying (or growing) sinusoidal wave model 
Furthermore, we demonstrate a gain of the model closely related to the quasi- 

sinusoidal wave. This model, as previously presented in Section 3, describes a 
set of decaying and/or  growing sinusoids. For simplicity, we use a simple model 
with two components: y(i) = sl(i) + e(i). In addition, we set sl(i) to represent 
a growing or decaying sinusoidal wave. Then, only values of two coefficients in 
(3.1), gl and fl ,  are required. Of course, the value of a hyperparameter, T 2, is also 
necessary for constructing a prior model. Since the value of At is not essential in 
this study, we set At = 1. Since, for the quasi-sinusoidal wave, we satisfactorily 
understood the relationship between the gain and hyperparameters, it is easy to 
assume the relationship for a growing or decaying model. We therefore examine 
the dependency of gl on a gain under the fixed values of T 2 and fl:  ~-12 = 21° and 
fl  = 0.25. 

Figure 9(a) demonstrates G1 (f)  against several values of gl: gl = 0, 0.025, 0.05 
and 0.125. The negative (positive) value of gl represents that sl is a growing 
(decaying) sinusoid. It should be noticed that the model with gl = 0 is equivalent 
to qpl model with fc,1 = 0.25. All gain shows a peak at f = 0.25, indicating that 
the filter works as a bandpass filter. With increasing gl, the skirt of (~1 (f)  becomes 
wider and finally (~l(f) with gl = 0.125 shows a w-shape behavior. This means 
that for a comparatively small value of the growth rate, the linear filter works as a 
bandpass filter like that of qPl model. However, for the larger gl, the components 
in wider frequency range can be passed through this filter. We examine (~l(f) for 
the negative value of gl; i.e. we demonstrate G1 (f) for a growing sinusoidal wave. 
The absolute values of the used gl are the same as those for a ~owing sinusoidal 
wave: gl = 0 , -0 .025, -0 .05  and -0.125. Figure 9(b) shows Gl ( f )  against the 
several values of gl. It is also seen that the skirt of (~l(f) becomes wider as an 
increase in Igll (decrease in gl). Nevertheless, it should be noticed that even if gl 
takes the same absolute value (except for gl = 0), (~l(f) in Fig. 9(a) is different 
from that  in Fig. 9(b). In particular, (~l(f) in Fig. 9(b) with gl = -0.125 shows 
significantly different behavior from that  in Fig. 9(a) with gl = 0.125. 
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Fig. 9. (a) The gains of the decaying sinusoidal wave model, Gl ( f ) ,  against several 
values of gz: gl -- 0, 0.025, 0.05 and 0.125. (b) The gains of the growing sinusoidal wave 
model, GI (f)  against gl = 0, -0.025, -0.05 and -0.125. 

4.4 Seasonal component model 
As previously mentioned, when the signal shows a cyclic pat tern with a certain 

period, a seasonal component  model is satisfactorily applied. We examine the gain 
of this model by using a simple model of y(i) = sl(i)  +e(i) .  To construct the prior 
model, we set r = 10; the period, r, is 10. Then, since we use At  = 1 and 
N = 200 in this study, the frequency of this cyclic signal is given by 1~rAt  = 0.1. 
Figure 10(a) demonstrates (~l(f)  for the silo model against hyperparameters: 
T~ = 2 °, 22, 2 a and 2 s. All curves show peaks at the frequency of an integral 
times of 0.1: f = 0.1, 0.2, 0.3, 0.4 and 0.5. It is shown that  as T12 is smaller, the 
skirt around each peak becomes wider. Moreover, the tendency that  the higher 
frequency is preferentially passed becomes enhanced with decreasing in T~. 

We examine (~z (f)  of the sdzo model under using the same parameters used 
above. (~l(f) is demonstrated in Fig. 10(b) against the hyperparameters. Of 
course, all curves show peaks at the frequency f = 0.1,0.2,0.3,0.4 and 0.5. In 
addition, it has a peak at f = 0, because as previously mentioned, the sd]o model 
for a seasonal component  obviously contains the DC level (i.e., sz(i) = s l ( i  - 1)). 
It is also seen in Fig. 10(b) that  increasing in T~ makes each skirt wider. This 
tendency of broadening is independent of the frequency of peaks. Therefore, it 
does not occur that  the higher frequency is preferentially passed by this model. 
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This result is a performance distinguishable from that for the silo model. 

5. Summary and concluding remarks 

The problem of interest is to exhibit the frequency domain characteristics of 
the linear operator to decompose an observed time series into the multi- 
components. We used the Bayesian model for each of the decomposed multi- 
components. Assuming that both the prior and conditional data distributions are 
normally distributed, the solution to the best decomposition is then reduced to be 
the constrained least squared problem for a fixed value of the hyperparameters. 
Modifying this solved equation, we obtained the convenient form that each of de- 
composed components can be given by operating the matrix to the column vector 
composed of the observed data. By the discrete Fourier transformation, we got 
the representation of this matrix (linear operator) in a frequency domain. After 
such representation, we examined the characteristics of the Bayesian model in a 
frequency domain and discussed its performance in terms of terminology of the 
linear filters, as a function of the hyperparameters. 

To illustrate our methodology, we have presented several Bayesian models 
which are considered to work as filters, and made their frequency domain repre- 
sentation. First, we investigated the smoothness prior model which is commonly 
used for removing the high fluctuations from the observed data. In this study 
we have qualitatively shown its relationship between the hyperparameters and 
the cutoff frequency. This cutoff frequency is closely related to the bandwidth 
defined in kernel-function representation. The relationship between the band- 
width and hyperparameters for a spline smoothing has been already established by 
Silverman (1984a, 1985). Although our approach to smooth a curve is different 
from that made by a spline smoothing method, the cutoff frequency is substantially 
the same concept as the bandwidth. 

The prior model to extract a quasi-sinusoidal wave with a characteristic fre- 
quency can be widely applied to quasi-sinusoidal waves even with the time varying 
amplitude. In relation to this model, we presented the prior model to get the 
waves consisting of the multi-sinusoidal waves from an observational data. For 
the present there is no actual application of this model, but it may be useful for 
reaching a signal which consists solely of sinusoids in additive white noise. Addi- 
tionally we demonstrated the decaying (or growing) sinusoidal prior model, which 
is a generalized model of a quasi-sinusoidal wave prior. This prior model implies 
that the signal can be expressed by a linear combination of exponentials. Using 
such specific, rather complicated model for an examination of the free oscillations 
(e.g., Earth's free oscillations (Fukao and Suda (1989))) is reasonably justified, 
because it precisely specifies the relationship necessary for the free oscillations. 

The seasonal component model enables us to extract a signal showing a sea- 
sonal pattern. This model has been successfully applied to the economic data 
(Akaike and Ishiguro (1983), Gersch and Kitagawa (1983), Kitagawa and Gersch 
(1984)) and to observational data (Koike (1990)). Naturally it is suggested to be 
useful and efficient for the experimental data which suffer from artificiM instru- 
mental noise showing a strong cyclic pattern, due to the periodicity inherent in a 
experimental method such as a rotation of the rocket, or radiation of radio waves 



490 T. HIGUCHI 

with a characteristic frequency, or the instruments using an alternating current 
(AC). 

In this s tudy we use the Akaike's formulation to decompose a t ime series into 
multi-components. In an actual data analysis for a signal decomposition, a simple 
approach to convolute C1 (-) with y(.) (C1 ® y) can give us the satisfactory results, 
instead of one to multiply T[i, j] by y. Moreover we note that  if T 2 is given, the 
algorithm by using a state-space form signal model (Kitagawa (1981)) is useful 
and effective rather than computing the operator T[i,j]. This state-space model 
is accompanied by the smoothness priors, and equivalent to the dl or d2 model 
presented in this study. 

Finally, we would mention the t reatment  of non-linear Bayesian model. In 
this study, we used the linear model for the priors. The linear model is, of course, 
applicable in various fields and its usefulness has been already established. In 
addition to its flexibility to the observed data, its computational efficiency is very 
favorable for actual analysis. However, more general prior, which is no longer a 
linear model, can be implemented by recursive formula for the one-ahead predic- 
tion, filtering and smoothing (Kitagawa (1987)). In his model, the assumption of 
Gaussian system is also no longer required. Namely, the non-Gaussian distri- 
butions are induced for more general modeling. Because of its non-linearity, an 
estimate of the decomposed signal is no longer a linear function of the observa- 
tions and hence it is impossible to make its frequency domain representation as 
demonstrated in this study. A more comprehensive t reatment  of this approach is 
referred in Kitagawa (1987). 
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