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Abst rac t .  Recent developments in the stereological analysis of particles are 
reviewed. The trend has been towards methods which are applicable without 
specific assumptions about particle shape. Geometric samples of a local 3-d 
character are used. Stereological estimators of particle intensity, particle size 
distribution and particle interaction are presented and discussed. 

Key words and phrases: Intensity, K-function, mark distribution, marked 
point processes, measure decomposition, nucleator, second-order properties, 
stereology, stochastic geometry. 

1. Introduction 

Stereology is the science of making statistical inference about spatial struc- 
tures from samples of a geometric nature. Such methods are used in the study of 
the different components of spatial materials such as metals, minerals, synthetic 
materials or biological tissues. The physical size of the components of interest may 
be of the order of #m and are then studied by some microscopic technique. 

Until recently, the geometric samples used in a stereological analysis have 
consisted of line or plane sections of the structure. The step from spatial structures 
to their sections involves a great loss of information and so traditional stereological 
methods commonly yield only "global" information of a statistical character. A 
further consequence of this loss of information is that, in order to give a spatial 
interpretation to size data collected on sections, the solutions of ill-posed problems 
are required: numerical solutions in which small deviations due to measurement 
error can lead to large discrepancies in the final solution (cf. Stoyan et al. (1987), 
Coleman (1989) and references therein). 

In the present paper, we will demonstrate that, with samples of a local 3-d 
(three-dimensional) character, it is possible to get sound statistical information 

* An earlier version of this article was presented at the Symposium on the Analysis of Statis- 
tical Information held in the Institute of Statistical Mathematics, Tokyo during December 5-8, 
1989. 
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of a local character, e.g. about the local architecture of biological tissues. The 
simplest sample of this type is a disector (cf. Sterio (1984) and Gundersen (1986)), 
which consists of two parallel plane sections, a known distance apart. This sample 
can be obtained by taking physically two plane sections or one can use two focal 
planes created by a non-destructive technique like light microscopy (cf. Gundersen 
(1986)) or confocal microscopy (cf. Petran et al. (1968) and Howard et al. (1985)). 
Reviews and introductions to these developments can be found in Cruz-Orive 
(1987a), Gundersen et al. (1988a, 1988b) and Weibel (1989). 

We will concentrate on the stereological analysis of particle systems. From a 
statistical point of view, such systems are interesting because we have an inherent 
replication in the system. The particles are described by means of a marked point 
process. We shall draw heavily on the solid framework for such processes laid down 
by the East German School of Stochastic Geometry (cf. Stoyan et al. (1987)). 

In Section 2, we define the particle model. The particles are sampled by a 
so-called nucleator (cf. Gundersen (1988)) resulting in a central section through 
each of a sample of particles (cf. Section 3). In Sections 4, 5 and 6, stereological 
estimators of the intensity, the mark distribution and the K-function are presented 
and discussed. In Section 7, some ideas for future work are outlined. 

2. The particle model 

The particles are regarded as a realization of a so-called germ-grain model 
(cf. Hanisch (1981) and Stoyan et aL (1987), p. 186). Below, we define this model 
and discuss first- and second-order characteristics. A similar exposition can be 
found in Pentt inen and Stoyan (1989). 

Let • = {[xi; ~i]} be a marked point process where the xi's are points in R 3 
and the ~ ' s  are elements of the set k of compact subsets of R a. The set xi + ~i 
is the i-th particle of the particle process, xi will be called the nucleus of the i-th 
particle and ~i the primary particle. We assume that  O E -=i. Furthermore, we 
assume that  -~i has non-void interior and finite surface area. The particles may 
overlap, provided this does not interfere with their identifiability. The process of 
nuclei is denoted by ~ = {xi}. 

The Borel a-algebra in R 3 is denoted B 3. On the set k of compact subsets of 
R 3, we use the a-algebra K, defined as the restriction to k of Matheron's a-algebra 
on the closed subsets of Ra (cf. Matheron (1975), p. 27). 

It will be assumed that  the marked point process is stationary, i.e. ko~ has the 
same distribution as ~2 for all x E R 3, where 

(2.1) ~ = {[x~ + x;.=.~]}. 

Furthermore, the model is assumed to be isotropic, i.e. A ~  has the same distri- 
bution as ~ for all rotations A e SO(3) where 

(2.2) d ~  = {[Ax~; d.=.i]}. 

The stationarity implies that  the intensity measure of the marked point process 
is of the form 

(2.3) A(B x K )  1) E # { i  : xi e B,.~.i • K }  

= A V ( B ) P m ( K )  
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where B E ~3, K E KS, ~ is the intensity of ~n,  V is volume and Pm is the mark 
distribution. We always assume that 0 < A < co. Below, E0 is a random compact 
set with distribution Pm. Note that O C E0 with probability 1. Often, ~0 is called 
a typical primary particle. The isotropy of • implies that  Pm is isotropic, i.e. 
Pm(AK) = Pro(K) for all K E KS and A E SO(3). 

The second-order properties of ko can be described by the factorial moment 
measure a, defined by 

(2.4) a(B1 x K1 x B2 x K2) = E ~_~# 1BI(Xl)IB2(X2)IKI(EI)IK2(Z2), 

B1, B2 E j~3 and K1,/£2 C KS. The summation ~-~¢ goes over all ordered pairs of 
marked points with Xl ~ x2. The factorial moment measure an of the process of 
nuclei is 

(2.5) an(B 1 x B2) = a(B1 x k x B2 x k). 

We will base the second-order analysis of the process of nuclei on the so-called 
K-function (cf. Stoyan et al. (1987), p. 120). The K-function has been primarily 
used in the theory of liquids as a "cumulative radial distribution function". The 
K-function can be expressed as 

(2.6) AK(r) = Eo Z 1(0 < Ilx, l[ r), > 0, 
i 

where Eo is the mean value operator for the Palm distribution P0 of the nuclei 
process. The Palm distribution can be interpreted as the distribution of ~Jn when 
the origin of R 3 is chosen as a typical nucleus. Therefore, AK(r) can be interpreted 
as the mean number of further points in a ball of radius r centered at a typical 
nucleus. For the Poisson process, K(r) = (4/3)7rr 3, the volume of a ball with 
radius r. 

The isotropy of ko implies isotropy of ko~ and Do. The Palm distribution is 
related to the original distribution of ~J~ by the refined Campbell theorem 

f 

i JR a 

where h is any non-negative measurable function. 
We will assume that Eqtn(B1)qtn(B2 ) < cc for any pairs of bounded Borel 

sets, where q2n(B) = #{ i  : xi E B}. This assumption ensures that both 
a ( .  x K1 x • x / ( 2 )  and an(" x • ) are a-finite measures on B 3 x/~3. Obviously 
a( -  x K1 x • x / (2 )  << an(-  x • ) for all K1,/£2 E KS and so there exists a Radon- 
Nikodym density M ~ 2 ( K 1  ×/{2) satisfying 

(2.8) a(B1 x K1 x B2 x K2) = / B  Mxlx2(K1 x K2)an(dXl,dX2). 
1 x B 2  
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Under the assumption of stationarity and isotropy of ko, Mx~x2 depends only on 
the distance r = [[xl -x21[ and we use the abbreviation Mr. The distribution of 
Mr is called the two-point mark distribution. If the marks are independent of the 
point process and mutually independent, then 

(2.9) Mr(K1 × K2) = Pm(K1)Pm(K2). 

The value Mr(K1 x K2) may, in general, be interpreted as the probability that 
the marks of the points in O and x (llxll -- r) are in K1 and K2, respectively, 
under the condition that in O and x there are indeed points from ~ .  For a more 
detailed treatment, see Stoyan (1984a). 

Usually, only some part of the two-point mark distribution is studied, e.g. 

(2.10)  S°'rV(•l)U(Z2) = ~k ~k W(Zl)V(~2)ir(dZl'd~2)' r > O. 

It can be shown, using the two-point Campbell theorem (cf. Stoyan (1984a)) that 
the empirical counterpart below is closely related to this quantity. Thus, with 
B E B 3, 

(2.11) E E E 
xlEB x2: 

rl <llx~-x111<r~ 
1 

Eo,rV(=-l)V(=-2)K(dr). 

3. Nucleator sampling 

Nucleator sampling (cf. Gundersen (1988)) of a particle process is a special 
type of local 3-d sampling. The information available is a collection of parallel 
planar sections. The sections are central sections through particles in a sampling 
box B. 

More formally, let L2(0) be a plane through the origin parallel to one of the 
faces of the box. The set of planar sections is then {xi+L2(0) : x~ C B} (cf. Fig. 1). 
This type of sampling is possible if the xi's are clearly identifiable. 

A practical way of obtaining this type of information is by optical sectioning. 
The idea is to start by making only one, relatively thick section B containing 
the particles and then make thin optical sections inside the thick one by moving 
the plane of focus up and down. Such a thin optical section is made through 
each nucleus in B. Optical sectioning will be at its best when used on a confocal 
microscope (see Petran et al. (1968) and Howard et al. (1985)). An alternative is 
to use thick plastic sections on a conventional light microscope which in various 
ways has been modified (cf. Gundersen et al. (1988b)). 

We assume below that we have unlimited information on the sections. This is 
the case in the applications we have in mind. Here, the height of the box is equal 
to the thickness of the initial thick section while the horizontal extension of the 
box is much smaller than that of the thick section. In other applications where 
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Fig. 1. 2-d illustration of nucleator sampling. A collection of parallel line sections are 
sampled, viz. the line sections through nuclei inside the square B. In 3-dimentional 
space, the line sections are replaced by plane sections parallel to one of the faces of a 
sampling box B. All plane sections through nuclei in B are sampled. 

information is available only inside the box B, edge effects corrections are needed 
of a similar type as those described in Stoyan et aL ((1987), p. 125). 

4. The intensity 

The stereological estimation of the intensity A of the particles has been a long- 
standing problem in stereology. Many indirect methods have been invented. The 
basic stereological estimation method has until recently been based on the identity 

= AA/D, where AA is the intensity of particle sections on a plane section and D 
is the mean particle height in the direction perpendicular to the plane. In order to 
estimate )~A correctly, it is necessary to treat the edge effects carefully (cf. Fig. 2). 
Good reviews of these methods can be found in Gundersen (1978) and Cruz-Orive 
(1980). The estimate of D is either based on a model of particle shape or direct 
locally serial sectioning. 

A by-product of the nucleator sampling is a direct observation of the number of 
nuclei in the sampling box B. The intensity A can therefore be estimated directly. 

It is also possible to estimate the intensity in a direct way, without using the 
nuclei. For this purpose, a disector can be used which consists of two parallel 
sections a distance h apart which is smaller than the minimal particle height 
(cf. Fig. 3); one section L2 has a counting frame T and is hence the counting plane 
whereas the other section L2h is a "look-up" plane. The procedure is to count all 
the particles that lie within the frame of the counting plane and do not intersect 
the look-up plane, thus "end" in the space between the planes (cf. Sterio (1984) 
and Weibel (1989)). The resulting count 

(4.1) C = E 1A(Xi + 7~i), 
i 

where 

(4.2) A = {y E k I Y N L2 ~ 0, Y N L2 inside frame T , Y  N L2h = 0}, 



460 EVA B. VEDEL JENSEN 

Fig. 2. Estimation of the intensity )~A of particle sections; here illustrated for convex 
particles which always give rise to connected particle sections. All particle sections which 
are inside the counting frame T are counted (cf. Gundersen (1977)). A particle section 
is said to be inside the frame if it hits the square but does not hit the full-drawn lines. If 
a particle is non-convex, a section may consist of separate connected components which 
are then treated as a whole. 

I 

Fig. 3. A disector consisting of two parallel sections a distance h apart which is smaller 
than the minimal value of the particle heights hi (from Sterio (1984), with permission). 

ha s  m e a n  A .  a r e a ( T )  • h a n d  C / a r e a ( T )  • h is t h e r e f o r e  an  u n b i a s e d  e s t i m a t o r  of  

A. M o d i f i c a t i o n s  ex i s t  wh ich  do  n o t  r equ i r e  a k n o w n  a n d  p o s i t i v e  lower  l i m i t  of  

p a r t i c l e  he igh t .  A n o t h e r  v a r i a n t  of  t h i s  c o n c e p t  is t h e  so -ca l l ed  "se lec tor"  (cf. 

C r u z - O r i v e  (1987b)) .  

T h e  e s t i m a t i o n  p r o c e d u r e s  d e s c r i b e d  a b o v e  a re  va l id  w i t h o u t  t h e  i s o t r o p y  

a s s u m p t i o n .  
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5. The mark distribution 

Until recently, information about the size distribution of the particles has been 
sought under assumptions about the shape of the particles. The most classical 
example is the sphere model (cf. Wicksell (1925, 1926)). For spherical particles, the 
problem reduces to estimating the diameter distribution. The classical approach is 
to consider a plane section through the particles and determine the size distribution 
of the circular disks on the plane section. This size distribution is related to the 
distribution of sphere diameters by a known integral equation of Abel type. By 
some kind of inversion, the sphere diameter distribution can be determined from 
the observed distribution of diameters of circular disks. 

This approach is not applicable very often because real particles are seldom 
spheres. Apart from that the inversion is numerically unstable. For a recent 
review, see Coleman (1989). See also Watson (1971). 

For this reason, the recent developments have been towards getting informa- 
tion about the mark distribution without specific assumptions about the particle 
shape. Until now, the interest has been in the volume distribution and the surface 
area distribution, i.e. the distribution of V(F-o) and S(~o), respectively. The first 
and second moments of these two distributions can be estimated, using nucleator 
sampling (cf. Jensen and Gundersen (1989) and Jensen et al. (1990b)). These 
results are special cases of a new integral geometric formula (cf. Z~hle (1990) and 
Jensen and Ki~u (1991)). 

The parameters which can be estimated stereologically without assumptions 
about particle shape are EV(~o) q and ES(=-o) q, q = 1, 2. The procedure for 
deriving these estimators follows standard methodology. First, we consider a fixed 
set Y, which is written in the form Y = x0 + ¢0 where x0 E Y and ¢0 E k. The 
quantities "y(Y), 7 -- V, S, V 2, S 2, are expressed as an integral with respect to the 
rotation invariant probability mearure on planes through the origin. Such integral 
geometric formulae can be derived, using geometric measure theory (cf. Federer 
(1969)). Let L2(o) be a plane through the origin, let/:2(o) be the set of such planes 
and let dL2(0) be the element of the rotation invariant probability on/22(o). Then, 
the integral geometric formulae are of the form 

(5.1) ?(Y) --- J~L ~(Y, xo, L~(o))d-L2(o). 
2(0) 

The integrand ~(Y, xo, L2(o)) is a non-negative function of the plane section Y N 
(Xo + L2(o)) which may depend on the point xo and also on a spatial neighbour- 
hood of the particle section. Thus, extended information might be needed. The 
integrand satisfies 

(5.2) ~(Xo + ¢o, xo, L2(o)) ---- ~/(xo + A¢o, Xo, AL2(o)), A E SO(3), 

i.e. invariant under simultaneous rotation of particle and plane around xo. 
The next step in the development is to notice that the invariant probability 

measure on/22(0) defines a special type of random planes L2(o), called isotropic 
planes. According to (5.1), the mean of ;y(Y, xo, L2(o)) with respect to an isotropic 
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random plane L2(o) is 7(Y). Now, let us interchange the randomness and consider 
a random particle xo + Eo, where the distribution of ~-0 is Pro. The plane L2(o) 
and the point xo are regarded as fixed. Because of the isotropy of P,~, the mean 
of 

"7(xo 4- ~0, x0, L2(o)) 

does not depend on L2(o) and, using (5.1), the common mean is E"/(xo + ~o) = 
E3'(~o). Applying this result to each particle in the box B, we find that  the mean 
of 

(5.3) E ~/(x~ + .=.i, xi, L2(o)) 
x~EB 

is )W(B)ET('~o). The resulting estimator of ET(Eo) becomes 

(5.4) E ~/(xi + "Zi,xi, L2(o))/#{i : xi e B}. 
x~EB 

The integrand of (5.1) is of the form 

(5.5) = v :  f 21Ix - xolldx 2 dX 
2 

(5.6) = S : / i _  21Ix -Xol l / s ina(x )dx  1 dX 
1 

2 2 

(5.8)  ~---$2 : f x  Ix 47rarea(x°'xl'z2)/sin°z(321)sinct(x2)dxldggl 
l 1 

where X2 = Y n (x0 + L2(0)), X1 = OY Cl (xo + L2(o)), dx q is the element of 
q-dimensional volume measure, a(x) is the angle between the tangent plane to OY 
at x E OY and L2(o) and area(xo, xl ,  x2) is the area of the triangle with vertices 
x0, xl and x2. Regularity conditions for (5.1) to hold with ~/equal to (5.5)-(5.8) 
can be found in Jensen and Ki~u (1991). 

The variance of the estimator (5.4) depends, among other things, on particle 
shape and the choice of nuclei inside the particles. If the nuclei are centrally 
positioned in the particles and the particles are not too irregularly shaped, the 
variance due to stereology will be low. In particular, ~(xi + E~, xi, 1,2(o)) --- ~'(Ei), 
for all L2(0), if xi + -~i is a ball and x~ its centre. For this reason, 

(5.9) {~/(xi + "Ei,xi, L2(o)): x~ • B} 

will be close to the direct sample of the mark distribution: 

(5.10) : xi  • B } ,  

under the circumstances mentioned. As a curiosity, nucleator sampling gives di- 
rectly the size distribution of diameters of spherical particles and therefore offers 
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(a) 

(c) 

i t / /  / ,  

' / S t / /  / • , / , ' / ,  

o 

' ;'/// 

Fig. 4. Il lustration of the geometric measurements needed on a particle section Y A 
(x0 + L2(0)) through the nucleus x0 for estimating (a) mean particle volume, (b) mean 
particle surface area, (c) the mean particle volume and surface area, based on line 
information, (d) mean squared particle volume and (e) mean squared particle surface 
area• 

a direct solution to Wicksell's problem, provided that the (observable) nucleus is 
at the centre. 

Apart from the mentioned low stereological variance, the estimators are robust 
against overprojection because the boundary of a centrally sectioned particle is 
very often nearly perpendicular to the section plane. Besides, nucleator sampling 
is sometimes the only possibility, if a particle can only be recognized on a central 
section. 

The actual determination of ~(Y, x0, L2(0)) (cf. (5.5) to (5.8)) presents various 
degrees of difficulty. For an illustration, see Fig. 4. For 7 = V, both manual and 
automatic determination can be used. Manual determination is based on a plane 
grid of points with uniform position in relation to x0 (cf. Fig. 4(a)). If automatic 
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determination is used then Y N (x0 + L2(0)) is represented in the computer as a 
set of pixels and the distance from each of these to x0 is determined. For 7 = S 
(cf. Fig. 4(b)) only manual determination is possible at the moment.  Uniform 
points on the boundary can be found as intersection points with a grid of lines 
with uniform orientation and uniform position in relation to x0. At each of the 
intersection points, a distance and a spatial angle must  be determined. If the 
boundary is sufficiently sharp, the angle can be measured by moving the focal plane 
up and down and observing the travelling distance of the intersection boundary. 
External information is therefore needed. 

The estimators presented in Fig. 4(a)-(b) depend on planar information. Anal- 
ogous versions based on line information are also available. In Fig. 4(c), an example 
with a systematic set of 4 lines is shown. The estimators depend again on dis- 
tances and angles. Spatial angles can in this case be replaced by planar angles, as 
indicated on Fig. 4(c) (cf. Jensen and Gundersen (1987)). 

The estimators of the second moments require two grids of points or two grids 
of lines if determined manually (cf. Fig. 4(d)-(e)). 

Alternative methods of estimating particle size without shape assumptions 
exist which do not require the existence of nuclei. First of all, the selector which 
combines disector sampling of particles with the use of a spatial grid of points 
hitting each sampled particle instead of a nucleus (cf. Cruz-Orive (1987b)). First- 
order moments such as EV(E0) and E S ( ~ o )  can also be estimated by calculating 
the ratio between an estimate of the total particle volume or surface area per 
unit volume and an estimate of the intensity of particles (cf. Sterio (1984)). If 
the volume mark distribution is of main interest, local serial sectioning, using 
Cavalieri's principle, can give a precise estimate of this distribution (cf. Marcussen 
et al. (1989)). The workload in doing this type of estimation is however large. 
Volumeweighted moments can be estimated on a single section (cf. Jensen and 
Gundersen (1985)). Such moments  have been useful in cancer grading (cf. Nielsen 
et al. (1989)). 

6. The K-function 

As for the mark distribution, stereological analysis of second-order properties 
of the particle nuclei has been investigated under specific assumptions about par- 
ticle shape. The spherical model has been studied in e.g. Hanisch and Stoyan 
(1981), Hanisch (1983) (see also Tanemura (1986)). Here, inversion of integral 
equations is again involved. Using local 3-d sampling, it is, however, possible to 
estimate the K-function of the nuclei process without specific assumptions about 
particle shape. 

The idea of this method of estimating the K-function is due to S. Evans 
(cf. Gundersen et al. (1988b) and Evans and Gundersen (1989)). In order to 
present the method,  we will proceed along the same lines as in the last section. 
Thus, we start by considering a series of fixed points {xi} in space. Let L2(o) be an 
isotropic plane through O and let h +  L2(0) be a parallel plane, a distance h = [Ih[[ 
from L2(0). We sample a point x ~ O if it lies between the two planes. It is easy 
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x i + h + L2(0) 

x i + L2[o) 

Fig. 5. 2-d i l lus t ra t ion of the  es t imat ion  of K ( r ) ,  r > 0. Each nucleus xi in the  
sampling box is chosen as origin. Nuclei at  a dis tance at  most  r, which lie between 
x~ + L2(o) and  xi + h +  L~(0) , mus t  be identified. 

to see that  the probability of being sampled is 

h/[211xrl], if Ilxll h 
(6.1) P~,h = 1/2, otherwise. 

We now revert the roles of randomness. The points ~n = {xi} thus constitute 
a stationary and isotropic point process while the planes L2(o) and h + L2(0) are 
fixed and chosen parallel to one of the faces of the sampling box B. The above 
sampling rule is applied, using each of the points in the sampling box B as origin. 
In order to estimate K(r) ,  the above sampling rule is applied to all points at a 
distance at most r (cf. Fig. 5) and the inverse sampling probabilities are summed. 
The result 

(6.2) l lo,r](l lxj  - 
xiEB x3ES(x~) 

where 

(6.3) S(x) = {xj E ~n I xj between x + L~(0) and x + h + L2(0)}, 

has mean A2V(B)K(r). This can be shown easily, using the isotropy of the Palm 
distribution of ~n and Campbell theorem. Therefore, 

(6.4) ~ ~ 1]0,r](Hxj - xiH)p-~)_x,J#{i: xi e B} 
x~EB x36S(x~) 

is an estimate of AK(r). We can therefore also estimate the local numerical density 
at a distance between rl and r2, say, which is 

4 3 
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In practice, we need for each xj  E S(x i )  to determine whether the condition 
[[xj - x i  [[ < r is fulfilled. This question can be determined by combining knowledge 
of the distance between xi and the projection of xj on xi + L2(0) and the distance 
of xj  to xi -'k L2(0). Each of these distances can be determined using the optical 
sectioning technique. In case of non-spherical particles, the xi's are identifiable 
"natural" points, like the nucleolus of a neuron (cf. below). 

An application of these methods from the brain is shown in Fig. 6. The situ- 
ation is slightly more general, because two types of cells are involved, viz. neurons 
and glia cells. The graph clearly illustrates that the glia cells are clustered around 
the neurons. See also Gundersen et al. (1988b). 

Stereological second-order analysis of spatial structures of dimension 1 or more 
can also be performed without specific assumptions (cf. e.g. Stoyan (1984b, 1985), 
Cruz-Orive (1989) and Jensen et al. (1990a, 1990b)). 

SPATIAL DISTRIBUTION OF GLIA AROUND NEURONS 

10 3, Jm 3 

c 

o 
@ 

Z 

0.6 

0.3 

0 
0 20 40 60$Jm 

D i s t a n c e  I r o m  n e u r o n  c e n t r e  

Fig. 6. The  var ia t ion  in the  local numerical  densi ty  of glia cells as a funct ion of the  
dis tance from a neuron  nucleolus (from Gundersen  et al. (1988b), wi th  permission).  
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7. Discussion and future work 

I t  still remains  to cons t ruc t  stereological es t imates  of the  two-point  m a r k  dis- 
t r ibut ion,  e.g. of Eo,rV(~I )V(E2  ), r > 0. One possibil i ty is to concent ra te  on a 
cumula t ive  version like the  one presented in Section 2 and  use a measure  decompo-  
sit ion analogous to the one presented in Section 5 for squared volume. The  details 

still r emain  to be worked out.  

I t  would also be of interest  to s tudy  the  case of one-dimensional  particles. 
There  do exist  measure  decomposi t ions  for length like the ones described for vol- 

ume  and surface area, bu t  the  s ta t is t ical  proper t ies  of the resul t ing es t imators  
are not  nice in this case. For instance,  if the particle is a line segment  wi th  the 
mid-po in t  as nucleus, the measure  decomposi t ion  is not  well-defined. Another  ex- 
ample:  let a par t ic le  be a plane circle in space with nucleus equal to the  centre of 

the  circle. The  measure  decomposi t ion  gives an unbiased es t imator  of the  length, 
but  the e s t ima to r  has  infinite variance.  

The  es t imat ion  of first- and second-order  proper t ies  is for m a n y  biological 
appl icat ions  the  final objective.  Bu t  from a methodological  point  of view, it is 
also of interest  to  s tudy  the  stereological analysis of a pa ramet r i c  model .  The  

stereological e s t ima te  of  the  K- func t i on  can prove to be a useful tool in such an 
analysis.  
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