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A b s t r a c t .  A computationally efficient procedure was developed for the fit- 
ting of many multivariate locally stationary autoregressive models. The de- 
tails of the Householder method for fitting multivariate autoregressive model 
and multivariate locally stationary autoregressive model (MLSAR model) are 
shown. The proposed procedure is quite efficient in both accuracy and com- 
putation. The amount of computation is bounded by a multiple of N m  2 with 
N being the data length and m the highest model order, and does not depend 
on the number of models checked. This facilitates the precise estimation of 
the change point of the AR model. Based on the AICs' of the fitted MLSAR 
models and Akalke's definition of the likelihood of the models, a method of 
evaluating the posterior distribution of the change point of the AR model is 
also presented. The proposed procedure is, in particular, useful for the esti- 
mation of the arrival time of the S wave of a microearthquake. To illustrate 
the usefulness of the proposed procedure, the seismograms of the foreshocks of 
the 1982 Urakawa-Oki Earthquake were analyzed. These data sets have been 
registered to AISM Data  Library and the readers of this Journal can access to 
them by the method described in this issue. 

Key words and phrases: Locally stationary AR model, AIC, Householder 
transformation, P wave, S wave, arrival time, seismology. 

i .  Introduction 

In  recent years,  the  a u t o m a t i c  processing of seismic signals for the  detect ion of 
seismic ac t iv i ty  has  become realistic due to the  es tab l i shment  of  a well-equipped 
nat ion-wide seismological ne twork  sys t em (Hamaguchi  and  Suzuki (1979)). 
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In earthquake prediction, it is expected that by analyzing many foreshocks, 
important information about the forthcoming mainshock can be obtained. Ac- 
cording to the Gutenberg-Richiter's law, log n ( M )  = a - bM,  the incremental or 
cumulative number of earthquakes as a function of magnitude M, n(M), increases 
exponentially with the decrease of the magnitudes, M. Therefore, by developing a 
system which can analyze microearthquakes with smaller magnitudes, we can get 
increasingly much information about the seismicity of the region and, hopefully, 
about the forthcoming mainshock. 

In practice, however, the analysis of such microearthquakes causes two prob- 
lems. Firstly, the seismic signals observed by seismometers are contaminated by 
various kinds of noises, such as microtremors, microseisms, and artificial vibra- 
tion. Since the noise level is almost a constant independent of the signal, the 
effect of the background noise becomes more severe, for earthquakes with smaller 
magnitudes. Therefore, if we want to analyze earthquakes with smaller magni- 
tudes, it is required to develop a more sophisticated procedure which can handle 
very noisy data. Secondly, the number of earthquakes increases exponentially 
with the decrease of the magnitude. Seismograms have been conventionally han- 
dled by empirical methods based on the expertise of the human operator to single 
out real seismic signal from the various noises. However, for the processing of so 
many micro-earthquakes, it thus becomes necessary to develop a computationally 
efficient method that can automatically detect seismic wave from noisy data. 

Some attempts have been made based on the autoregressive modeling of the 
seismic signals (Tjcstheim (1975), Hamaguchi and Suzuki (1979), Hamaguchi and 
Morita (1980), Yokota et al. (1981), Maeda (1985) and Hasegawa et al. (1986)). 
The AR model is very useful for the analysis of a stationary time series. However, 
from the statistical point of view, the main feature of the seismic signal is the 
nonstationarity. Although seismic waves are nonstationary, it might be reasonable 
to approximate it by an AR model on each properly divided time interval. The 
use of the locally stationary AR model (Ozaki and Tong (1975), Kitagawa and 
Akaike (1978)) was thus motivated and it was shown that it is actually useful for 
the detection of arrival time of P waves in noisy data (Yokota et al. (1981)). A 
significant merit of the time series method is that we can automatically determine 
the arrival time of the P waves by just looking for the time point that attains 
the minimum value of the AIC of the locally stationary AR model. The CPU 
time of this method used to depend on the number of data, the order of the 
AR model and on the number of models checked, i.e., the number of candidates 
of the arrival time. In our previous paper (Takanami and Kitagawa (1988)), a 
computationally efficient procedure for the detection of the arrival time of the P 
wave has been developed based on the univariate locally stationary AR model. 
However, it is well known that the additional information from S wave improves 
the quality of location (Buland (1976)). Further, to get elastic parameters such as 
Poisson's ratios (a), the velocity of the S wave as well as that of P wave is required. 
Therefore, in this paper we consider the extension of the method developed in the 
previous paper, so that it can be applied to the automatic processing of the S 
wave. 

The objective of this paper is three-fold. Firstly, we develop a computationally 
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efficient algorithm for the fitting of the multi-variate locally stationary AR model 
so that it can be applied to the on-line processing of seismic wave. The procedure 
is, in particular, useful for the automatic determination of the arrival time of S 
waves of microearthquakes (1 < M < 3) . Secondly, we will present a method of 
evaluating the posterior probability of the arrival time. The posterior probability 
will be useful for the estimation of the hypocenters of the earthquakes. The third 
objective of the paper is to demonstrate the usefulness of the proposed procedure 
by applying it to the foreshocks of the 1982 Urakawa-Oki Earthquakes. These 
data  sets have been registered to the AISM Data Library and are released to the 
readers. 

The plan of the paper is as follows. In Section 2, a procedure for the estima- 
tion of arrival time of a seismic wave is developed based on a multi-variate locally 
stationary autoregressive (MLSAR) model fitting. In Section 3, a computation- 
ally efficient procedure for MLSAR model fitting is developed. In Section 4, the 
posterior probability of the arrival time of seismic wave is derived by using the 
likelihood of the MLSAR models. Section 5 is devoted to empirical study where 
the proposed procedure is applied to the estimation of the arrival times of the 
seismic waves. Especially, the main focus is put on the estimation of the arrival 
time of the S wave. 

2. Estimation of the arrival time and multivariate locally stationary AR modeling 

Let yn = (YnE, YnN, YnU) t, (n = 1 , . . . ,  N) be a three variate time series where 
YnE, YnN and Y,~u express the east-west (E-W), north-south (N-S) and up-down 
(U-D, vertical) components of the seismograms, respectively. The characteristics 
of the series, e.g., the variances and the spectra, change over time due to the 
arrival of seismic waves such as the P wave or the S wave. However, it might 
be reasonable to assume that each of the seismogram before and after the arrival 
of the seismic wave are stationary and can be expressed by a single time series 
model. This will be verified by the time-varying spectrum analysis shown in the 
discussion. For a stationary time series, an autoregressive model usually fits well 
and allows computationally efficient procedure for the identification. Therefore 
we will use an autoregressive model for the modeling of each stationary subseries. 
In this modeling, the arrival time of the seismic wave, nA, corresponds to the 
change point of the autoregressive model. In the estimation of the arrival time 
of P wave, the use of univariate time series has been considered reasonable, since 
the P wave is a compression wave and a dominant part of the movement appears 
in the vertical component. However, since the S wave is a shear type wave, for 
the estimation of the arrival time of S wave the analysis of the movement in the 
horizontal plane, namely of the east-west and north-south components, seems to 
be necessary. In view of the fact that  even after the arrival of S wave, the coda 
of P wave remains and that  S wave also induces the vertical motion, the use of 
two or three components seems to be desirable. We also have an anticipation that 
even for the detection of P wave~ the analysis of three-variate time series will give 
more precise information about the arrival time. We are thus motivated to use a 
MLSAR model which consisted of the following two local models. 
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Background noise model 

ml 

(2.1) Yn = E Aily~-~ + w~l, (n = 1 , . . . , n s ) .  
i=1 

Here ml,  is the autoregressive order, All is the k × k autoregressive coefficient 
matrix for /-lag component, and Wnl is the innovation sequence with mean 0 
and the covariance matrix El. In our applications, k is typically 2 or 3 and 
Yn = (Y~E, YnN ) t o r  Yn = (YnE, Yng,  YnU ) t. This model expresses the dynamics 
of the background motion. It should be noted that in the detection of S wave, 
the coda of P wave together with the background motion axe expressed by this 
"background noise" model. 

Signal model 

m2 

(2.2) Y~ = EAi2Y~-~ + w~2, (n = nB + 1 , . . . , N ) .  
i=1 

Here m2, Ai2 and w~2 are autoregressive order, autoregressive coefficient matrix 
and the innovation of the signal model, respec~tively. The covaxiance matrix of 
the innovation w~2 is denoted by E2. This mo(~el expresses the dynamics of the 
seismic wave. ': 

'! 

Assuming the arrival time nA = n B  + 1 and the~orders of autoregressions, ml 
and m2 to be known, the distribution of the time series is given by 

Yn ~ N A i l y ~ - i ,  E1 (n = 1 , . . . ,  riB), 

(2.3) Yn ~ N Ai2yn- i ,  ~2 (n = n B +  1 , . . . ,  N ) .  
\i..=] 

Therefore, given the observations Yl,. . .  ,YN, the log-likelihood of the MLSAR 
model is given approximately as follows: 

1 I k ( N  _ ml) log 27r + (nB - ml)  log {El{ (2.4) t(A1,A2, E1,E2)=--~ 

+ ( Y  - n . ) l o g  Ir 21 
nB N } 

+ E t -1 Wnl~ l  Wnl -{- E t --1 Wn2~ 2 Wn2 
n=ral+l  n=-ns+ l 

where, A1 = (A11,...,Aml,1), A2 = (A12,...,Am2,2) and from (2.1) and (2.2), 
w~j are obtained by 

rnj 

(2.5) Wnj = Yn -- Z A i j yn - i  (j = 1, 2). 
i=1 
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The maximum likelihood estimates of Aij and Ej (i = 1,.. .  ,mj; j = 1,2) are 
approximately given by maximizing (2.4). 

However, from the form of the log-likelihood function given in (2.4), it can be 
easily seen that the parameters of the background model and the signal model can 
be obtained by minimizing 

n B  

(n.-ml)loglrll+ wLr 11w 1, 
(2.6) - : ,m+l  

N 

( Y -  us)  log [E2[ + Z wtn2E21Wn2' 
n = n B + l  

respectively. A computationally efficient procedure for the fitting of these models 
will be shown in the next section. The fitted model can be evaluated by the AIC 
criterion (Akaike (1973)) defined by 

(2.7) AIC = -2/(A1, A2, ~1, ~2) + 2(the number of estimated parameters). 

In the estimation of the arrival time, the crucial problem is the estimation of 
the dividing point, nB. This point can be determined by finding the minimum of 
the AIC. 

3. Computationally efficient procedure for multi-variate locally stationary AR model 
fitting 

3.1 Householder method ]or multivariate AR model fitting 
We will first briefly review the procedure for the fitting of multivariate AR 

model developed for the program MULMAR in TIMSAC-78 (Akaike et al. (1979)). 
The program has been widely used since then. However, the details of the algo- 
rithm has never been described elsewhere. Assume that three variate time series 
( Y l , . - . ,  YN} is given and we are going to fit multivariate AR (MAR) model 

m 

(3.1) Y~ = Z Aiy,~-i + w~, w,~ ~ N(0, E). 
n ~ - - I  

It should be noted that although an algorithm for fitting three-variate AR model 
is shown here, it can be readily extended to a general k-variate time series. The 
main idea of the MULMAR is to use an autoregressive model with instantaneous 
response 

m 

(3.2) Yn = Boy,~ + ~ Biy~_~ + vn, v~ ~ N(O, V). 
n----1 

Here it is assumed that the coefficient of the instantaneous response is of the form 

[ 0  0 01 (3.3) Bo = b21 0 0 
b31 b32 0 
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and that  the covariance matrix V is of diagonal form: 

(3.4) v = 

Since 

[~1 ~ o ] 
o ° ° o  

o ~ 

m 

(3.5) y .  = ( I -  Bo) - 1 Z  B, yn-,  + ( I -  Bo) - lv . ,  
i=1  

this AR model with instantaneous response has a one to one correspondence to 
the ordinary AR model with the relation 

(3.6) 

Ai = ( I  - Bo)- lBi ,  

= (I - B o ) - I V ( I  - So) -t .  

It should be noted that  these two models, (3.1) and (3.2), have the same number 
of parameters. 

The significant merit of the use of the AR model with the instantaneous re- 
sponse is that  it can be estimated by independently fitting the univariate models 
for each of the three components. This can be justified as follows. Since the 
covariance matrix is of diagonal form, 

(3.7) Z Z Nlog lY l  + v ~ . y - i v .  = g l o g ~  + - z  v . ,  , 
n = l  i = l  (7i n = l  

where vn~ denotes the i-th element of vn. Therefore, if the 3 x 3 matrix Bi is 
divided as 

(3.8) B~ = 
bil]  
bi21 ' 
b~3 J 

the parameter set {b~j, (i -- 1 , . . . ,  ml) ,  32}, for j -- 1, 2, 3 can be estimated by 
• , , , 

minimizing 

N 

2 1 
(3.9) N l o g a j  + ~ Z v2nJ" 

n = l  

For any given bij, (3.9) is minimized when 

2 1 g (3.10) ~j = ~ ~ v~.j 
n - - - - i  
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and by substituting this estimate into (3.9), it can be seen that bij are obtained 
by minimizing 

(3.11) Nlog a~. + N, 

or equivalently by minimizing a~. This means that by using the special expression 
for the multivariate AR (MAR) model given in (3.2), the maximum likelihood 
estimates of the MAR model are obtained by solving the least squares problem 
for each of the three component. Further, the log-likelihood and AIC of the MAR 
model are obtained as the sum of AIC's of three component models. 

We will next show an algorithm which can solve these three least squares 
problems quite efficiently. The least squares estimation of the MAR model can be 
realized by first making (N - m) × (3m + 3) matrix 

(3.12) X = 
Ytm+l "'" Y~ Ym+2 

• . . .  • . 

[y l , -1  - -  yl,-  yl, J 

and reduce this matrix to an upper triangular form by an orthonormal transfor- 
mation (i.e., Householder transformation, Golub (1965), Sakamoto et al. (1986)) 

(3.13) S = 

811 " " " 8 1 , 3 m + 3  

83m+3,3m+3 
0 

The (3m + 1) × (3m + 1) upper left triangular matrix of S contains sufficient infor- 
mation for the fitting of the model for the first component (e.g., E-W component 
in this case). In particular, the innovation variance a2(j) and AIC(j) of the j- th 
order model 

J 
(3.14) YnB = E bilYn + WnE, 

i=l 

where bil = (bi(1, 1), bi(1, 2), bi(1, 3)) and y~ = (Y~E, Y~N, YnU) t, are obtained by 
(gitagawa and Akaike (1980), Sakamoto et al. (1986)) 

1 3m4-1 
a2(j) - N -  m E 2 si,3m+l (j = 0, 1, ..., m), 

(3.15) i=3j+l 

AICI(j) = (N - m)loga12(j) + 2(3j + 1). 

Incidentally, the regression coefficients of the E-W component model with order 
j are obtained by solving the linear equation 

[ ~  "'" sl,3j -bll(l,1) 81,3m+1 
( 3 . 1 6 )  " . .  " • = • 

83j,3j . bjl (1, 3) S3j,3m+ 1 
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However, it should be emphasized that for the present purpose of the estimation 
of the arrival time, only the AIC value of the best model is necessary and we do 
not actually solve this linear equation. 

For the computation of the AIC of the second (N-S) component model, 

J 
(3.17) YnN = b02(2, 1)ynE + Z bi2yn-i + W,~N, 

i=1 

we first transform the matrix (3.13) to the following form 

(3.18) S' = 

"8~ 1 / / / 1 . . . 8 1 , 3 m  81,3m+1 8 1 , 3 m + 2  81,3mA-3 
8 ~ 1  • 8 / / ; " " 2,3rn S2,3m+2 S2~3m+3 

"..  : : : 

/ 8 t ! 
S 3 m + l , 3 m  3ra+l,3rn+2 8 3 m + l , 3 m + 3  

S t  ! 3mq-2,3m+2 8 3 r n + 2 , 3 m + 3  
I 

83m+3,3rrr+3 
O 

This can be done by using an appropriate Householder transformation with only a 
little additional computations. Then the upper left (3m + 2) x (3m + 2) submatrix 
of S' contains sufficient information for the fitting of the regression model for the 
second component which has an instant response from the first (E-W) component. 
The residual variance and the AIC of the j-th order model is given by 

1 3m+2 
- -  ( S i , 3 m + 2 )  , a2(j) N -  m ~ ' 2 

(3.19) i=3j+2 

AIC2(j )  = (N - m) loga~(j) + 2(3j  + 2). 

It should be noted that the (3m + 1)-st column of the matrix S which was used 
as the vector of objective variable in fitting the model for the first component, is 
now used as the vector of a regressor corresponding to the instantaneous response 
from the first variable. 

Similarly, the model for the third variable (U-D component) can be obtained 

SII  = 

from 

(3.20) 

• SI l l l  . 8 I t  t t  / /  • ' 1,3m 81,3m+1 Sl ,3m+2 
8~ 1 / /  it • . . 8 2 , 3 m  82,3rn+2 
8~1  • 8 t! " " 3,3m 

m+2,3m 

0 
3m+3 N1 ~--- 8i,3m+3 ) , a3(3) - m ~=3~+3 

AICa( j )  = (N - m ) l o g a 2 ( j )  + 2(3j  + 3). 

I !  

S1,3m+3 
/J 

82,3m+3 
II 

33,3m+3 

I! 
S3m+2,3m+3 

II 
83m+3,3m+3 
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The AIC of the original MAR model is then given by 

(3.2x) AIC = min AIC1 (j) + m!n AIC2(j) + m.in AIC3(j). 
J 3 3 

By using the Householder transformation, we can further fit a more sophisticated 
model which, for example, allows that  some part of the coefficients are zeros. 
The program for such models is given in the subroutine MARFIT of TIMSAC-78 
(Akaike et al. (1979)). However, this will not be necessary for the present purpose. 

3.2 A u g m e n t a t i o n  of  the data 
In the previous section, we showed an algorithm for the fitting of MAR model• 

We will now present a method of modifying the AR model when the augmented 
data set {Yl,- . . ,  YN, YN+I, . . . ,  Yg+p}  Was obtained• Here p _> 1 is the number of 
the new data. This can be performed by first organizing the following (3m + 3 + 
p) × (3m + 3) matrix R 

(3 .22)  n = 

S 

y ~  . t 
• " Y N + I - m  Y~¢+I  

: " . .  : : 

Y~V + p  - 1 t t • "" Y N + p - r n  Y N + p _  

with S being the upper triangular matrix given in (3.13) and then reducing to an 
upper triangular form. It should be noted that  due to the orthogonality of the 
Householder transformation, non-zero elements of the Householder reduced form 
of R is one and the same as the upper triangular form obtained by the Householder 
reduction of the following (N + p - m) × (3m + 3) matrix: 

(3.23) X = 

• Y m + l  

: • . .  : : 

ytN_ 1 t "'" Y N - m  YtN 
y ~  . t 

• " Y N + I - m  YtN+I 

: • .  : : 

ytN+p_ 1 t ytN+ p • " " Y N + p - m  

This means that the upper triangular matrix which is necessary to fit AR models to 
the augmented data set can be obtained with only a few additional computations. 
By applying the same method as presented in the previous section to this matrix, 
we can get the AIC values of the best AR model fitted to this augmented data set. 
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3.3 Fitting locally stationary AR  model 
In order to determine the arrival time of a seismic wave based on the 

MLSAR model, we have to compare the goodness of the fit of many MLSAR 
models obtained by assuming various arrival time. 

We assume that we have N observations and that  nB is no <_ nB <_ nl.  Note 
that the arrival time nA is given by n A = n B  + 1. It is alSO assumed that  the 
required resolution is p points, thus we have to fit models for each dividing points 
no, no + p , . . . ,  no + gp -= nl.  Therefore, we have to fit g + 1 different MLSAR 
models. In this subsection we shall present a computationally efficient procedure 
for the fitting of many MLSAR models based on the Householder method for MAR 
model fitting and the augmentation of the data. The procedure is constructed as 
follows: 

1. Fit an MAR model to the data {y l , . - . ,  Y~o} by the method presented in 
Subsection 3.1. AIC g denotes the AIC of the best MAR model fitted to the data. 

2. For i = 1 , . . . ,  g, successively augment the upper triangular matrix ob- 
tained in step 1 by the additional data {Y~o+(i-1)p+l,...,Yno+ip} and find the 
minimum value of AICs'. This value is denoted by AIC N. 

3. Similarly to step 1, fit an MAR model to the data {ynA+l , . . . , yg  }. 
The minimum value of the AIC for this data set is denoted by AIC~. 

4. For i = ~ -  1 , . . . ,  0, successively augment the upper triangular matrix 
obtained in step 3, by the additional data {y~o+ip+l, .--, Y~o+(i+l)p}- The minimum 

value of the AIC of the MAR models fitted to the data set is denoted by AIC s. 
5. Obtain the AIC of MLSAR model which assume the dividing point to be 

n B = n 0 -+- ip by 

(3.24) AICi = AIC N + AIC S (i = 0 , . . .  ,g). 

6. Find the minimum of AIC0, . . . ,  AIC~. If AIC~ is the minimum, then 
nA = no + ip + 1 is our estimate of the arrival time of the seismic signal. 

3.4 The number of necessary operations 
For the Householder transformation of a n × k matrix to an upper triangular 

form, the amount of necessary multiplications (and additions) is approximately 
evaluated as (Golub (1965)) 

(3.25) 
k 

E ( n  + 1 - i ) ( k  + 1 - i )  -ink2 
2 " 

i=1 

Therefore, the number of necessary operations for fitting an ordinary 3-V MAR 
model to entire data set is approximately 9Nm2/2 ,  and fitting 3-V MLSAR model 
without recursive formula shown in Subsection 3.3 requires 

t 

i=O i=O 
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On the other hand, the necessary operations for the Householder transforma- 
tion of the matrix (3.22) is 

k 
1 2 

(3.27) 1)(k + 1 - i )  = 5pk 
i=1 

Therefore, the total amount of multiplications (and additions) for the fitting of all 
possible 3-V MLSAR models by the present method is 

(3.28) 
l 

1 ~(N - nl)(3m + 3) 2  no(3m + 3) + y :   p(3m + 3) 2 + 
i = 1  

l 

+ Z ~p(3m + 3) 2 ~  Nm 2 + 9m2(n12 - n ° ) - < 9 N m  2. 
i=1 

This means that the total number of computation for the fitting of 3-V MLSAR 
model by the proposed method is less than 2p/N of the conventional method, and 
is less than twice of that for the fitting single 3-V MAR model. 

Incidentally, fitting a 1-V LSAR model by the same recursion requires 
(1/2)Nm 2 -4- (1/2)m3(nl - no). Summarizing, the necessary computing time by 
the present method is only twice of that for ordinary 3-V MAR model, and is 9 
times of that for 1-V LSAR model. 

4. Posterior probabilities of the arrival time 

So far, it has been shown that we can determine the arrival time of the seismic 
wave by using MLSAR model and AIC and that we can develop a computationally 
efficient algorithm for the computation of the AIC values. 

In this section, we will present a method that allows to use more fully the 
information contained in the AIC values. In Akaike (1979), it was shown that 
exp{-(1/2)AIC} can be considered as an appropriate definition of the likelihood 
of the model whose parameters are estimated by the maximum likelihood method. 
In our case 

(4.1) 

is the likelihood of the MLSAR model which assumes that no +pj + 1 is the arrival 
time. 

Therefore, if the prior distribution of the arrival time is given, then the pos- 
terior distribution of the arrival time can be obtained by 

P(Y l J)P(J) 
(4.2) P(J l Y) -= ~ j  p(y I J)P(J)" 

In the actual analysis shown in the next section, the uniform prior over the 
interval is used. It seems more reasonable to put more weight on the center of the 
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interval. However, since the likelihood, p(y I J), usually takes significant values 
only at limited interval, only the local behavior of the prior is influential to the 
posterior probability. Therefore as long as very smooth functions are used, the 
choice of the prior is not so important in the present problem. 

One of the most important use of the estimated arrival time is the determina- 
tion of the hypocenter of the earthquake. Conventionally, this has been done by 
the weighted least squares method. However, the use of the likelihoods of various 
MLSAR models or the posterior distribution of the arrival time may yield more 
precise inference on the hypocenter by using the maximum likelihood method or 
by a Bayesian modeling. This is a subject of future study. 

5. Empirical study 

5.1 The data 
The data sets we analyze in this paper are seismograms of four foreshocks 

of the 1982 Urakawa-Oki Earthquake (MJMA : 7.1, 11:32 on March 21, 1982, 
Urakawa, Hokkaido, Japan) recorded at six stations of the Research Center for 
Earthquake Prediction (RCEP) of Hokkaido University (Suzuki et al. (1986)). 
These foreshocks occurred a few hours prior to the main shock. Table 1 summarizes 
the source parameters of these earthquakes. These parameters, the origin times 
and the locations of hypocenters, are estimated by the routine procedure of the 
RCEP. The locations of the epicenters of the four foreshocks and six stations are 
shown in Fig. 1. The epicenters are closely located compared with the spread of 
the stations. 

Table 1. Source parameters  of the  four foreshocks and the main shock. 

Date Time Longitude Lati tude Depth  M Code name Start  t ime 

Mar. 21, 1982 07:45 53.0 142.557 42.158 31.0 1.9 IF  7:45:31.46 

Mar. 21, 1982 08:42 52.0 142.555 42.131 26.0 2.0 2F 8:42:30.44 

Mar. 21, 1982 08:49 20.7 142.561 42.158 33.7 2.1 3F 8:48:59.46 

Mar. 21, 1982 09:33 15.0 142.574 42.133 31.1 2.3 4F 9:32:54.55 

Mar. 21, 1982 11:32 05.7 142.600 42.150 40.0 7.1 - -  - -  

At each station, the East-West (E-W), the North-South (N-S) and the Up- 
Down (U-D, vertical) components of the ground velocity signal were measured by 
seismometers with a natural frequency of 1 Hz. They are digitized by an 8 bit 
nonlinear AD converter at the rate of 92.3 samples per second (2,400 bps/26 bit), 
and transformed to PCM (pulse coded modulation) data. Each record has 7740 
observations (83.85 seconds time span). 

Figure 2 shows the seismograms of the 1F (the first foreshock). The station 
Erimo (ERM) is located 0.5 km from the shoreline of the Pacific and the epicentral 
distances are about 50 km. The seismograms are strongly affected by the attenua- 
tion in the crustal structure along the ray path, and the ratios of the P wave signal 
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to the background noise are reduced to about 0.5 (Takanami (1982)). Therefore, 
in the routine work, it is very hard to determine the arrival time of such weak P 
waves recorded on the paper chart. 

The station Hidaka (HIC) is located 80 km from the epicenters of the fore- 
shocks and is apart from towns and road and the amplitude of the background 
noise is usually less than two LSB (the least significant bit). The seismic signal 
observed at HIC was also very weak and almost equal to one LSB of the digital 
signal and are comparable to those of the background noise. 

The station Iwanai (IWN) is located about 65 km from the epicenters. The 
observations at this station has higher signal to noise ratios. 

The station Kamikineusu (KMU) is located about 27 km from the epicenters. 
On this occasion, the seismograms obtained at KMU were contaminated by a 
strong electronic hum noise with frequency of 50 Hz. 

The station Misono (MSN) is located about 30 km from the epicenters and 
is near a load. Therefore, the seismograms obtained in this station occasionally 
suffer from the traffic noises, e.g., MSN-3F. 

The station Moyori (MYR) is about 60 km from the epicenters. Good seismo- 
grams were obtained from this station. 

5.2 Detection of P wave 

Although it is not of our primary concern, we will first consider the estimation 
of the arrival time of P wave which is supposed to be much easier than that of S 
wave. LSAR model and MLSAR model presented in the previous sections have 
been applied to the microearthquake data presented in the previous subsection. 

Figure 3.1 shows a part of MYR-2F data. Figure 3.2 shows the results of 
the LSAR model for this data set. Three figures from the top of this figure show 
the plot of AIC values versus assumed arrival time when LSAR models are fitted 
to E-W, N-S and U-D components. The minimum AIC estimates of the arrival 
time obtained by the LSAR model are n A  ---- 3001, 3011 and 2992 for the E-W, 
the N-S and the U-D components, respectively. AIC values of the estimated 
models are also shown in the figure. Judging from the original seismogram, the 
point 2992 seems to be the most reasonable estimate of the arrival time of the P 
wave. The estimates from E-W and N-S components are 9 points (0.098 seconds) 
and 19 points (0.206 seconds) later than that estimated from the vertical motion, 
respectively. This phenomenon can be typically seen in the estimation of the arrival 
time of P wave (see also Table 2). Further, the slope of the AIC value before and 
after the arrival time is the steepest for the U-D component. This means that 
the vertical component of the seismogram has more precise information about the 
arrival time of P wave than the other two components. This can be understand 
from the fact that the P wave is a compressional wave and the dominant part of 
the movement appears in the vertical motion. 

The bottom one in Fig. 3.2 shows the trace of AIC of the 3-V MLSAR model. 
The minimum of the AIC, 1487, occurs at n A  = 2992 which is exactly the same as 
the one obtained by LSAR model from the U-D component. However, the slope of 
the AIC value is steeper than those of LSAR models indicating that the estimate 
by the MLSAR model is more reliable than the ones by LSAR models. As can be 
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Fig. 3.1. A part of seismogram of 2F observed at MYR. From top to bottom, E-W, 
N-S and U-D components. 
Fig. 3.2. AIC values of LSAR and MLSAR models for the estimation of P waves of the 
MYR-2F data. From top to bottom', LSAR models for E-W, N-S and U-D components 
and the 3-V MLSAR model. 

seen in Table 2, for about a half cases LSAR model for U-D component and the 
3-V MLSAR model yielded the same estimates. 

We will next show cases when the LSAR and the MLSAR models yield different 
estimates. In all cases except for HIC-3F and MSN-3F, the estimates by the 
MLSAR model are later than the ones by the LSAR models. Figure 4.1 shows the 
ERM-4F data. Figure 4.2 shows the traces of AIC of three LSAR models and 3-V 
MLSAR model for ERM-4F data. The estimate by the MLSAR model is 4 points 
(0.043 seconds) later than the one by LSAR model for U-D component. By a 
precise examination of the original record, it can be seen that the LSAR model for 
U-D component has an ability to detect the slight change of the slope of the data 
which is probably caused by the frequency characteristic of the seismometers. On 
the other hand, the MLSAR model yields more conservative estimates. 

However, even when the signal to noise ratios are very low, such as the case 
of HIC, the MLSAR model yields a reasonable estimate. Later, by the P-S plot 
of the estimated arrival time, it becomes clear that in this case the estimates by 
the MLSAR model are more reasonable. 

As a conclusion, for the detection of P wave, LSAR model is very sensitive to 
the slight change of the characteristics of the series caused by the P wave and that 
the estimates by the MLSAR model can be used to check these estimates. 
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Table 2. Est imated arrival t ime of P waves. The  first column shows the code-names of the 
data. The  second to fourth columns show the est imates  by the LSAR models.  The  fifth column 
shows the results by the 3-V MLSAR models.  The  last column shows the est imates  obtained 
from the sum of AICs' of  three LSAR models.  

Code name E-W N-S U-D 3-D E + N + U  

ERM-1F 2881 2869 2867 2867 2866 

ERM-2F 2856 2865 2857 2864 2857 

ERM-3F 2870 2873 2846 2854 2854 

ERM-4F 2791 2792 2782 2786 2787 

HIC-1F 3393 3399 3320 3399 3399 

HIC-2F 3553 3364 3396 3396 3396 

HIC-3F 3479 3406 3318 3317 3317 

HIC-4F 3340 3310 3278 3300 3300 

IWN-1F 3079 3079 3074 3077 3077 

IWN-2F 3076 3083 3076 3076 3076 

IWN-3F 3076 3076 3075 3076 3076 

IWN-4F 2980 2991 2986 2986 2986 

KMU-1F 2636 2637 2622 2626 2624 

KMU-2F 2638 2638 2622 2622 2635 

KMU-3F 2630 2637 2614 2615 2615 

KMU-4F 2540 2553 2518 2531 2531 

MSN-1F 2619 2616 2609 2612 2613 

MSN-2F 2623 2617 2599 2599 2599 

MSN-3F 2679 2636 2616 2615 2615 

MSN-4F 2558 2534 2514 2533 2554 

MYR-1F 2999 3014 2986 2995 2995 

MYR-2F 3001 3011 2992 2992 2992 

MYR-3F 2988 2996 2986 2988 2987 

MYR-4F 2909 2916 2902 2902 2902 

5.3 Detection o] S wave 
We will examine the advantage of the use of the MLSAR model for determining 

the arrival time of S wave. The LSAR model and the MLSAR model used in the 
previous subsection are applied to a part of the three components seismograms 
where S waves presumably exist. 

Figure 5.1 shows IWN-1F data. Figure 5.2 shows the results of LSAR model 
analyses. It can be seen that the minimum AIC estimates of the arrival time from 
the E-W, the N-S and the U-D component are 3929, 3906 and 3958, respectively. 
The discrepancy between the estimated arrival time by the three components in- 
dicates that it is difficult to determine the arrival time of S-wave from only one 
component of the seismogram. Moreover the shapes of AIC traces are much gen- 
tler than the case of P-waves suggesting the difficulty of the determination of the 
arrival time of S wave. 
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Fig. 4.1. A part of seismogram of 4F observed at ERM. 
Fig. 4.2. AIC values of LSAR and MLSAR models for the estimation of P wave of the 
ERM-4F data. 

The last two panels of Fig. 5.2 shows the results by MLSAR models. In this 
case, the estimates by the 2-V MLSAR model and the 3-V MLSAR model coincide 
and are identical to the one by the N-S component. 

Figures 6.1 and 6.2 show the results for MSN-1F. The estimated arrival time 
by 2-V and 3-V MLSAR models coincide and are identical to the estimate of the 
LSAR model obtained from the E - W  component. However, the slope of AIC values 
in the neighborhood of its minimum is steeper than the one by LSAR model. Many 
local minima are found on each AIC curves of LSAR models as has been inferred 
from the behavior of the particle motion of S waves (Takanami (1990)). Therefore, 
it is usually hard to precisely determine the arrival time by using a single trace, 
especially only from the vertical component of the seismogram as seen in Fig. 6.2. 

Figures 7.1 and 7.2 show the data and the results for MYR-2F. In this case, 
the left half of the trace of AIC of the LSAR models are almost fiat indicating 
that this estimate is not reliable. The estimate by the LSAR model for E - W  
component is the earliest one. However, in the later analysis, it can be seen that 
this is not a good estimate. Even in this case, the AIC of the 2-V MLSAR model 
has clear minimum. The estimate only from U-D component is more than 100 
points (about 1.33 seconds) earlier than these estimates. This clearly indicates 
that the U-D component is inadequate for the detection of S wave. This can be 
understood from Fig. 2, where in some cases such as ERU, KMU and MYU, the 
presence of the S wave is invisible. Figure 7.3 shows the posterior distributions 
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Fig. 5.1. A part of seismogram of IF observed at IWN. From top to bottom, E-W, 
N-S and U-D components. 
Fig. 5.2. AIC values of LSAR and MLSAI:t models for the estimation of S waves of the 
IWN-1F data. From top to bottom, LSAR models for E-W, N-S and U-D components, 
3-V MLSAR model and 2-V MLSAR model. 

of the arrival time obtained by these models. The posterior distribution obtained 
by the LSAR model is distributed over a wide region. Whereas the one by the 
MLSAR model is concentrated on n A  = 3812. 

It is typically seen for many of the seismograms (see Table 3) that one of 
the horizontal components (i.e. the minimum of estimates from E-W and N-S 
components) coincides with the ones by MLSAR models and that the estimate by 
U-D component is slightly earlier than this estimate or completely different. 

Figures 8.1 and 8.2 show the analysis of ERM-2F data. All of three traces 
of AIC values obtained by LSAR models are flat and none of them yields reliable 
estimates. In this case, the AIC of the two MLSAR models have reasonable minima 
and yield the same estimate. They are quite different from all of the three LSAR 
models (see Table 3). 
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Fig. 6.1. A part of seismogram of 1F observed at MSN. From top to bottom, E-W, 
N-S and U-D components. 
Fig. 6.2. AIC values of LSAR and MLSAR models for the estimation of S waves of the 
MSN-1F data. From top to bottom, LSAR models for E-W, N-S and U-D components 
and 3-V and 2-V MLSAR models. 

6. Discussion 

Using the start time of the record, t s  given in Table 1 and the estimated 
arrival time point, hA, given in Table 2 and Table 3, we can get the arrival time 
by 

26 
(6.1) tA = t s  + nA 2400" 

Therefore, by denoting the arrival times of the P wave and S wave by t P and 
tA s , the travel time of these waves are given by t P - to and tSA -- to, respectively. 
Figure 9.1 shows the P wave travel time versus S wave travel time plot. Since 
the hypocenters of four foreshocks are very closely located, four points obtained 
from the same station should locate closely each other. Further, if the ratio of the 
velocities of P wave and S wave is a constant over the region, these points obtained 
for various stations lie on a straight line. 
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Fig. 7.1. A part of seismogram of 2F observed at MYR. From top to bottom, E-W, 
N-S and U-D components. 
Fig. 7.2. AIC values of LSAR and MLSAR models for the estimation of S waves of the 
MYR-2F data. From top to bottom, LSAR models for E-W, N-S and U-D components 
and 3-V and 2-V MLSAR models. 

o.,°2[ MY ;i  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

O . O ~ J  , t ' ' '  ' ' 4  . . . . . . . . . . . .  
$716 3738 3768 3'/78 3"/88 

0.$ . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0"3t L 
3782 3802 3822 3842 3882 

M Y U I F  

O.OS 

0,00 
36~1 3641 3631 3681 3701 

0.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 .3 2 V - M L S A R  

0.0 r ,  . . . .  , , , i , , , ' , ~' J '  ~ 'J~' ' ' r . . . . . . . . . . .  
3772 3792 3812 3832 36S2 
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MLSAR model (bottom right). 
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Code name E - W N-S U-D E + N + U  3-D E + N  2-D 

ERM-1F  3582 3565 3423 3500 3497 3582 3481 

ERM-2F  3622 3515 3733 3577 3577 3577 3576 

ERM-3F 3538 3635 3466 3537 3537 3538 3538 

ERM-4F 3382 3553 3623 3543 3458 3358 3458 

HIC-1F 4462 4484 4376 4484 4505 4484 4484 

HIC-2F 4501 4600 4507 4501 4501 4501 4501 

HIC-3F 4477 4423 4426 4423 4612 4602 4423 

HIC-4F 4399 4532 4572 4540 4533 4540 4421 

IWN-1F  3929 3906 3958 3906 3906 3906 3906 

IWN-2F  3927 3911 3898 3919 3887 3919 3919 

IWN-3F  3947 3925 3880 3947 3925 3925 3925 

IWN-4F  3855 3864 3843 3843 3843 3850 3854 

KMU-1F 3156 3174 3116 3156 3117 3156 3156 

KMU-2F 3154 3164 3218 3154 3149 3154 3154 

KMU-3F 3130 3168 3207 3146 3130 3146 3130 

KMU-4F 3089 3100 3176 3093 3089 3093 3089 

MSN-1F 3102 3136 3091 3102 3103 3102 3102 

MSN-2F 3106 3074 3108 3105 3067 3105 3106 

MSN-3F 3042 3002 3015 3066 3100 3066 3097 

MSN-4F 3014 3002 3033 3032 3033 3002 3002 

MYR-1F 3819 3843 3939 3812 3812 3816 3816 

MYR-2F 3758 3822 3661 3805 3806 3812 3812 

MYR-3F 3775 3763 3756 3778 3778 3763 3781 

MYR-4F  3758 3757 3501 3758 3758 3758 3758 

However, in Fig. 9.1, these points look rather scattered. To get finer relation 
between P and S travel time, we first refined the origin times of the foreshocks 
given in Table 1. To do that, we compute the mean of the four travel times and 
then compute the deviations from the means. Then the mean of these deviations 
at five stations, excluding HIC, gives the bias of the origin time of each foreshock. 
Figure 9.2 shows the same plot as Fig. 9.1 obtained by correcting for the bias of 
the origin time. Here the arrival time, hA,  is obtained by the MLSAR model. 
It can be seen that, four points corresponding to the same station, mostly locate 
closer than Fig. 9.1. This shows that by the above method, better estimates of 
origin times were obtained. In these figures, horizontal variation corresponds to 
the estimation error of P wave, whereas the vertical variation does that of the 
S-wave. Comparing these two figures, it can be seen that the points by MLSAR 
models with the correction of the origin time are much closely located. 

One way to simplify the present procedure is to use the sum of the AICs' of 
three LSAR models obtained by fitting to each of E-W, N-S and U-D components. 
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Fig. 8.1 
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Fig. 8.1. A part of seismogram of 2F observed at  ERM. From top to bottom, E-W, 
N-S and U-D components. 
Fig. 8.2. AIC values of LSAR and MLSAR models for the estimation of S waves of the 
ERM-2F data. From top to bottom, LSAR models for E-W, N-S and U-D components 
and 3-V and 2-V MLSAR models. 

24 - 

This is equivalent to assume that these three components are independent. The 
estimated arrival times by the method are shown in the extreme right column of the 
Tables 2 and 3. In all cases, the sum of three (or two) AICs' are significantly larger 
than the AIC of the MLSAR model. This indicates that the series are actually not 
independent. However, as can be seen in Tables 2 and 3, for many of the series, 
the minimum points obtained from these two models coincide. Therefore, at least 
for the seismograms with high signal to noise ratios, the use of this simplified 
procedure might be reasonable. 

It might be interesting to compare the estimates shown in Tables 2 and 3 with 
the ones obtained by experienced persons. Figure 10.1 shows the histograms of the 
P arrival times read from the seismograms by 38 researchers of RCEP or students of 
Geophysical department of several universities. The mid points of the histograms 
show the P arrival times estimated by the LSAR models for U-D components. The 
number of unanswered person is also shown in the right margin of each histogram. 
It can be seen that the estimated P arrival times are distributed around the center 

2V-MLSAR N = 3576 A I C  = -176 
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Fig. 9.1. P-S Plot for LSAR models. Origin times of earthquakes are estimated by 
routine programs. Horizontal axis indicates the estimated P arrival times. Vertical axis 
indicates the estimated S arrival times. 
Fig. 9.2. P-S Plot for MLSAR models. Origin times of earthquakes are modified by 
the method shown in discussion. Horizontal axis indicates the estimated P arrival times. 
Vertical axis indicates the estimated S arrival times. 

and generally have good coincidence with the estimates by LSAR model. However, 
for KMU data, the estimates by LSAR model precede 10-40 points. This is due to 
the presence of hum noise and the human operators could not detect small signal 
barried in the hum noise. 

Figure 10.2 shows the cases of S arrival times. The mid points of the his- 
tograms show the estimates by the 2-V MLSAR models. The histograms are 
scattered over wide region indicating the difficulty of the estimation of S arrival 
time. On the other hand, however, from the P-S plot shown in Figs. 9.1 and 9.2, 
it was shown that the MLSAR model can yield reasonable estimates for most of 
the data sets. Thus the merit of the time series method becomes clear. 

Figure 11 shows the changing spectra (Kitagawa (1983)) of the three compo- 
nents of MYR-1F data obtained by the program TVCAR of TIMSAC-84 (Akaike 
et al. (1985)). In the computation, the estimated arrival times were used to specify 
the change points of the spectra. Based on this information, the change of spectra 
are clearly detected. It can be seen that after the arrival of S waves, the spectra of 
the series gradually change and go back to the original shape of background noise. 
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Fig. 10.1. The histograms of the estimated P arrival times by human operators. The 
center of each histogram indicates the estimate by the MLSAR model. 
Fig. 10.2. The histograms of the estimated S arrival times by human operators. The 
center of each histogram indicates the estimate by the MLSAR model. 

However, the significant change occurred only when the P wave and the S wave 
arrived. This supports our assumption that the seismogram before and after the 
arrival of the new wave are reasonably expressed by a single AR model. 

The reader may wonder the relation between the proposed numerical algorithm 
and the Kalman filter. For simplicity, we consider the univariate case. For the 
application of the Kalman filter, we will use the following state space representation 
of the AR model: 

(6.2) xn = xn- i ,  
y n  = H n x n  + w n ,  

where x,~ = ( a ~n ) , . . . , a (~ ) ) t ,  H n  = ( Y , ~ -  I , . . . , y n - m  ) a n d  W n  is the Gaussian white 
noise with mean 0 and the variance a 2. By using this expression, the Kalman fil- 
ter can yield the LSAR model with the same order of computations. However, 
the Householder method has the following two merit compared with the Kalman 
filter. Firstly, by the use of Kalman filter, the necessary computation is approxi- 
mately 4k2N, whereas by our method it is less than k 2 N .  This difference appears 
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Fig. 11. Changing spectra of MYR-1F data. 

since the Householder method can automatically use the merit of symmetry of 
the matrix and since in our method the variances of the regression coefficients are 
not explicitly evaluated. Secondly, by our method we can automatically get the 
minimum value of the AICs' of the AR models with orders less than or equal to 
m, whereas the Kalman filter can yield only the AIC of the AR models of order 
m .  

7. Conclusion 

The objectives of the paper were three-fold. Firstly, we have presented a 
computationally efficient procedure for the fitting of multivariate locally stationary 
autoregressive (MLSAR) models. By the proposed procedure, it becomes possible 
to fit all of the necessary MLSAR models for determining the arrival time of a signal 
with only a few times as much as the computation for fitting single multivariate 
AR model. This makes it practical to use the MLSAR model in an on-line system 
for automatic detection of earthquakes. 

Secondly, we have shown a method of obtaining the posterior probability of 
the arrival time. It is expected that this posterior probability will be useful for the 
estimation of the hypocenter of the earthquakes. It was also used for the changing 
spectrum estimation. 

Thirdly, the proposed method was applied to various seismograms of fore- 
shocks of the 1982 Urakawa-Oki Earthquake. By this empirical study, it has been 
seen that 

1. For the estimation of the arrival time of P wave, the information on the U 
D component is usually sufficient. However, even when it is difficult to determine 
the arrival time only from the U-D component, the 3-V MLSAR model might give 
reasonable estimates. 

2. For the estimation of the arrival time of S wave, 2-V MLSAR model for 
E - W  and N-S components yields the most reliable estimate. In particular, even 
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when the LSAR model yielded very flat AIC values and was difficult to determine 
the minimum, the AIC of the 2-V MLSAR model had clear minimum. 

In summary, for the estimation of the arrival times of S waves, the use of 
2-V MLSAR model is adequate and the fast algorithm presented in this paper 
facilitates the application of this model in an on-line system. 
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