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A b s t r a c t .  In maximizing a non-linear function G(0), it is well known that 
the steepest descent method has a slow convergence rate. Here we propose 
a systematic procedure to obtain a 1-1 transformation on the variables 0, so 
that in the space of the transformed variables, the steepest descent method 
produces the solution faster. The final solution in the original space is obtained 
by taking the inverse transformation. We apply the procedure in maximizing 
the likelihood functions of some generalized distributions which are widely used 
in modeling count data. It was shown that for these distributions, the steepest 
descent method via transformations produced the solutions very fast. It is also 
observed that the proposed procedure can be used to expedite the convergence 
rate of the first derivative based algorithms, such as Polak-Ribiere, Fletcher 
and Reeves conjugate gradient methods as well. 

Key words and phrases: Generalized distributions, log-likelihood functions, 
steepest descent method, conjugate gradient method. 

i .  Introduction 

In maximizing the likelihood functions L(• [ X )  or minimizing G(0) = 
- l n L ( 0  I X )  in the domain fl E R n, n > 2, of parameters ,  for the class of 
generalized and mixtures  of distr ibutions (Johnson and Kotz  (1969)), it is often 
necessary to use an i terative algorithm. However, for these classes of distributions,  
G(~) is generally non-convex and the second derivative V2G(0) is numerically un- 
stable or t ime consuming. Hence, algori thms tha t  require V2G(~) and its inverse 
at each i terat ion are not  desirable. But  the convergence rates of the steepest  de- 
scent me thod  or its different modifications, which require only the first derivative, 
can be slow for the class of non-convex functions. 

In this paper,  we propose some guidelines for a modification which will improve 
the convergence rate  of the steepest  descent me thod  in minimizing the function 
G(~). This modification is based on a 1-1 t ransformat ion on the parameters  0 tha t  
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transforms the contours of G(0) to approximate circles (spheres in higher dimen- 
sions) in some special cases. To illustrate the procedure, we minimize G(6) for the 
log-zero-Poisson-truncated (1.z.P.t.) distribution (Katti and Rao (1970)) which has 
two parameters and for the Gegenbauer distribution (Plunkett  and Jain (1975)) 
which has three parameters. Some radical improvements in the convergence rate 
were from 9425 iterations without our modification to 41 iterations with our mod- 
ification and from 13010 iterations without our modification to 19 iterations with 
our modification. In Section 2, we provide a recursion formula for the gradient 
vector VG(~) for the 1.z.P.t. distribution which we needed for minimizing G(0) 
by the steepest descent method. In Section 3~ we obtain the solution through the 
proposed transformation. We also take various recorded data  and show that  the 
transformation helps to improve the convergence rate for all these data sets. In 
Section 4, we consider minimizing G(0) for the Gegenbauer distribution by using 
the steepest descent and the Polak-Ribiere (1969) methods. It is observed that  
the proposed modification improves the convergence rates significantly in both the 
cases. 

2. The l.z.P.t, distribution and the m.l.e, of the parameters 

Katti  and Rao (1970) developed the 1.z.P.t. distribution as a model for count 
data. The probability generating function (p.g.f) is given by 

(2.1) g(z) = ~ ziPi = &l In (C - exz) 
i = 1  (C -- 1) 

where (C, A) e ~ = {(C, ~ ) ] C  > e ~ > 0), kl = 1 / l n { ( C -  e X ) / ( C -  1)}, 
P~(¢, A) = P r ( Z  = i), i = 1, 2 , . . . ,  and X is 1.z.P.t. random variable. 

Huque (1974) developed an expression to compute the probabilities P~ in (2.1). 
Here, we provide a new simpler recursion formula for the probabilities. 

P 1  = - k l A / ( ¢ -  1 ) ,  

= - - r(r - 1), r -- 2, 3, . . . .  

The maximum likelihood estimates (m.l.e.) of (¢, A) correspond to the vector 
(¢, ~) that  minimizes G(C, A) -- -~-~i~=1 f~ lnPi(C, A) in ft. That  is, at (¢, A), 
the gradient vector VG(¢,  A) ~ 0 and the Hessian matrix V2G(¢, ~) is positive 
definite. For an initial point (¢0, A0), the steepest descent method provides the 
next solution by the relation (¢1, A1) = (¢0, A0)_ aVG(C0, A0) for some constant 

> 0 which is chosen in such a way that  G(¢ 1, A 1) will be significantly less than 
G(C0, )0). To determine an appropriate choice for the value of a, a function h(a) = 
G((C °, A °) - aVG(C °, A°)) is minimized which is quite difficult since G(¢, A) can 
not be expressed in an explicit form in the argument of (C °, A °) - aVG(C °, A°). 
We use a quadratic interpolation formula (Burden (1985)) to obtain a suitable 
value of a that  guarantees G(¢ 1, A 1) < G(¢ °, A°). The successive iterations will 
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produce the solutions (¢i, hi) = (¢ i -1  hi-I )  _ a V G ( ¢ i - 1  h i - I )  for i = 1, 2 , . . .  , 
such that G(¢ i, h i) < G(¢ i-1, hi-I) .  We stop the iterations when 

(2.2) IVG(q ~, ~)l < 10-5 and IG(¢ i, h i) - - a ( ¢  i-1, hi-1)l < 10 -7. 

The gradient vector is VG(¢, h) = (OG/O¢, OG/Oh) = -(Y~=,(fi/P~)(OPi/O¢), 
Y'~i(f~/Pi)(OPi/Oh)), where 

OPi _ - ( i  q- 1)Pi+I kl hi ~ r i 
o¢ h ( ¢ -  i) ¢; = cPi, 

O Pi i kle "~ 
Oh - ~Pi+k2Pi, where k 2 -  ( ¢ _ e a ) .  

kl (e ;~ - 1) 
where c = 

(¢ - 1 ) ( 6  - e ~ )  ' 

ri r It may be noted that the infinite series Y~'~r=0( / ¢  ), ¢ > 1 is a convergent se- 
• , ~ r i  r ries for all i = 1, 2,. .  and there exists a value M such that ~-~--0( / ¢  ) - 

M i r ~-~=0( r /¢  ) < ~, where e is a preassigned small number. We investigated for a 
value of M that satisfies this inequality and found that M = 60 serves the purpose 
for e = .00001. So we replace the infinite series by a finite series using the range 
for r from 1 to M = 60. Hence the components of the gradient vector are 

OG _ ~ (i + 1)fiPi+l 
0¢ + N c +  

0 a  i e ~ E f i  

¢ ( ¢ -  1) i~1.= P~ i! ~=o ¢--7, 

For data set 1 (see Data on corn borers), we computed the moment estimates 
of the parameters and used them as initial solutions. Using the steepest descent 
method we obtained the estimates ($, ~) that  minimized G(¢, h) after 9425 iter- 
ations. In Table 1, we present some iterations and their corresponding solutions. 
It may be seen that the final solution (q~, i )  satisfies the equation (2.2) and the 
Hessian matrix V2G(¢, ~) is positive definite which indicates that the solution 
minimized the function G(qh,/~). However, it has taken a large number of itera- 
tions. This slow convergence is due to the non-convexity of the function G(¢, h). 
To see the behavior of the function G, we computed some points corresponding 
to G(¢, ,~) ~ 1781.0, 1784.05, 1786.50 and drew the contours (see Fig. 1). These 
contour points can be obtained by using SAS GCONTOUR procedure or APL 
GRAPHPAK. The numbers 1781.0, 1784.05, 1786.50 were chosen arbitrarily close 
to the value of G(¢, h) -- 1777.1785 that  corresponds to the moment estimates of 
(¢, h). The contours are long, thin and non-convex. If a 1-1 transformation could 
be obtained such that the transformation changes the contours into approximate 
circles, then the steepest descent method would converge to the solution very fast. 
So we proceed to find such a transformation in the next section. 
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Data  on corn borers. 

(from Martin and Katt i  (1965)) McGuire et al. 

Count i of Observed frequencies fi  in da ta  

borers s e t ~ l  s e t~2  se t~6  se t~7  se t~8  frequency 

0 187 117 19 24 

1 185 87 12 16 

2 200 50 18 16 

3 164 38 18 18 

4 107 21 11 15 

5 68 7 12 9 

6 49 2 7 6 

7 39 2 8 5 

8 21 0 4 3 

9 12 1 4 4 

10 11 1 3 

11 2 0 0 

12 5 1 1 

13 2 1 

14 3 0 

15 1 1 

16 0 

17 1 

18 0 

19 1 

2O 0 

21 0 

22 0 

23 0 

24 0 

25 0 

26 1 

43 

35 

17 

11 

5 

4 

1 

2 

2 

62 

121 

132 

105 

74 

42 

17 

1t 

8 

5 

0 

0 

1 

0 

f i  = # of stalks with i corn borers. 

Table 1. Solutions at different iterations by steepest  descent method  for da ta  set 1. 

I terat ion ¢ i G(~, i) 
0 12.25 1.90 1777.178564 

50 12.31311887 1.951440897 1775.29471 

5000 15.73691187 2.102903981 1773.489471 

9400 17.16316015 2.154415336 1773.241316 

9424 18.36834031 2.193903385 1773.182911 

9425 18.36836028 2.193905391 1773.182911 

(¢, ~) ---- (18.36834028, 2.193904391) and  V2(~(~ ,  ~) has eigenvalues T1 : 1157.3731, v2 

07442002. 
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Fig. 1. Approximate contours for data set #i of (i) G(¢, A) ~ 1781, (ii) G(¢, ),) 
1784.05, (iii) G(¢, A) ~ 1786.5. 

3. Minimization of G(¢, A) with transformation 

To convert the contours of G(¢, A) for data set 1 to approximate circles, we 
use the structural restriction that ¢ > e a in ~ and make a transformation 

(3.1) (¢1, /~1) T = ( l n ¢ -  A, A) T 

with inverse transformation 

(3.2) (¢, ~)T ---- (eq~,+A,, /~I)T. 

TheJacob ianof the t rans fo rmat ion i s J1  = [ e¢'+~1 e¢1; ~1 ] 0 and the gradient in 

(¢1, Aa) space is VG(¢I,  A1) = ~7G(¢, A)J1. We use equation (3.1) on the points 
of the contours in Fig. 1 and obtain the points in (¢1, A1) space. Note that the 
contours in Fig. 2 obtained by using these points look convex. In an attempt to 
find a transformation that will convert these contours into approximate circles, we 
take the points corresponding to (](¢1, ~1) ~ 1784.05 and fit a quadratic form 

(3.3) ( ¢ 1 , ) t l ) A 2 ( ¢ l ,  ~1) T ~- (¢1, ,~I)(E, F )  T + 1 = 0 

where A2, E, F are estimated by minimizing 2 ( ( ¢ 1 ,  ~1)A2(¢1, 11)T+(¢1, A1)(E, 
F) T + 1) 2 by least square method. The summation is taken on all points (¢1, A1) 

[ .5643 - .3986] 
considered. The estimated matrix is A2 = [- .3986 .4158 J with eigenvalues 
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~-1 = .895545, m2 = 0.0846 and the matrix of the eigenvectors is P = 

Now, we define the following transformation 

(3.4) (¢, -1 = J2 (¢1, X1) :r 

.769 .639 ] 
- .639 .769J 

with the Jacobian of transformation J2 = PD-112, where D is a diagonal matrix 
with 71 and T2 as diagonal elements respectively. The inverse transformation is 

(3.5) (¢1,)~1) T = J2(¢*, -~*)- 

2.7 i 

2.5 i 

2.3 i 

2.1 i 

1.9 i 

1.7" 

1 .5  , I I 
0.0 1.5 1.8 

/! 

/ S  Z / 

I /  / • 

/ 

II 
t /  

I ' I ' I ' I 
0.3 0.6 0.9 1.2 

Fig. 2. Contours of G(¢1, -~1) ~'~ 1781, 1784.05, 1786.5, where (~bl,)~1) a r e  obtained 
through equation (3.1). 

The quadratic form in (¢*, A*) is (¢*, A*)I2(¢*, A*) T ÷ (¢*, A*)JT(E, F) T ÷ 
1 = 0 which does not have a product term. The contours in (¢*, A*) space axe 
shown (see Fig. 3) to be approximate circles. The gradient vector is VG(¢*, A*) -- 
VG(¢, A)J1J2. Note that  the transformation in (3.4) could have been based on 
the contour points corresponding to other values of G(¢1, A1) as well. However, 
Fig. 3 shows that  this transformation converted all contours into approximate 
circles. We use the steepest descent method to find (¢*, ~*) which minimizes 
G(¢*, A*) in (¢*, A*) space. The inverse transformations in (3.5) and (3.2) give 
the estimates (¢, ~) of (¢, A) in ~. In Table 2, we present some iterations and 
the corresponding solutions in (¢, A) space obtained through the transformations. 
The final solution (¢, ~) satisfies the condition in equation (2.2) and V~G(¢, ~) is 
found to be positive definite. It may be mentioned that  the convergence occurred 
within 9 iterations while it took 9425 iterations without transformation. 
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Fig. 3. Contours of G(¢*, A*) ~ 1781, 1784.05, 1786.5, where (¢*, A*) are obtained 

through equation (3.4). 

Table 2. Solutions through transformations for data set 1. 

Iteration ¢ A G(¢, A) 

0 12.25 1.90 1777.178564 
1 15.2998139 2.097696583 1773.709921 
7 18.36780527 2.19388844 1773.182911 
8 18.36834033 2.193903397 1773.182911 
9 18.36836385 2.193905176 1773.182911 

(~b, A) = (18.36836385, 2.193905176), V2G(~b, A) has eigenvalues (7-1, T2) = (1157.372, 

0.07442). 

3.1 Transformation based on adjustments 
The transformation in (3.1) required the eigenvalues T1, T2 to be positive. 

This was accomplished by the t ransformation (3.1) tha t  converted the non-convex 
contours into convex contours. However, a t ransformation with this proper ty  may  
not be available. Here we suggest a modification which is free from a trial and error 
t ransformation and takes care of negative eigenvalues (if any). We recommend the 
following procedure and explain it using da ta  set 1. We fit a quadrat ic  function 
of  the  fo rm (¢, A)A2(¢,  A) T + (¢, A)(E,  F )  T + 1 = 0 on  the  po in t s  of t he  con tou r  

for G(¢,  A) ~ 1784.05 in (¢, A) space. The least square est imate of A2 is A2 = 
.00016 - .007796 ] 

- .007796 .343609 j with eigenvalues (T~, ~-2) = (.343786, - .0000106),  one of 

which is negative. Thus  the t ransformation (3.4) is not feasible. Therefore, we 
take a modified matr ix L as: 
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(3.6) L = A2 + #I, with p = k I Min{T1, T2}I. 

Any number k > 1 will make the matrix L a positive definite matrix. For example, 
for (i) k = 1.1, the eigenvalues of L are (.34379835, .000001068), (ii) k = 3, the 
eigenvalues axe (.343818, .00002136). However, the eigenvectors of L and -42 for all 
values of k are the same. We have chosen k = 3 and considered the transformation 

(3.7) (¢, ,  -1 = j i  (¢,  

.0226 -.9997 ] 
where J3 = PID1 t/2, and Pz -- -.9997 - .0226] is the matrix of the eigen- 

vectors and D1 is a diagonal matrix with the eigenvalues (.3438, .0000213) of L 
in the diagonal. Hence the transformation (3.7) based on the eigenvalues and the 
eigenvectors of the adjusted matrix L is feasible. The quadratic form in (¢*, A*) 
will be (¢*, A*)B(¢*, ~*)T + (¢*, A,) jT(E ' F)T + 1 = 0, where B is a diagonal 
matrix. However, the transformation in (3.7) will not necessarily convert the con- 
tours in Fig. 1 into approximate circles but it will rotate the principal axes of the 
contour parallel to the co-ordinate axes (see Fig. 4). We call the transformation 
in (3.7) as the transformation based on adjustments. In Table 3, we present some 
solutions at different iterations using this transformation. 

1 .2 -  

1.1 - -  

2" 1.0 - -  

0 . 9 - -  

0 .8  I [ 1 
0.0 0.1 0.2 0.3 

Fig. 4. Contours of G(¢*, A*) ~ 1781, 1784,05, 1786.5, where (¢*, ~*) are obtained 

by transformation based on adjustments (equation (3.7)). 
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Table 3. Solutions th rough  the  t r ans format ion  based on ad jus tmen t s  (k = 3) for da t a  set 1. 

I te ra t ion  ¢ A G(¢,  A) 

0 12.25 1.90 1777.178564 

10 18.03671562 2.183006653 1773.187168 

40 18.36821013 2.193900089 1773.182911 

41 18.3683262 2.193902156 1773.182911 

(¢, ~) ---- (18.3682962, 2.193902156), VZG((~, ~) has eigenvalues (T1, T2) = (1157.374303, 

0.0744). 

Table 3 shows that the transformation based on the adjusted matrix has pro- 
duced the solution after 41 iterations as opposed to 9425 iterations without any 
transformations. We also checked the effect of different values of k in equation 
(3.7) on the convergence rate to the solution. This is shown in Table 4. 

Table 4. Number  of i terat ions required to converge to the  solution th rough  t ransformat ion  

based on ad jus tmen t  for different k (da ta  set 1). 

No. of i terat ions No. o f i t e r a t ions  No. o f i t e r a t i o n  
k k k 

needed to converge needed to converge needed to converge 

1.1 571 6.0 16 50 7 

1.8 110 8.0 12 70 19 

2.0 88 10.0 20 80 60 

2.5 62 15.0 20 90 100 

3.0 41 18.0 25 100 40 

5.0 26 40.0 8 1000 225 

Thus for moderate values of k, the transformation based on adjustments is found 
to reduce the number of iterations significantly. 

3.2 Applications of the transformation to other data sets 
We used data sets 2, 6, 7, 8 (see Data on corn borers) to obtain the m.l.e. (¢, A) 

by minimizing G(¢, 2). At first, we used the steepest descent method (without 
transformation) using moment estimates as initial solutions as in Section 2 and 
checked how many iterations it took to get the solutions using the stopping rule 
in (2.2). We then used the steepest descent method in the transformed spaces. 
For transformation through matrix adjustment, we used k -- 3. Table 5 shows the 
solutions and the number of iterations taken to minimize G(¢, A). 
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Table 5. M.L.E. of the  parameters  by steepest  descent me thod  for different d a t a  sets. 

Data  Moment  est imates m.l.estimates # of iterations needed 

Crn ,~m Cm.Le. "km.t.¢. Without  Wi th  t ransform 

transform a* b* 

1 12.25 1.90 8.36836 .19390 9425 41 9 

2 15.25 1,47 4,15148 ,44655 75 25 19 

6 8.50 1.85 8.66853 .83531 4291 20 10 

7 10.75 1.88 7.52613 .79454 2569 61 9 

8 7.75 1.33 2.68443 .70586 3564 220 143 

a*: Solutions with transformatin in (3.7), b*: Solutions with transformation in (3.4). 

Table 5 shows tha t  for most of the da ta  sets, the steepest descent method  
without  t ransformation takes a large number of iterations to converge to the so- 
lution. It is apparent from this table tha t  if a t ransformation is available which 
converts the non-comrex contours into convex contours, then we may use it before 
the t ransformation based on the eigenvalues and eigenvectors is used. Otherwise, 
use the t ransformation of the form (3.7) based on eigenvalues and eigenvectors of 
the adjusted matrix. 

4. Maximization of the likelihood function for Gegenbauer distribution 

Plunket t  and Jain (1975) developed the Gegenbauer distr ibution which has 
the p.g.f. 

(4.1) g(z) = (1 - a - /3)~(1 - az  - /3z2)  -~ 

where (a, /3, ,k) e a = {(a, /3,  ~) l0  < a , / 3  < 1, a + / 3  < 1, A > 0}. Borah (1983) 
gave the recurrence relation 

Po = (1 - a - #)x, P1 = aN(1 - a - /3 )~ ,  

1 
Pr+l - r + l {a(~ + r)Pr + /3(2~ + r - 1 ) P r _ l } ,  r > l 

for probabilities and computed the moment estimates of a , /3 ,  A for the da ta  set 
on European corn borers (McGuire et al. (1957)). We a t tempt  to minimize 
G(a,/3, ~) = - ~ f i l n P i ( a , / 3 ,  ~) in f~ to obtain the m.l.e, of (a , /3 ,  )~) by using 
the steepest descent method for the same da ta  set (see Data  on corn borers). We 
use Borah's  moment  estimates as the initial solution and stop at the k-th i teration 
when 

(4.2) IvG(c~ k,/3 k, )~k)l < 10 -5 and 
iG(o/k #k, /~k) _ G(c~k-1, #k -1  /~k-1)l < 10-7. 
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To compute  Va(a ,  I~, A), we need the partial  derivatives OPi/Oa, OPi/O~, 
OPi/OA, where 

OF1 ( Opo OPo APo, A -  A /~' - - = A  P 0 +  
O--J - 1 - ~ - O~ ~ ] ' 

aP{ f aP~_a ~oP~_~ I, 
- _ ~ - - ~ -  + ~ 1 + (~ + ~A)P~-I + A(gP~-~ - P~), oa 

for i = 2, 3 , . . . ,  

OPo OP1 OPo 
- -  - -  A P o ,  - a A - -  

OP~ ( OP~_I OPt_2 

OPo 
- -  P 0  l n ( 1  - a - fl), 

0A 

o g i  [ ol ( )~ -~- i ~ " o g i  -1  
- L - z ~ - - - S Y -  

+ AP~-2 - A(P~ - c~Pi_ 1 --  ~ P i - 2 )  

for i = 2, 3 , . . . ,  

0P1 ( , 0 P o  

o - ) ' 
op _2 } /  

+ ~(2a  + i - 3 ) - 5 T -  + 2~P~_2 (i - 1) 

for i = 2, 3, . . . .  

Table 6 shows solutions at different i terations through the steepest  descent method.  

Table 6. Solutions at different iterations through steepest descent method. 

Iteration a f~ )~ G(a,  j3, A) 

0 .2404 .0087 7.6609 1136.863469 

1000 .2450479215 .005239659917 7.644936011 1136.764084 

10000 .2511696073 .004344014233 7.465097115 1136.754083 

13000 .2528185998 .004096439394 7.418086948 1136.751475 

13009 .2528210333 .004092625331 7.417969661 1136.751467 

13010 .2528237527 .00409566154 7.417940969 1136.751466 

(&, ~, i )  = (.2528237527, .00409566154, 7.417940969), VG(&, ~, i )  = (.2057, .3887, 

.0606). 

It may be noted that  the solution (&, ~, ~) does not satisfy the condition 
(4.2). Thus, we could improve on the solution if we would continue the iterations. 
However, we s topped the iterations. 

4.1 Minimization of the function G(a ,  ~, A) through transformation 
Now, we use the  t ransformation explained in Section 3. In this case, we are 

dealing with the three-dimensional parameter  space. To develop the transforma- 
tion, we need some contour points corresponding to a fixed value of G(a , /3 ,  A). 
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For data set of McGuire et al. (see Data on corn borers), we decided to com- 
pute some points on a contour in 12 for an arbitrary value G = 1136.52, which 
is chosen to be a smaller value than G = 1136.863468 that corresponds to the 
moment estimates of (~, ~, A) -- (.2404, .0087, 7.6609). To get some approximate 
contour points, we fixed the value of a in ~, and computed points (/3, £) C 
such that 1136.7515 < G < 1136.7525. Then we changed the value of c~ in its 
range in ~ and repeated search for different (/3, A) in the subset of 12. Similarly, 
we fixed ~ at different values in 12 and then again computed points (a,/3, A) such 
that G C (1136.7515, 1136.7525). We used 62 points on this approximate contour. 
These points may also be obtained by using SwelFs algorithm (1988a, 1988b). 

For unification purposes, we denote these points of (c~, ~, )~) by the vector 
U T = (ul, u2, u3) and fit the quadratic form UTAU + B T u  + 1 = 0, where 

62 A and B are obtained by minimizing Q = ~-~i=I(UTAU + BTu  ~- 1) 2 by least 
[3.348 .4157 .133]  

square method. The estimate of A is given by A = | .4157 1.94 .0169 with 
[ 133. .0169 .0053J 

eigenvalues ~-1 = 3.4675, ~-2 = 1.83457 7a -- .000046. The corresponding matrix of 

the eigenvectors is P = | .2641 - .964 - .0002 . 
[.03S3 .01027 .9992 

Our recommended transformation from U to V is: V = D1/2P-1U, where 
D is a diagonal matrix with the diagonal elements as T1, 7"2, 73 respectively. 
The Jacobian of the transformation is J = PD -~/2. Hence, VG(Vl, v2, v3) = 
VG(ul, u2, u3)J. After the solution in the transformed space is obtained, the 
inverse transformation U = PD-1/2V is used to get the solution in the origi- 
nal space. Table 7 shows the solutions (&, ~, A) at different iterations through 
transformations. 

Table 7. Solutions at different iterations by steepest descent method after transformation. 

I teration c~ ~3 A G(a ,  ~, A) 

0 .2404 .0087 7.6608 1136.863469 

5 .258822003 .003484880929 7.233541182 1136.742094 

17 .28000028127 .00004963279 6.697799515 1136.713482 

18 .2801850243 .000024341265 6.693286003 1136.713170 

19 .2801876584 .000000492846 6.693220862 1136.713170 

(&, ~, A) = (.280187658, .00000049285, 6.69322086), VG -- (-.00000039, .0000036, 

.0000008), ~72G(&, ~, ~) has eigenvalues T1 ~ 1.9861, T2 = 3.4398, 7"3 = 4.8745. 

By comparing Table 6 with Table 7, it may be seen that while the solution 
was not achieved by 13010 iterations without transformation, it was achieved by 
only 19 iterations through the transformation. 
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4.2 Minimization of the function G(a, ~, ~) by Polak-Ribiere method 
In this section, we use the Polak-Ribiere conjugate gradient method (1969) 

to minimize the function G(a, fl, ~) starting wiht Borah's moment  estimates as 
initial solution for the data  set of McGuire et al. According to this technique, the 
solution at the (k + 1)-th iteration is given by the relation 

(4.3) (ak+~,/~k+l, ,~k+~) = (ak,/3k, ,Xk) + Oksk 

where sk = -VG(a  k, ~k, )~k)+dksk-1, dk = VG(a  k, f~k, ,~k)T[VG(olk ' ~k ~k)_ 
VG(ak-1, ~k-1, $k-1)]/llVG(ak-1 ' /jk-1, Ak-1)l]2 and Ok is a value of 0 that  min- 
imizes G((a k, /~k, ;~k) +0sk) ,  0 _> 0. We stop the iterations when (4.2) is satisfied. 
Table 8 shows the solutions at different iterations. 

Table 8. Solutions at different iterations by Polak-Ribiere method without  transformation. 

I terat ion c~ D A G(cq f~, A) 

0 .2404 .0087 7.6608 1136.863469 

1000 .2520259804 .004211622612 7.440607057 1136.752723 

3000 .2558610543 .003620181761 7.333120685 1136.724677 

4000 .2739761228 .000693017350 6.863254771 1136.721061 

4500 .2760161047 .000343361446 6.814076093 1136.718413 

4825 .280186730 .0000125708152 6.69326011 1136.713174 

4826 .280186942 .0000005175371 6.693211926 1136.713171 

(&, ~, ~) = (.280186942, .0000005175371, 6.693211926), VG = (-.00000041, .00000369, 

.00000082), ~72G(&, ~, ~) has eigenvalues Vl = 1.9861, ~'2 = 3.4399, T3 = 4.8746. 

We then used the Polak-Ribiere conjugate gradient method on the transformed 
space. Table 9 shows the solutions (&,/3, A) at different iterations through trans- 
formations. 

Table 9. Solutions at different iterations by Polak-Ribiere method after transformation. 

I teration a ~ ~ G(a,  ~, A) 

0 .2404 .0087 7.6608 1136.863469 

5 .2410794738 .007328078408 7.65206931 1136.785283 

20 .256013348 .00359362946 7.305228941 1136.75221 

30 .2609120073 .00314457272763 7.303228941 1136.739232 

34 .2798652971 .000027268808 6.701765125 1136.713476 

35 .2801781777 .000000475538 6.6940130126 1136.713183 

(&, ~, ~) : (.2801781777, .000000475538, 6.6940130126), VG : (.000000589, .000004338, 

.000000205), V2G(&, ~, A) has eigenvalues r l  = 1.9862, T2 : 3.4398, V3 = 4.8740. 
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It is seen from Tables 8 and 9 that the transformation has improved the 
convergence rate of the Polak-Ribiere conjugate gradient method. We also used the 
Fletcher and Reeves gradient method (1964) to minimize the function G(a,  /3, A) 
and observed that 5258 iterations were taken to minimize the function G(a,  0, A) 
in the original space while it took 25 iterations to converge in the transformed 
space. In fact, any first derivative based minimization technique could be used in 
the transformed space to expedite its convergence rate. 
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