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A b s t r a c t .  In this paper we consider experimental situations requiring usage 
of a row-column design where v treatments are to be applied to experimental 
units arranged in bl rows and b2 columns where row i has size kl~, i -- 1 , . . . ,  bl 
and column j has size k2j, j = 1 , . . . ,  b2. Conditions analogous to those given 
in Kunert (1983, Ann. Statist., 11, 247-257) and Cheng (1978, Ann. Statist., 
6, 1262-1272) are given which can often be used to establish the optimality of 
a given row-column design from the optimality of an associated block design. 
In addition, sufficient conditions are derived which guarantee the existence 
of an optimal row-column design which can be constructed by appropriately 
arranging treatments within blocks of an optimal block design. 

Key words and phrases: Row-column design, block design, incidence matrix, 
balanced unequal block design. 

1. Introduction 

In this paper  we consider exper imental  settings in which v t rea tments  are to 
be tes ted using a row-column design where n exper imental  units are arranged in 
bl rows and b2 columns where row i has size kli,  i = 1 , . . . ,  bl and column j 
has size k2j, j = 1 , . . . ,  b2. If we let d denote  some design which can be used in 

such an exper imental  setting, then  we shall let Nd 1 : [ndi j  ) ' ~  (1)~ Nd2 : ~(n(2)~dij] and 

Nd3 ~n (3) ~ : ~ dij] denote,  respectively, the v × bl t rea tment - row incidence matr ix,  the 
v × b2 t rea tment -co lumn incidence matr ix,  and the bl x b2 row-column incidence 

matr ix,  i.e., °(1)'~dij = the  number  of t imes t r ea tmen t  i occurs in row j ,  ~'°dij(2) = 

the number  of t imes t r ea tmen t  i occurs in column j ,  and n(~) = the number  of a~3 

observations obta ined in row i and column j .  The  model  assumed here for the 
da ta  obta ined from some design d specifies tha t  an observation Yijkz obta ined after  
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applying treatment i to an experimental unit occurring in row j and column k can 
be expressed as 

(1.1) 

l < i < v ,  l < _ j < b t ,  l < k < b 2 ,  0 < l  < n(a~)k 

where u = the overall mean effect, c~i -- the effect of treatment i, flj = the 
effect of row j ,  7k = the effect of column k and the Eijk l ' s  are all uncorrelated 
random variables having expectation zero and constant variance a 2. Under this 
model, using d i ag (a l , . . . ,  a~) to denote an n x n diagonal matrix, A ~ to denote 
the transpose of a matrix A, and A-  to denote a generalized inverse of A, the 
coefficient matrix of the reduced normal equations for obtaining the least squares 
estimates of the treatment effects in d can be written as 

(1.~) C d  = R d  --  N d l K 1 1 N d 1  - ( N d 2  --  N d l K l l ~ d 3 ) C d 3 ( N d 2  --  Nd~K~INd3) ' 

where 

Rd = d iag( rd l , . . . ,  ray), 

rdi = the number of replications of treatment i under d, 

K1 = diag(k11, k 1 2 , . . . ,  klb~), 

K2 = diag(k21, k22, . . . ,  k2b~). 

An equivalent formula for Cd is 

= K -1 ' - N N K - 1 N  ' ~' (1.3) C d Rd - N d 2 K 2  1N'd2 - (Ndl - Nd2 2 N~/3)Cd4( d~ -- d2 2 da) 

where 
Cd4 : K1 - N n 3 K 2 1 N J 3 .  

The matrix Cd is usually called the C-matrix of d and is well known to be 
positive semi-definite with zero row-sums. 

Throughout this paper we shall only be considering treatment connected de- 
signs, i.e. designs whose C-matrices have rank v-1 .  Henceforth, D(v;  bl, Idl, b2, k~) 
(~1 = (k11,..-, klbl) and ~ = (k21,. . . ,  k2b~)) is used to denote the class of treat- 
ment connected row-column designs having v treatments assigned to experimen- 
tal units arranged in bl rows of size kl/, i = 1 , . . . ,  bl and b 2 columns of size 

k2i, i = 1 , . . . ,  b2. 
With each row-column design d C D(v;  bl, k~, b2, ~ )  we associate two block 

designs dl and d2 having incidence matrices Ndl and Nd2, respectively, i.e., dl 
is that block design which can be obtained from d by treating the rows of d as 
blocks and ignoring column effects whereas d2 is that block design which can be 
obtained from d by treating the columns of d as blocks and ignoring the row effects. 

We say that di is a binary design if n (i) = 0 or 1 for all p, q, otherwise we say dpq 

that d~ is nonbinary for i = 1, 2. The matrices Nd~N'  (~(1)~ and Nd2N~2 = dl = V ' d i j /  
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(X2:) are called the concurrence matrices of di and dz. We will henceforth let 
Di (v; br , /L$) and Dz (v; bz, g) denote the classes of block designs dl and dz, 
respectively, corresponding to d E D(v; bi, Er, bz, G) and note that the coefficient 
matrices of the reduced normal equations for estimating the treatment effects in 
dl and d2 are, under the appropriate two-way model, 

(1.4 cdl = Rd - Nd, K,lNL1 and c dz = Rd - h&K-‘N’ . 2 dz 

These matrices are called the C-matrices of dl and da, respectively, and possess 
the same properties aa cd. 

In this paper we consider the determination and construction of optimal de- 
signs in classes D(v; bi, Ic;, bz, L$). In Section 2 we define the optimality criteria 
being considered and give our main optimality results. The results obtained are 
similar to those given in Cheng (1978) for equally replicated row-column designs 
and similar to those given in Kunert (1983) f or repeated measurements designs. In 
particular, it is shown that finding an optimal row-column design having unequal 
row or column sizes can often be accomplished by finding a corresponding optimal 
block design and then arranging treatments appropriately within blocks of the 
block design. In Section 3 we discuss conditions under which optimal row-column 
designs can actually be constructed from the corresponding optimal block designs. 

2. Optimality results 

In this section we give a method for determining optimal row-column designs 
from their corresponding block designs. To this end, we shall let 4 denote any 
optimality function which is nonincreasing in the sense that 4(C) 5 4(D) for any 
positive semi-definite matrices C and D such that C - D is positive semi-definite. 
A design d* is said to be &optimal over a given class of designs if for any other 
design d within the class, 

(24 $‘(cd*) 5 4(cd). 

With this definition, we now give a result which is analogous to Theorem 3.1 of 
Cheng (1978). 

THEOREM 2.1. Suppose d* E D(v; bl, cd,, bat h$) has d; which is &optimal 
in Dl(v; bl, til) OT da which is &optimal in Dz(v; bz, k.&). If (P(Cd*) = (p(cd;) or 
C$(cd;), then d” is also &optimal in D(v; bl, q, bz, k$). 

PROOF. We shall only consider the case where 4(cd*) = #(Cd;) since the 
case where d(cd*) = 4(cd;) is similar. So let d E D(v; bl, Pi,, b2, g) be arbitrary. 
Then by (1.3) and (1.4), we see that 

Now, it is easily verified that cd, is positive semi-definite, hence 

cNdx NdzK;lN,&)c&%l - Nd2K;1N;3)’ 
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is also positive semi-definite and ¢(C4) >_ ¢(Cd2)- But then 

¢(cd)  > ¢(cd~) > ¢(c~;)  = ¢(c~.)  

and we have the desired result. 

With Theorem 2.1 in mind, we now give a useful corollary. 

COROLLARY 2.1. Suppose d* C D(v; bl, ]¢'1, b2, ~ ) .  
(a) If d~ is e-optimal in Dl(v; bl, ~ )  and the rows of Nd~ -- Nd~K~INd~ 

are all multiples of J1, b2 where Jm, ~ denotes the m × n matrix of ones, then d* is 
e-optimal in n(v; b~, ~ ,  be, ~) .  

(b) If d~ is e-optimal in D2(v; b2, k~) and the rows of Ne~ - N ~ I K ~ N ~  
are all multiples of Jl,bl, then d* is e-optimal in D(v; bl, ~ ,  52, ~) .  

PROOF. We shall only give the proof for (b) since the proof of (a) is similar. 
So to begin with, we note that the row and column sums of Cd~ are zero. Thus, if 

we let Cd~ denote the Moore-Penrose inverse of Cd~, it follows that C~ Jb~,l = O. 

Hence, since by assumption the rows of Nd; - Nd~K~IN~; are all multiples of 

J1, b~, it follows that 

(Nd7 - Nd:K~ _-1'N'd3 )C~.~, Nd* "~ -- N d ~ K 2 1 N ~ )  / ~- O. 

Thus Cd. = Cd~ and ¢(Cd.) = ¢(Cd~) in this case and the result follows from 
Theorem 2.1. 

Comment. We note that a design d having Nd3 with all positive entries will 
have corresponding Cd3 and Cd4 matrices of rank v - 1. Thus the only way such a 
design can have Cd = Cdl or Cd2 is if and only if the rows of Nd2 - NdIK~INd3 or 
Ndl -- Nd2K21N~3 are all multiples of J1, 52 or J1, 51, respectively. The situation 
which arises most often in practice where d has Cd = Cdl or Cd: is when Nd~ -- 
NdlKllNd3 = 0 or Ndl -- Nd2K21N~3 = O. In the next lemma, we give some 
sufficient conditions for a row-column design having different column sizes to have 
C~ = Cd~. 

LEMMA 2.1. Suppose d is a row-column design having d2 such that Nd2 = 
(Nd: l , . . . ,  Nd2~) where N~:j corresponds to a block design d2j having b2j blocks of 
size k2j for j = 1 , . . . ,  t. Further assume that the following conditions hold; 

(i) Each treatment is replicated b2jk2j/v = r2j times in d2j for j = 1 , . . . ,  t, 
(ii) .(1) '~dij -~ klj /v for i = 1, . . . ,  v and j = 1 , . . . ,  bl, 

(iii) F o r i - - 1 , . . . , b l ,  

{ ail for l < j <_ b21, 
p--1 p 

n(~ = aip for E b 2 x  +1 <_ j <_ Eb2x  
x = l  x = l  
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where the aip, p = 1 , . . . ,  t are nonnegative integers. Then Cd = Cd2. 

PROOF. We shall prove the result by showing that Ndl -- Nd2K21N~3 = O. 
To this end, we note that the (i, j ) - th  entry of Nd2K~IN~3 is given by 

b2 
(2) k- i  (3) 

ndip  2p nd jp  = 
p----1 

b21 t - 1  b21+'"A-b2, s+l 
Z (2) T-1 (3) (2)~-_1 (a) 

ndipl¢21 rtdj p -4- ~ Z ndip 1~2, s+lndjp 
p = l  s = l  p=b2i+.. .+b2s+l 

b2i t - 1  b 2 1 + ' " + b 2 ,  s+ i  
(2) - -1  - -  

---- Z ndip k21 ajl + Z ~ n(2)k2, ls+laj,s+l 
p----1 s = l  p----b2id-'"wb2sA-1 

t - 1  

= r21k211ajl + ~ r2, s+lk2, s+laj, s+l 

t - 1  

---- (b21aj1/v) -4- ~ (b2 ,  s+laj, s+l/V) = klj/V = 'tdij'-(1) 
8-~1 

_(1) the result follows from Since the (i, j ) - th  entry of Nd2K21N~3 is equal to .itdij, 
(1.3) and (1.4). 

Comment. Suppose d E D(v; bl, ~ ,  b2, M2) is a row-column design which 
satisfies the conditions of Lemma 2.1. Then it is easily seen that any row-column 
design d obtained by combining the rows of d into bl rows, a < bl < bl, again 
satisfies the conditions of Lemma 2.1 and has C d -- Cd2. 

3. Construction of optimal designs 

In this section we derive some sufficient conditions which can often be used 
to establish the existence of a C-optimal row-column design d which satisfies the 
conditions of the previous section and which can be constructed from its corre- 
sponding C-optimal block design d2 by arranging treatments appropriately within 
the blocks of d2. However, we begin our discussion by introducing some notation 
and definitions which are useful in the sequel and which are analogous to some 
given in Agrawal (1966). 

DEFINITION 3.1. If $1 , . . . ,  Sn are n subsets of a given set S, then (O1, . . . ,  
On) is called an ( m l , . . . ,  mn) system of distinct representatives (SDR) if the 
following conditions hold; 

(i) O~ C_ Si, 
(ii) n(Oi) = mi, where n(Oi) denotes the number of elements in Oi, 

(iii) O~ A Oj = ¢ for i # j ,  i, j = 1 , . . . ,  n. 
If ml . . . . .  mn = m, the sets are called an m-ple SDR. 

Agrawal (1966) gives the following theorem which can be used to establish the 
existence of an ( m l , . . . ,  mn) SDR. 
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THEOREM 3.1. Let $1 , . . . ,  Sn be subsets of a given finite set S. Then a 

necessary and sufficient condition for an ( m l , . . . ,  mn)  S D R to exist is that 

k 

n( S~ 1U S~ 2 U . . . U Sik ) >_ ~ mi~ , 1<_ il < i2 < " " < ik < n, l < k < n. 
j = l  

Using Theorem 3.1, we now extend a result of Agrawal's to the case of nonbi- 
nary designs. 

THEOREM 3.2. Let d2 be a block design having v treatments arranged in 
b = mv  blocks of size k such that each treatment is replicated bk /v  = "y times. 
Further assume that each treatment occurs [k/v] or [k/v]+ l t imes in each block. 
Then the treatments can be rearranged within the blocks of  d2 to construct a row 
column design d2 E D(v; k, mvJ1, k, b, kJl ,b)  such that every treatment occurs m 

times in each row. 

PROOF. The proof given here for this result is similar to the proof of Theorem 
3.1 given in Agrawal (1966). However, because the proof demonstrates the basic 
problems which arise when trying to construct a row-column design satisfying the 
condition given, we include the proof in its entirety. So to start with, let us assume 
that k = v[k/v] + /3 and r = b[k/v] + a .  Since bk = vr  and b -- mv,  it easily follows 
that a = m/3. We now form the sets S1, $2 , . . . ,  Sv where S~ is the set of all the 
block numbers of the design d2 containing treatment i [k/v] + 1 times. Now 

n(S~l U Si2 U .. . U Sih) >_ ha~t3 = hm,  1 <_ il  < " "  < ih <_ V, 1 < h < v, 

as any treatment occurs [k/v] +1 times in exactly a blocks of d2 and each particular 
block of d2 contains exactly/3 treatments [k/v] + 1 times. Hence by Theorem 3.1 
we can choose an m-ple SDR, say (O1, . . . ,  Or) from S1 , . . . ,  Sv. Using this SDR, 
we now write down the first row of d2 by placing treatment i in those columns 
of the first row corresponding to the block numbers in Oi, i = 1 , . . . ,  v. Now let 
Si = S~ - {Oi}, i = 1 , . . . ,  v. Then every Si contains m(/3 - 1) different block 
numbers and each block number appears once in (/3 - 1) of the Si's. Thus 

n(S~, U Si, U . . .  U Si~, ) >_ h'm(13 - 1 ) / ( / 7  - 1 )  = h'm, 
l <_ il < . . -  < ih, < V, l <_ h' < v, 

and by Theorem 3.1 it follows that we can choose an m-ple SDR ( 0 1 , . . . ,  () .)  

from S1 , . . . ,  Sv. We now write out the second row of d 2 by placing treatment i 
in those columns of the second row corresponding to those block numbers in 0i ,  
i = 1 , . . . ,  v. Continuing in this manner we obtain the first /~ rows of the row- 
column design fi2. Finally, the row-column design d2 is obtained by adjoining to 
the/3 rows of d2 thus far constructed the rows of the row-column design do given 
by 

. . .  < / ' ' l  
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where p = [k/v] and 

dij 

1 2 3 - . .  v - 2  v - 1  v 
2 3 4 .- .  v - 1  v 1 
3 4 5 .- .  v 1 2 
: : : : : : : 

: : : : : : : 

v 1 2 --- v - 3  v - 2  v - 1  

for i = 1 , . . . ,  p, j = 1 , . . . ,  m. 

THEOREM 3.3. Let d21 • D2(v; b21, k21Jl,b~1) where b21 = m21v be an equi- 
replicate block design which has each treatment occurring [k21/v] or [k21/v I ÷ 1 
times in each block. Let d22 • D2(v; b22, k22Jl,b2~) where b22 = m22v be another 
block design which has each treatment occurring [k22/v] or [k22/v] ÷ 1 times in 
each block. Furthermore, suppose k21 <_ k22 and let d2 • D2(v; b2, ~ )  have 
Nd2 = (Nd2~, Nd~2) where b2 = b21 + 522 and l~ = (k21Jl, b~,, k22Jl,b22). Then 
there exists a row-column design d2 • D(v; b,, 141, b2, ~ )  corresponding to d2 
which has Cd2 = Cd2 where b2 and ~ are defined as above, bl = k22 and td 1 = 
((m21 ÷ m22)vJ1, k2~, m22vJ1, ~,,-k2~ ). 

PROOF. The proof is by construction. It follows from Theorem 3.2 tha t  a 
row-column design d21 • D(v; k21, m21vJ1,k21, b21, k21Jl,b21) can be constructed 

from d21 such tha t  every t rea tment  appears m21 times in each row of d21. Similarly 
a row-column design d22 • D(v; k22, m22vJl,k22, b22, k22J1,b22) can be constructed 

from d22 such tha t  every t rea tment  appears m22 times in each row of d22. Finally, 
we obtain d2 by letting d2 = (d21, d22). The result now follows from Lemma 2.1. 

THEOREM 3.4. Assume the conditions of Theorem 3.3 hold and let d~1 , d~2 
and d~ be block designs such as described in Theorem 3.3 with d~ being e-optimal in 
D2(v; b2, M2). Now let d~ • D(v; bl, ~ ,  b2, ~ )  be a row-column design which can 
be obtained from d~ such that Cd~ = Cd~. Then d~ is e-optimal in D(v; bl, ~ ,  b2, 

PROOF. This directly follows from Theorem 3.3 and Theorem 2.1. 

For the remainder of this paper, we shall concentrate on the construction 
of optimal row-column designs which can be constructed from balanced unequal 
block designs (BUBD's). 

DEFINITION 3.2. A design d2 C D2(v; b2, ~ )  is called a BUBD if kCd2 = 
(~ A)Iv ÷ A J r .  where k 52 - -  = Y I j = I  k2j and ~ and A are appropriate constants. If 
all the elements of/42 are equal, then d2 is called a balanced block design (BBD) 
whereas if d2 is a binary BBD, then d2 is called a balanced incomplete block design 
(BIBD). 
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It is well known from the results of Kiefer (1975) that  if d~ E D2(v; b2, k~) is 
a BUBD such that  

(3.1) n (2) -- [k2j/v] or [k2j/v] + 1 for i - -  1, v, j = 1,. b2, 
d ~  i j  " " • ~ " " ' 

then d~ is C-optimal in D(v; b2, ~)  under most widely used optimality criteria in- 
cluding the A, D, and E-optimality criteria• There are several techniques available 
for constructing BUBD's. For example, if d21 and d22 axe two BBD's having differ- 
ent block sizes but  based on v treatments each, then d2 having Nd2 = (Nd21, Nd22) 
is a BUBD. Gupta  and Jones (1983) give a method for constructing BUBD's us- 
ing partially balanced incomplete block (PBIB) designs. The reader is referred to 
Raghavarao (1971) for more information on PBIB designs. 

Example 3.1. Consider the row column design d2 having 4 rows and 18 
columns which is given by 

d2 ~-~ 
13 42 1 5 3 2 6 4 1 2 3 4 5 i ]  2 4 6 5 3 1 5 3 1 6 4 2 4 5 6 1 2 

2 3 1 5 6 

5 6 4 2 3 

The BUBD d2 corresponding to d2 is constructed as described in Gupta  and Jones 
(1983) by combining the PBIB designs $2 and R18 given in Clatworthy (1973)• 
Since d 2 is a BUBD which satisfies the conditions given in (3.1) and d2 satisfies the 
conditions of Theorem 3.4, it follows that  d2 is C-optimal under most optimality 
criteria in 0(6;  4, (18, 18, 6, 6), 18, (2J1,12, 4J1,6)). We also note that  any row- 
column design which can be obtained from d2 by combining the rows of d2 in 
some manner will satisfy, as mentioned in the comment following Lemma 2.1, the 
conditions of Lemma 2.1. Hence any such row-column design will also be C-optimal 
in its corresponding class of row-column designs• For example, the row-column 
designs d2 and d2 given by 

[1  3 5 4 2 6 1 5 3 2 6 4 1 2 3 4 5 ~ ] 

(~2= 2 4 6 5 3 1 5 3 1 6 4 2 4 5 4 1 2 
2,3 3 ,6  1,4 5,2 6,3 4, 1 

and 

I 1 3  5 4 2 6 1 5  3 2 6 4 1 2 3 4 5 6 ] 

d2~-  2 4 6 5 3 1 5 3 1 6 4 2 4 , 2 , 5  5 , 3 , 6  6 , 1 , 4  1 ,5 ,2  2 , 6 , 3  3 ,4 ,1  

are both C-optimal in their corresponding classes of row-column designs since 
they satisfy the conditions of Lemma 2.1. In the designs d2 and d2 given above, 
t reatment sets written like 4, 2, 5 indicate that  these are the t reatments  assigned 
to experimental units occurring in the appropriate row and column, i.e., in d2, 
the treatment set 4, 2, 5 indicates that  t reatments 4, 2 and 5 are the treatments 
assigned to experimental units occurring in row 2 and column 13 of d2. We note 
that  d2 for both d~ and d2 is the same as d2 described above corresponding to d2. 
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Example 3.2. 
columns given by 

Consider the row-column design 

" 1 2 3 4  

2 3 4 5  

3 4 5 1  

4 5 1 2  

1 2 3 4  

2 3 4 5  

3 4 5 1  

4 5 1 2  

5 1 2 3  

5 1 2 3 4 5 "  

1 2 3 4 5 1  

2 3 4 5 1 2  

3 4 5 1 2 3  

5 1 2 3 4 5  

1 2 3 4 5 1  

2 3 4 5 1 2  

3 4 5 1 2 3  

4 5 1 2 3 4  

1 2 3 4 5  

2 3 4 5 1  

3 4 5 1 2  

4 5 1 2 3  

5 1 2 3 4  

d2 with 14 rows and 10 

Here d2 is a BUBD obtained by combining the BBD's d21 C D2(5; 5, 9J1,5) and 
d22 E D2(5; 5, 14J1,5). Since d2 satisfies the conditions of (3.1) and since d2 
satisfies Theorem 3.4, it follows that d2 is C-optimal in D(5; 14, (10J1,9, 5J1,5), 10, 
(9J1,5, 14J1,5)) under most optimality criteria. We note again, as with Example 
3.1, that any row-column design d2 obtained by combining the rows of d2 into 
bl rows, 1 _< bl _< 14, will again satisfy the conditions of (3.1) and Theorem 3.4. 
Thus any such row-column design d2 will be C-optimal in its appropriate class of 
row-column designs under most optimality criteria. 

Comment. The results given in this section, such as Theorem 3.4, only es- 
tablish the existence of optimal row-column designs which can be constructed 
from corresponding optimal block designs. Specific methods for constructing such 
row-column designs are not given. The problem of actually constructing optimal 
row-column designs from optimal block designs essentially reduces, as indicated 
in the proof of Theorem 3.2, to the problem of choosing SDR's. Hall (1945) gives 
a specific algorithm for choosing SDR's which can be implemented to construct 
row-column designs such as those described in this section when trial and error 
methods fail. For more information on this algorithm, the reader is referred to 
Hall (1945). 

THEOREM 3.5. Let do be a binary block design having v treatments arranged 
in bo blocks of size k such that each treatment is replicated bok/v = ro times. 
Further assume that bo = mv  + t, t (v - k) = v and do has Ndo = (Ndol, Ndo2) 
where Ndo 2 is the incidence matrix of a block design do2 which has t blocks with 
every treatment occurring once in t k / v  = ro2 blocks of do2. Then the treatments 

within the blocks of do can be arranged to form a row-column design do which has 
t - 1 rows with every treatment appearing the same number of times in each row. 

PROOF. We shall prove the result by constructing row-column designs d01 
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and do2 from do1 and do2, respectively, such that  dol and do2 each have t - 1 
rows with each t rea tment  being equally replicated in each row. The  final design 
do is then obtained by let t ing do = (do1, do2). To begin, we note  tha t  from the 
conditions given, k -- (t - 1)(v - k) and do1 is an equi-replicate binary block 
design with b = m v  blocks. Thus,  by Theorem 3.2, we see tha t  we can arrange 
the t rea tments  within the blocks of dm to form a row-column design do1 having 
k rows such tha t  every t rea tment  appears  m times in each row of do1. We now 
obtain the desired design do1 by combining succeeding sets of v - k rows in do1. 
Thus  do1 is a row-column design with t - 1 rows having each t rea tment  occurring 
m ( v  - k) t imes in each row. Now, to construct  the appropr ia te  design from do2, 
let us define B j ,  j = 1 , . . . ,  t, to be the set of t r ea tments  which occur in the j - t h  
block of do2. Then  each t r ea tmen t  occurs in r02 = t - 1 of the sets B 1 , . . . ,  B t  
and n ( B i l  U Bi2 U . . .  U Bin)  >_ h k / ( t  - 1) = h( t  - 1)(v - k ) / ( t  - 1) = h(v  - k), 
1 _< h _< t. Hence, by Theorem 3.1, a (v - k)-ple SDR ( O ~ , . . . ,  Or) exists for 
the sets B 1 , . . . ,  Bt. We now form the first v - k rows of a row-column design 
d02 by choosing one t rea tment  out  of each set Oj,  j = 1 , . . . ,  t, to  appear  in each 
row. Now def ine/~j  = B j  - {Oj}, j = 1 , . . . ,  t. T h e n / ~ j  contains k = 2k - v = 
(t - 2)(v - k) t rea tments  and each t r ea tmen t  occurs in t - 2 of the /~j's. Thus 
n([~il U [~i2 U . . . U [~i~) >_ h k / ( t  - 2) = h (v  - k), 1 < il  < . . .  < ih <_ t, 1 < h <_ t 
and by Theorem 3.1 we can select a (v - k)-ple SDR ( 0 ~ , . . . ,  0 t )  for the sets 
/~ 1 , . . . , / ~ t .  We now write down the second set of v - k rows of do2 by choosing 
from each set 0 j  one t r ea tmen t  to appear  in each row. Continuing in this manner ,  
we can construct  the remaining rows of cl02 so tha t  do2 has t - 1 sets of v - k 
rows with each t rea tment  occurring once in each set. To obtain the desired design 
corresponding to  do2 from do2, we combine the v - k rows contained in each of 
the t - 1 sets given above to form the row-column design cl02 which possesses t - 1 
rows with each t rea tment  occurring once in each row. The  final design do is given 

by do = (dol, do2). 

COROLLARY 3.1. Let  do E D2(v; bo, kJl,bo) be a block design such that 
each t reatment  is replicated bok /v  = ro t imes.  Fur ther  assume that  each treatment  
occurs [k/v] or [ k / v ] + l  t imes  in any block, bo =- m v + t ,  k = v [ k / v ] + ~ ,  t ( v - ~ )  = v 
and do has Ndo = ( Ndol , Ndo2 ) where Ndo2 is the incidence ma t r i x  of  a block design 
do2 which has t blocks such that  every t rea tment  occurs t k / v  = r02 t imes.  Then  
the treatments  wi thin  the blocks of  do can be arranged to f o r m  a row-column design 
do having [k/v]t + (t - 1) rows with each row containing every t rea tment  the same 

number  of  t imes.  

PROOF. To begin with, we note tha t  dm is a block design which has bm -- 
m y  blocks with each t rea tment  replicated rm = m v k / v  = m k  times. Thus,  by 
Theorem 3.2 we can construct  a row-column design d01 by arranging t rea tments  
within the blocks of d01 so tha t  d01 has k rows with each t r ea tmen t  occurring 
the same number  of t imes in each row. Now, from din, we can form the row- 
column design d01 by combining successive sets of (v - / 3 )  rows so tha t  d01 is a 
row-column design having [k/v]t  + (t - 1) rows with each t rea tment  occurring the 

same number  of t imes in each row. We now show tha t  a row-column design d02 
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can be constructed from do2 which has properties similar to those of do1. To this 
end, let Bj,  j = 1 , . . . ,  t, be the set of all treatments which occur [k/v] + 1 times 
in the j - th  block of d02 and let _d02 be that block design having Bj, j = 1 , . . . ,  t as 
its blocks• Then, as in the proof of Theorem 3•5, we can construct a row-column 
design do2 from 402 such that each succeeding set of v - / 3  rows in do2 contains 
each treatment once and there are (t - 1) such sets. Now consider the row-column 
design 

[ 021 
do2. / 

L do2 J 

where do2 appears [k/v] times in do2 and is given by 

1 (v - / 3 )  + 1 2(v - ~) + 1 ( t -  1 ) ( v - / 3 )  + 1 
2 ( v - ~ ) + 2  2(v-/3) + 2 ( t -  1 ) (v -~ )  +2  
: : : : 

~ o 2 =  

(v -/3) 2(v - fl) 3(v -/3) 

( v - f l ) + l  2 ( v - ~ ) + l  3 ( v - / 3 ) + 1  •. 
( v - / 3 ) + 2  2 ( v - / 3 ) + 2  3 ( v - / 3 ) + 2  .. 

2(v - ~)  3(v - ~)  4(v - / ~ )  . . .  

t (v  - Z) 

1 
2 

v - / 3  

(t - 1)(v  - ~ )  + 1 a (v - Z) + 1 . . .  ( t -  2 ) (v  - ~ )  + 1 

( t - 1 ) ( v - / 3 ) + 2  2 ( v - / 3 ) + 2  -•• ( t - 2 ) ( v - / 3 ) + 2  

t(v - ~) v - /3  2(v-/3) .-• ( t -  1)(v - fl) 

Now, by combining succeeding sets of (v - /3)  rows in do2 we obtain a design do2 
which has [k/v]t + (t - 1) rows with each treatment occurring exactly once in each 

row. The final design do is given by do = (cl01, do2) and has [k/v]t + ( t -  1) rows 
with each treatment occurring the same number of times in each row. 

THEOREM 3.6• Let d21 E D2(v; b21k21Jl,b21) and d22 E D2(v; b22, k22Jl,b2~) 
be two block designs which satisfy the conditions of Corollary 3.1 with b21 = m21v+ 
tl,  b22 = m22v + t2, k21 = v[k21/v] + fll and k22 = v[k22/v] + f12. Further 
suppose bll = [k21/v]t1 + (tl - 1), b12 = [k22/v]t2 + (t2 - 1) and bll <_ b12. 
Let d2 e D2(v; 52, M2) have Nd~ = (Nd21, Nd~2) where 52 -- b21 + 522 and t~ = 
(k21Jl,b2x, k22Jl,b22). Then there exists a row-column design d2 having Cd2 = Cd2 
in D(v; bl, k/l, b2,112) where b2 and td 2 are as defined above, bl = b12 and ld 1 = 
(v(m21(v - ~1) + 1 + m22(v - /32)  + 1)Jl,bH, v(m22(v -- ~2) + 1)J1,b12-b,~)- 
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PROOF. The proof follows by construction. By applying Corollary 3.1 to 
the block design d~l, we see tha t  we can construct a row-column design d21 E 
D(v; b11, v(m21(v-l~1)+l)Jl,b~, b21, k21J1,b2~) such tha t  every t rea tment  appears 

m21(v - ~1) + 1 times in each row of d21- Similarly, it follows from Corollary 3.1 

tha t  we can construct from d22 a row-column design d22 E D(v; b12, v(m22(v - 
/~2) + 1)Jl,b~2, b22, k22J1,5~2) such that  every t rea tment  appears m22(v - ~2) + 1 

times in each row of d22. The desired row-column design d2 is now given by 
cl2 = (d21, d22). It is easily verified tha t  d2 satisfies the conditions of Lemma 2.1, 
hence tha t  Cj2 = Cd:. 

COROLLARY 3.2. Assume the conditions of Theorem 3.6 hold and let d~l , d~2 
and d~ be block designs such as described in Theorem 3.6 where d~ is e-optimal in 
D2(v; b2, ~ ) .  Now let d~ E D(v; bl, ~1, 52, ~2) be a row-column design that can be 
obtained from d~ such that Cd~ = Cd~ . Then d~ is C-optimal in D(v; bl, ~1, b2, ~ ) .  

PROOF. This result follows directly from Theorem 2.1. 

In the remaining portion of this paper we shall show the existence of several 
classes of BBD's tha t  satisfy the conditions of Corollary 3.1. To begin with, let 
do be a BBD with b blocks of size k and having each t rea tment  occur [k/v] or 
[k/v] + 1 times in each block. Further, as in the proof of Corollary 3.1, let Bj,  
j -- 1 , . . . ,  b, be the set of all t reatments  which occur [k/v] + 1 times in the j - t h  
block of do and let d_ 0 be the block design having Bj,  j = 1 , . . . ,  b as its blocks. 
We note tha t  d o is a BIBD and we shall henceforth refer to d o as the component 
BIBD of do. 

COROLLARY 3.3. Let do be that BBD based on v = 2t treatments, t > 1, 
arranged in b blocks of size k -- v[k/v] + (v - 2) which satisfies (3.1) and is such 
that d_ o is that irreducible BIBD whose blocks consist o/ all the (v - 2)-ples that are 
possible to choose from the v available treatments. Then do satisfies the conditions 
of Corollary 3.1. 

PROOF. To begin with, we note tha t  since the blocks of d_ 0 consist of all 
(v - 2)-ples tha t  can be formed from the t rea tments  1 , . . . ,  v, we can find blocks 
B 1 , . . . ,  Bt in d o such tha t  Bj does not contain t rea tments  2(j - 1) + 1 and 2j. 
Now let Ndo = (Ndol, Ndo2) where Ndo2 is tha t  set of blocks in Ndo corresponding 
to B 1 , . . . ,  Bt. The result now follows since all t rea tments  in Ndo2 are equally 
replicated and t(v - ~) = t(2t - 2(t - 1)) -- 2t = v. 

Comment. It follows from our discussion so far tha t  if we star t  out with a 
block design d2 -- (d21, d22) where d21 E D2(v; b21, k21Jl,b~1) is a BBD satisfying 
the conditions of Corollary 3.1 and d22 E D2(v; b22, k22J1,b22) is a BBD satisfying 
the conditions of Theorem 3.2, then we can construct a row-column design which 
is C-optimal in the appropriate class of row-column designs. 
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Example 3.3. 
21 columns given by 

-1234546123456135 
234561234561246 
345612345612351 
456123456123462 
561234561234513 

d~ = 612345612345624 
112233554466124 
224411663355356 
335644115622213 
561156342234465 

Consider the row-column design d~ arranged in 11 rows and 

123456" 
234561 
345612 
456123 
561234 
612345 
123456 
234561 
345612 
456123 
561234 

Here d~ = (d~l, d~2 ) is a BUBD where d~l E D2(6; 15, 10J1,15) is a BBD 
satisfying the conditions of Corollary 3.3 and d~2 E D2(6; 6, 11J1,6) is a BBD 
satisfying the conditions of Theorem 3.2. Thus, applying Corollary 3.1, a row- 
column design d~l c D(6; 10, 15J1,10, 15, 10J~,~5) is obtained from d~l and a 

^ 

row-column design d~2 E D(6; 11, 6J1,11, 6, 11J1,6) is obtained from d22. Now, the 
= (d21 , satisfies the conditions of Theorem row-column design d~ given by d~ *̂ 

3.4 and hence is C-optimal in D(6; 11, (21JL10 , 6J1,1), 21, (10J1,15, 11J1,6)) under 
most optimality criteria. 

We now give two additional classes of block designs which can be used to 
construct optimal row-column designs of the types given in Corollary 3.1. 

DEFINITION 3.3. Let do be a binary block design based on v treatments 
arranged in b blocks of size k. The complement of do, denoted by d~, is that 
design whose incidence matrix is given by Nd, ° = Jvb -- Ndo. 

DEFINITION 3.4. Let do be a binary block design based on v treatments 
arranged in b blocks of size k. We say do is resolvable if its blocks can be divided 
into classes S1 , . . . ,  St each containing the same number of blocks, such that  in 
each class, every treatment is replicated once. 

A number of families of BIBD's can be constructed using finite geometries. 
In particular, if s is a prime number or a power of a prime number, then two 
families of BIBD's having the following parameters can be constructed using finite 
geometries (see Raghavarao (1971), p. 78): 

(3.2) 

f a m i l y l : v = s  2 + s + l = b ,  r = s + l = k ,  A = b k ( k - 1 ) / v ( v - 1 ) = l  

family 2 : v = ( s + l ) @  2 + 1 ) ,  b = ( s  2 + l ) ( s  2 + s + 1 ) ,  r = s  e + s + l ,  

k = s + l ,  A = b k ( k - 1 ) / v ( v - 1 ) = l .  

Using the families of BIBD's described in (3.2), we now give our final result. 
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COROLLARY 3.4. Let  do be that  B B D  based on v t rea tments  arranged in  b 

blocks o f  size k which satisfies (3.1) and which has d o which is the c o m p l e m e n t  

o f  one of  the B I B D ' s  described in (3.2) f o r  an appropriate value o f  s. T h e n  do 

satisfies the condi t ions  o f  Corollary 3.1. 

PROOF. We shall consider two cases. 
Case 1: d o is the complement of some design from family 1 of (3.2). 
In this case, for an appropriate value of s, d_ 0 is a BIBD which has parameters 

v = s 2, b = s(s  + 1) and k'  = k - v[k/v] = s 2 - s. Also, it follows from aaghavarao 
(1971) that _d o is resolvable. Thus we can find blocks B1 , . . . ,  Bt  in do where 
t -- s such that  each treatment occurs in B 1 , . . . ,  Bt  exactly once. Now let Ndo ---- 

(Ndol, Ndo~) where Ndo~ is that  set of blocks in Ndo corresponding to B1 , . . . ,  Bt 
of d 0. The result now follows since all treatments in Ndo2 are equally replicated 
and t (v  - k ' )  = s 2 = v. 

Case 2: d o is the complement of some design from family 2 of (3.2). 
Here, for an appropriate value of s, d_ o is a resolvable BIBD having parameters 

v = s 3, b = s2(s  2 + s + 1) and k'  = k - v[k/v]  = s 3 - s (see Raghavarao (1971)). 
Thus we can find blocks B 1 , . . . ,  Bt  in do where t = s 2 such that each treatment 
occurs in B1 , . . . ,  Bt exactly once. The proof now follows as in Case 1 since 
t ( v  - k ' )  = s 3 = v .  

C o m m e n t .  The comment made following Corollary 3.3 holds for the designs 
given in Corollary 3.4 above as well and designs such as given in Example 3.3 can 
be constructed. 
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