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A b s t r a c t .  Let X1, X2,..., Xn be independent observations from an (un- 
known) absolutely continuous univariate distribution with density f and let 
f ( x )  ---- (nh) -1 ~-~=1 K[ (x  - X~)/h] be a kernel estimator of f ( x )  at the point 
x, - oc < x < c~, with h = hn (hn ~ 0 and nhn --+ oc, as n --+ oc) the 
bandwidth and K a kernel function of order r. "Optimal" rates of convergence 
to zero for the bias and mean square error of such estimators have been studied 
and established by several authors under varying conditions on K and f. These 
conditions, however, have invariably included the assumption of existence of 
the r-th order derivative for f at the point x. It is shown in this paper that 
these rates of convergence remain valid without any differentiability assump- 
tions on f at x. Instead some simple regularity conditions are imposed on the 
density f at the point of interest. Our methods are based on certain results in 
the theory of semi-groups of linear operators and the notions and relations of 
calculus of "finite differences". 

Key words and phrases: Kernel density estimation, bias, mean square error, 
finite differences, semi-groups, linear operators. 

1. Introduction 

Let X 1 ,  X : , . . . ,  X n  denote a sample of independent observations from an 
unknown absolutely continuous univariate distr ibution with density f .  Then  a 
Rosenbla t t -Parzen type kernel est imator  of f at a given point x, - c~ < x < oc, 
is given by 

(1.1) ](x)~--(nh)-l~K(XhXi), 
i=1 

where K is a suitable kernel function and h = hn the smoothing parameter  or 
bandwidth  (hn --* 0 and n h n  ~ oc, as n -~ oc).  There have been numerous 
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papers in literature setting out various estimators of f ,  with different rates of 
convergences of f relative to important discrepancy "measures" between f and 
the proposed estimators (e.g., bias, mean square error, integrated mean square 
error, etc.) and under a variety of conditions on K, h and the smoothness of f .  
The literature is too extensive to warrant a complete listing here (see for instance, 
Tapia and Thompson (1978), Devroye and Gyhrfi (1985) and Silverman (1986) for 
detailed bibliography). It is also well known that "improved" rates of convergence 
for bias and mean square error (MSE) of kernel estimators of the type (1.1) at 
a point x, - e~ < x < c~, can be obtained through the use of "higher-order" 
kernel functions (defined below) provided higher-order derivatives f ( r )  r _> 1, of f 
exist at the point x (see, e.g., Parzen (1962), Bartlett (1963), Rosenblatt (1971), 
Yamato (1972), Farrell (1972), Singh (1974, 1977), Wahba (1975), Davis (1975), 
Mfiller and Gasser (1979) and Miiller (1984)). A kernel function Kp (p > O, an 
integer) is said to be of order r (or (p, r) with r > p, an integer) if 1/ {1 
(1.2) -fi yJKp(g)dy= 0 if j C p ,  j = 0 ,  1, 2 , . . . ,  r - 1  

Cr,p if j = r, 

where Cr,p is a non-zero finite constant depending on r and p alone. The technique 
for establishing the above referred "improved" rates of convergence is based on the 
use of such higher-order kernel functions along with an r-th order Taylor expansion 
of f (x  + hy) about x, of the type, say (see Singh (1974), Wahba (1975) and Miiller 
and Gasser (1979)), 

r-l  1 F+hy 
(1.3) f (x  + hy) = E f(J)(x) + (r 1)------~ (x + hy - u)r-l f(~)(u)du 

j=0 ~x 

(where f°(x) stands for f (x)) ,  in the expressions for Elf(x)] and MSE[f(x)] etc. 
and then deriving appropriate bounds for the discrepancy measures which yield the 
desired rates of convergence thereof. However, the question regarding "optimum" 
or "improved" rates of convergence of these measures at points x where f(x) is 
not differentiable has been virtually ignored in literature. 

There are quite a number of important continuous density functions whose 
domains contain non-differentiable points. A few are given below: 

Example 1.1. Let f be the triangular density defined by 

(1.4) f(x) = 
l + x  if - l < x < 0  
1 - x  if 0 < x _ < l  
0 otherwise. 

At the point x = 0, f is not differentiable. 

Example 1.2. Let the (triangular) function ¢ be defined by 

1 
x if O _ ~ x <  2 

¢(x) = _1 _~x~_ l  
1 - x if 2 
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and ¢(x  + k) = ¢(x)  for all integers k; and consider the densi ty f :  

o o  

f (x )  = 2(2-%(2ix) ,  
i----1 

- -oo  <: x < oo. 

Then f (x )  is continuous on ( - ~ ,  co), bu t  fails to have a finite derivative at every 
point except a dyadic rational. 

Example 1.3. For positive integer k > 1, let f be the density function defined 
by 

(1.5) 

1 
k ( 1 -  21xl) k- l ,  if Ixl < 

/ ( x )  = 1 
O, if Ix l  > 

At the point x -- 0~ f is not differentiable. Observe that  if the random vari- 
ables Y~ possess the uniform distribution on the interval [0 - 1/2, 0 + 1/2], then 
(1.5) represents the density function of the random variable T - 0, where T = 
(maxl<~<k Y~ + minl<~_<k Y~)/2. (T is a minimax and sufficient est imator  for 0.) 

Example 1.4. Let f be the double exponential  density defined by f (x )  = 
(1/2a)e-lX-ol/a for - ~ < x < cx~, a > 0. Then f is not differentiable at x = 0. 

Example 1.5. Let f be a countable mixture of, say, double exponential  den- 
sities: for - oc < x < c% 

f ( x )  ---- E ~,-72-Tgi(x), with gi(x) = ~ae -I~-~(O)l/a 
i--O 

a > 0, e (0) / as 
as 101 --* 0. Then 
x = ci(O), i = O, 1, 

i / z  c~ for each 0, 101 < b (b > 0), c~(O) / in 10t and "~ 0 
f ( x )  is continuous on ( - o c ,  c~) bu t  is not  differentiable at  

2 , . . .  for each given 0 E (a, b). 

Example 1.6. Let f be the  density function of the  form (an s-parameter  
exponential  family with Lebesgue density U(x)):  

f ( x )  = exp ci(O)T~(x) - B(O U(x), 

for - o e  < x < oe. We may take U(x), for example, (i) e -]z[ or (ii) e- lXf / ( l+x2) .  
The density f is not differentiable at x = 0 in either case; see Lehmann ((1983), 
p. 62, Exercise 4.1). 

More examples can be given, see, e.g., Loh (1984) and Ibiragimov and 
Has 'minski  ((1981), Chapters  V and VI). 
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It is worth pointing out that while most densities assumed in applications-- 
and, indeed, the examples quoted above--satisfy varying degrees of strong smooth- 
ness conditions, these densities are, in fact, only idealized approximations to what 
might be the true but unknown underlying state of nature. There is no reason 
to believe, however, that the unknown densities to be estimated in specific appli- 
cations actually satisfy the assumed (r-th order, etc.) differentiability and other 
"smoothness" conditions--the conditions on which the traditional arguments for 
establishing improved rates of convergence for estimators (1.1) are usually based. 
It seems worthwhile to go a step further and note that, beyond the assumption of 
continuity, assuming strict differentiability conditions severely restricts the class of 
densities and, thereby, may exclude from the statement many situations for which 
the desired results might still be true. In this context, consider the Banach space 
B of continuous functions f defined on a real closed interval [a, b] with the norm 
Ilfll = SUpa<x<b I f ( x ) l  • Then it is well known (see Hewitt and Stromberg ((1965), 
p. 260)) that the subclass :D C B of differentiable functions is of category I and, 
consequently, is nowhere dense in/3. In other words, much less to speak about 
the r-th order differentiability, most functions in B are, in fact, nowhere differen- 
tiable. Thus, for an overwhelmingly large class of continuous densities, the usual 
differentiability conditions are not satisfied. Besides, in nonparametric estimation 
who knows at what points the unknown density satisfies the assumed differentia- 
bility conditions and, that too, to what order! Accordingly, the weakening of any 
differentiability conditions on the density f ,  used in establishing improved rates of 
convergence for estimators (1.1), should be of considerable interest in applications. 

To achieve the above is precisely the object of this paper. We shall show 
that "optimum" or improved rates of convergence to zero for the bias and mean 
square error (MSE) of estimator (1.1) can be obtained without any differentiability 
assumptions on f ,  provided certain types of kernel functions are employed and 
certain simple regularity assumptions on f are satisfied. In fact, under these 
simple restrictions (see (2.5), (2.6), (2.7) and (2.8)) based on notions and relations 
of "calculous of finite differences", we obtain the best possible rates for bias and 
MSE for any uniformly continuous density f ,  with bounds on the bias and MSE 
improving with appropriate choice of K and conditions on f .  We may employ in 
(1.1) a one-sided kernel Ko, namely, a kernel vanishing off (0,1) or ( - 1, 0), or 
more appropriately, a "symmetrized analogue" (see (2.3) below) of the one-sided 
kernel K0. Our approach is based on certain results in the theory of semi-groups 
of linear operators and calculus of finite differences; indeed, the results obtained 
do not seem to rea~iily follow using traditional arguments. 

The main results of the paper along with some corollaries are given in Section 2. 
In Section 3 are given (above-referred) our main tool results and the proof of results 
stated in Section 2. Section 4 contains the treatment of two of the above examples, 
namely 1.1 and 1.4--the object being simply to illustrate the conditions under 
which the main results of this paper hold---and also some concluding remarks. 

2. Main results 

In this section, we state our main results followed by a few corollaries and 
remarks. First let us introduce some notation: Given a sequence Co, c l , . .  • of reals, 
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let A denote the difference operator Acn = Cn+ 1 - -  C n. Applying the operator A 
to the sequence {Acn}, we get a new sequence {A2cn} and so forth. Defining A ~, 
i = 0, 1, 2 , . . .  recursively by the relation A ~ = A(A ~-1) (A 1 = A, A°cn = Cn), an 
induction argument easily shows that  

(2.1) Aic , ,= t -  ) ~+k. 
k=0 

Let A m = 7/-1/~, ?7 ~ 0, denote the difference ratio operator. Thus, if cu = u(x+~W) 
for fixed x and span ~/, we have Anu(x ) ---- r/-1 [u(x+7/)-u(x)] .  Defining the higher- 
order differences again reeursively by A~ = AreA ~-1, with A~ = A n and A°u = u, 
the equation (2.1) becomes 

(2.2) 
i 

A ~ u ( x ) = 7 1 - i E ( 2 ) ( - - 1 ) i - k u ( x + k ~ l  ). 
k=0 

We can now state the following theorems: 

THEOREM 2.1. Let ] be defined by 

~-hl n l{Ko(X~hXi)+Ko(XihX)}_2 (2.3) / (x )  = ~ 

where the kernel function Ko is measurable, vanishing off (0,1) and of order r 
(r > 1). Let f be a uniformly continuous density function defined on ( - oo, oo). 
Forgivena > 1, and any reals 71 andÜ, defineA m = {k~/: k -- 0, 1, 2 , . . .} ,  denoting 
A m by A + or A~ according as ~1 > 0 and ~1 < O, and 

(2.4) a ( . r ,  0)  = a 1+" - h i + ° [ 1  -]- (,r - O) l o g a ]  for  ,r E Am, 

denoting by a(,r, O) by a+(.r, 0) ora-(,r ,  O) according as 71 > 0 and71 < O. Assume 
further that, for some e > 0 and some 5 > 0, 

(2.5) l iminf  sup sup IA~f(x+,r)I  < ~a, 
mlo O<O<erES+ 

A ; f ( x  + ,r) 
(2.6) lim sup sup sup < oe, 

m~o o<o<~es+ a+(,r, e) 
(2.7) l iminf  sup sup IA,~f(x +,r)l  < ~ ,  

inTO -e<O<O rES~- 

and 
A ; f ( x  +_.T) [ 

(2.8) lim sup sup sup < oo, 
into -~<o<o.es; a-(,r, O) 

where 

S + = S + ( 0 ) = { T :  T E A  + , i - r - 0 1 < 6 } ,  

S~- = S { - ( O ) = { . r :  TEA~-,  I.r--O[ <5} ,  

S + = S + ( O ) =  A + _ S+(O) ,  

S 2 = S  2 ( o ) - - A ~ - S ~ - ( o ) .  
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Then for each x, - oc < x < oc, 

hr /o x (2.9) - f( )l -< Iv+(x) + C;-(x)] IKo(t)lt dt, 

where C+(x) and C~-(x) are defined by the left-hand sides of (2.5) and (2.7), 
respectively. 

THEOREM 2.2. Let the hypotheses be those of Theorem 2.1 and assume that 
the conditions (2.5) to (2.8) hold. If  in addition, the conditions (2.5) to (2.8) with 
A~ replaced by A n also hold (let these be denoted by (2.5a) to (2.8a) in the sequel), 
then for each x, - oc < x < oc, 

Var ](x) < (nh) -1 { f ( x )a l  + ~ha2(C+(x) + Cl(X)) } 

and 

(2.10) E( / (x )  - f(x)) 2 < h2r a] [ C+(x) + C ;  (X) F21 
- L 2r! 

d 

+ ( n h ) - i  [ f (x )a l+~ha2(C+(x)  + cg(x))], 

where 

~01 9~01 ~01 al = K20(t)dt, a2 = tK2(t)dt, a3 = t~lKo(t)ldt 

and C~(x) and C~-(x) are as defined in Theorem 2.1, r > 1. 

Remark 2.1. Theorems 2.1 and 2.2 above are stated for the estimator (2.3), 
i.e. the estimator (1.1) with K replaced by a "symmetrized" analogue of kernel 
K0, vanishing off (0,1). However, similar theorems would also clearly hold if the 
kernel K0 used in (2.3) vanishes off (-1, 0), provided (2.5) to (2.8) are replaced 
by the corresponding conditions with V T 0 and ~/~ 0. The proofs in this latter 
case, after appropriate modifications, would be verbatim the same. One-sided 
kernels vanishing outside (0,1) have been used in literature by several authors in 
applications, see, e.g., Johns and Van Ryzin (1972), Singh (1977, 1978, 1979) and 
Karuna.muni and Mehra (1990). Such kernels can be easily constructed; see Singh 
(1978). 

Remark 2.2. The estimator (1.1) has been analysed by a number of authors 
--by Parzen (1962), Bartlett (1963), Rosenblatt (1971), Davis (1975), Mfiller and 
Gasser (1979) and Miiller (1984) with symmetric kernels and by Johns and Van 
Ryzin (1972), Singh (1977) with one-sided kernels--for "optimal" convergence 
rates of its bias and MSE at a point, but under the assumption of existence of 
derivatives of f at the point. For example, Parzen (1962) proved, with a symmetric 
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kernel under certain conditions on K, that  the bias and MSE of the estimator (1.1) 
are of orders O(h ~) and O(nh) -1 +O(h2r),  respectively, provided f has derivatives 
of first r orders and the kernel function K used is of order r. In Theorems 2.1 
and 2.2, we have shown that these convergence rates can be achieved with the 
estimator (2.3) without any differentiability assumptions. Instead some weaker 
regularity conditions on f ,  namely, (2.5) to (2.8) and (2.5a) to (2.8a) are imposed 
using notions of finite differences. 

In a broad general sense, conditions (2.5) and (2.7) require that certain lower 
left and right "Dini" type derivatives of f stay "uniformly" bounded in small 
neighbourhoods of the point x. In other words, under these conditions the results 
of Theorems 2.1 and 2.2 would hold even if the upper Dini derivatives (left and 
right) of f at x are infinite. Now, obviously, the relaxation of (r-th order) differen- 
tiability conditions to those in (2.5) to (2.8) would enlarge substantially the class 
of functions for which the above rate results hold. To see this more clearly, the 
following implication of Theorem 7.8 of Hewitt and Stromberg ((1965), p. 260) 
is worth noting: Let D+f(x) and D+f(x) denote the upper and lower right Dini 
derivatives, respectively, of f at the point x; then according to this theorem, the 
space 

= {f  E C(-oc,  ec) : D+f(x) and D+f(x) are both finite for some x} 

(containing the class of differentiable functions in C(-c~,  ec)) is of first category 
and consequently, in view of the Baire category theorem, the class ~D+c(-ec, co) = 
C(-oc,  oo) - D + ( - e c ,  ~ ) ,  or more generally the class 

D++(-oo, oc) = {f  6 C(-cc, ec) : D+ f(x) = c~ for some x} 

containing it, is dense in C(-oc,  c~) = {the space of continuous functions on 
(-0% oo) which vanish at -t-oo}. Similar considerations also hold for the anal- 
ogous classes :D-(-oo,  oc) and D - - ( - o c ,  oe). Now note that our conditions 
(2.5) and (2.7), which require "uniform" boundedness for the lower Dini deriva- 
tives D+f(x) and D_f(x) in some neighbourhood of x in question, do allow the 
upper Dini derivatives D+f(x) and D - f  (x) to be infinite. Thus the class G of 
densities satisfying (2.5) to (2.8) extends into the larger (dense in C(-oc,  c¢))) 
class {D++(-cxD, oc) U 77 - - ( -oo ,  co)}, unlike the class of differentiable densi- 
ties, which is confined to the nowhere dense (in C(-oc,  c~)) class {D+(-cx), co) 
U 7 ) - ( -oo ,  oo)}. It is to the elements of this preceding larger subclass G of 
{ 0 + + ( - 0 %  oc) t2 ~D-- ( -cc ,  cx~)} that our results address profitably. However, 
the analytical question whether the class G is dense within the class of all contin- 
uous density functions is a deeper one and would not be pursued further here. 

Thus the achieved improved rates of convergence for the bias and MSE of esti- 
mators of the type (2.3) continue to hold under regularity conditions that are quite 
a bit milder relative to those requiring r- th order differentiability. These regularity 
conditions reduce to simple restrictions on f(1) and f(r) when f admits deriva- 
tives up to first r orders. The following corollary is an immediate consequence of 
Theorems 2.1 and 2.2 above, and the boundedness condition on / to .  
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COROLLARY 2.1. Let the hypotheses be of Theorem 2.1 and suppose that 
[K0[ < M1. Then for each x, - oo < x < oc, we obtain 

2 
(i) E ( ] ( x ) - f ( x ) ) 2  ~-h2ra2(C+(x)Zer(x)\  2r! ) 

f 
x+h 

+ (2nh2)-lM~ f(t)dt, 
Jx-h 

(ii) if Ifl 5 A0, then 

E(/(x)  - f(x))2 < h2~ a2 \( C+(x) ~ ) 

(iii) if for a p > 1, f(f(t))Pdt < co, then 

2 
+ (nh)-lM2Ao, 

E ( ] ( x ) -  f(x))2 <h2ra2- ( C+(x)+C~-(x)2r! )2 

+ (2nh(P+l)/P)-lM2 ( f  (f(t))Pdt) 
3/p 

for k = 1, r, 

where ~ is as defined above; see Hardy ((1955), p. 333, Example 5). Accordingly 
under the above differentiability assumptions, theorems, (say) Theorems 2.1" and 
2.2", obtained from Theorems 2.1 and 2.2, respectively, by replacing Aknf(x + r) 
with f(k)(~), k = 1, r, continue to hold. 

COROLLARY 2.2. 
assume additionally that f(1) and f(r) are bounded. 
uniformly over x, i.e. 

h ~ 

(2.12) sup [ E ( ] ( x ) )  - f(x)[ <_ ~-.w Mac 
X 

and 
(2.13) 

Let the hypotheses be those of Theorems 2.1" and 2.2* and 
Then (2.9) and (2.10) hold 

-2~, , , -2 -2  2 (nh)-X{Aoal hhla2},  supE[ ] (x )  - f(x)] 2 <_ n (r.) l tra 3 + + 
X 

where sup[f(k)(x)[ < hk, k = 0, 1, r (with f(o) = f and A~s not necessarily 
independent off)  and al, a2 and a3 are as defined in Theorem 2.2. 

k 
(2.11) A k f ( x + r )  = ~-k E (~)(--1)k-if(x+r+i~?) = f(k)(~), 

i=0 

Remark 2.3. Suppose now that  f has derivatives up to r-th order at the 
point x. Then conditions (2.5) to (2.8) and (2.5a) to (2.8a) reduce to, say, (2.5)* to 
(2.8)* and (2.5a)* to (2.8a)*, where the starred conditions are simply the preceding 
unstarred ones with Ar~f(x + T), Anf(x  + r) replaced, respectively, by f(r)(~) and 
f(1)(~), with suitable ~'s lying between x + r and x + r + r~. This follows since 
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We now state a Farrell-Wahba type ((1972) and (1975), respectively) result 
establishing that the preceding convergence rates for the bias and MSE of kernel 
estimators of the type (2.3) are uniform over a large class of density functions, 
specifically, the class TLo,L ~ ,L~ which is defined below: 

THEOREM 2.3. Let ~f'Lo~L1,Lr be the class of density functions f on (-cx~, o~), 
satisfying (a) supf (x )  _< L0, (b) supiA~f(x)I <<_ n~ and (c) I f ( x ) -  f(Y)l -< 

Ll lx  - Yl, where Lo, L1 and L~ do not depend on f or r I. Then for ](x), defined 
by (2.3) and based on a r-th order kernel K0, measurable and vanishing off (0, 1), 
we have for r >>_ 1 

[/lo ] - ItrKo(t)ldt (2.14) sup sup IEf(x)  f(x)I < ~-(.Lr 
x fET-Lo,L 1 ,Lr 

and 

(2.15) sup sup El i ( x )  - f(x)] :  
X fE~Lo,L1,Lv 

~ h2r (@.I.)2 [~oltr'go(t)idt]2 

If  r = 1, then the conditions (a) and (c) are enough to obtain (2.14) and (2.15). 
Further if  ~Y*Lo,L1,L~ denote the class obtained from T* Lo,L1,Lr by simply replacing 
A,~f(x) with f(r)(x) (which is assumed to exist at all points x) in the condition 
(b), then the inequalities (2.14) and (2.15), with 7" replaced by T* therein (denote 
these inequalities by (2.14)* and (2.15)*, respectively) continue to hold. 

Remark 2.4. Rates of convergence to zero for the bias and MSE of estimator 
(1.1) obtained by Farrell (1972) and Wahba (1975) are uniform, respectively, over 

Farrell's class Cr-1,¢ and the Sobolev (sub)space W(r)(M) = { f  : f E W (~), 
Iif(r)liL~ = f ]f(r)(x)iPdx < M }  of density functions, where r is the order of a 
symmetric kernel K, M is a constant and ¢ is a differentiable function defined 
over ( -oc ,  ~ ) .  For u > 1, the Sobolev space is the space W (~) of functions whose 
first (r - 1) derivatives are absolutely continuous and whose p-th power of r-th 
derivative is integrable. Farrell's class C~,¢ is the class of densities f whose r 
derivatives are continuous and such that there exists a polynomial s of degree r 

with I f ( y ) - s ( y ) [  < 2(r!)-lyr¢(~)(y). Note that f E W(~)(M) implies f E Cr-l ,¢.  
The rate obtained in Wahba ((1975), see Theorem 4.1) for the MSE, uniform over 

the space W(r)(M), is n -¢(~'v), where ¢(r,  v) = [ ( 2 r v - 2 ) / ( 2 r v + v - 2 ) ] ,  v > 1. A 
similar result is obtained in Theorem 2.3 above with rate n -2r/(2r+l)  (taking h = 
n -1/(2~+1)) uniform over the space T* Lo,L1,L~" Observe that  the rate n -2r/(2r+l) 

is slightly better than n -¢(r ' ' ) .  It can be shown that if f E W(~)(M), then f 
essentially satisfies the conditions (a) and (c) of Theorem 2.3 (see Wahba (1975), 
p. 16) and, the condition (b) takes the place of the condition f Jf(r)(x)iPdx << M 
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for all f E W (~) (M). Observe that if Wahba had used a Taylor expansion with the 
Lagrangian remainder, then in her paper (see the equation (4.a) in Wahba (1975)) 
she would have (presumably) used the condition (b) as well. 

We should point out also that there is no difficulty in proving Theorem 2.3 in 
a form and under conditions analogous to those of Wahba (1975). In fact, in the 
proof of Theorem 2.1 (see Section 3 of this paper) if we employ the integral form 
of the remainder term in the Taylor expansion of (3.13) below, we obtain 

r-1 j f0y 
j=l j! (0) + (r -- 1)! 

r--1 j f0y ~ i = Z y~/(j)j! (0) + (Y--(r'-:u)r-l~ WA~+rf(x)du'i! 
j=l  i=0 

so that  (3.14) below would now read as 

[E/(x) - f(x)l Ko(t) (r---~).v lira ~. A v f(x)du 
0 ~ 0  i = 0  " 

+ go(t) lim -::Ai,+rf(x)du . 
ht  r/T0 i=0 

Using precisely the same reasoning as in the proof of Theorem 2.1 for (3.15) to 
(3.21), the proof can be accomplished if we impose suitabie Wahba type conditions; 
but we shall leave these details to the reader. 

In view of (2.15), the optimal choice of K0, no matter  what x is, seems clear (cf. 
Wahba (1975) and Mfiller and Gasser (1979)). Specifically from the standpoint 
of minimizing the MSE, one would choose K0, subject to (1.2), that minimizes 

f l  K2(t)d t while noting in this connection that for any K0 chosen above we shall 

have fo tK2(t) dt < f l  K2(t)d t and f~ [Ko(t)ltdt < [f~ K2(t)dt] 1/2 

3. Proofs of theorems 

First we state a theorem from the theory of semi-groups of linear operators 
which plays a major role in the construction of proofs below. Let A' be any real or 
complex Banach space and X be the Banach algebra of bounded linear operators 
on A' to itself. Let Af = {T(t) : t >_ 0} denote a one-parameter semi-group of 
bounded linear operators on X to itself, i.e. with the property that 

(3.1) T(t + s)f  = T(t)[T(s)f], T(O) = I 

for all non-negative s and t and all f C A', where I denotes the identity operator. 
The semi-group is called strongly continuous if in addition, for each f E A', the 
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map t ~ T(t)f  is continuous in t on [0, oc]. Define now the operator T n and an 

exponential operator exp(tTn) in X by 

OQ 

(3.2) Tn=r l - l (T (~ ) - I )  and exp(tTn) = E t k T  k 
k! n, 

k=O 

where r I (rl ¢ 0) and t are real, and T~ is obtained by applying T v recursively 
k times. We can state the following theorem due to Hille (1944), which is also 
known as the "exponential formula" for semi-groups of linear operators. See Butzer 
and Berens (1967) for a systematic treatment of semi-groups operators and their 
relationship to approximation problems. 

THEOREM 3.1. (Hille (1944)) Let {T(t) : t > 0} be a strongly continuous 
semi-group of bounded linear operators and let T~ and etT, be defined by (3.2) with 
rl > O. Then, for each f E X, 

(3.3) 
OC 

T(t)f  = lime tT' f = lim ~-~ tkTkf  

uniformly in t over any finite interval. 

It should be pointed out here that the semi-group of operators can also be 
defined with negative parameter t <_ 0 and further that Theorem 3.1 remains true 
when V < 0 and t < 0 hold simultaneously and the limit is taken as 77 increases to 
zero, i.e. 

o o  

(3.4) T(t)f  = lim~'-~ tkTk f 
,71o "-" k! -'7~" 

k=O 

The formulas (3.3) and (3.4) can now be restated using relations of calculus of 
finite differences. Define the differences A~T(t), k = 1, 2 , . . . ,  by (see (2.2)) 

(3.5) 
k 

Then it is easy to verify that  [A~T(0)]f = k T~ f ,  so that  the formulas (3.3) and 
(3.4) yield, for each f E X 

(3.6) T(t)f  = [ 

oo tk 

k=O 

. c o  t k  

for t > 0 ,  7 > 0  

for t_<O, ~ / < 0  

uniformly in t over any finite interval. 
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Let us now apply (3.6) to a special class of semi-groups of interest here, namely, 
the semi-group of translations in BU(-oo ,  c¢), the space of uniformly continuous 
bounded functions on ( -co ,  c¢). (This translation semi-group is actually a group 
of operators, see e.g., Butzer and Berens ((1967), p. 22).) So the basic (Banach) 
space 2d is BU(-oo ,  oo) with the supremum norm. We define the semi-groups 
{T(t) : t > O} and {T(t) : t < O} here by 

(3.7) [T(t)f](s) = f ( t  + s), - c¢ < s < oo, f e BU(-oo ,  oo), 

where [T(t)f](s) means the value of T ( t ) f  at the point s. It is easy to show that 
the semi-groups {T(t) : t _> 0} and {T(t) : t _< 0} defined by (3.7) are strongly 
continuous in view of the uniform continuity of functions in BU(-oo ,  oo). Then, 
the formulas (3.6) assert that for each f e B V ( - c ¢ ,  c¢) 

(3.8) 
i o¢ tk 

limk~o,~O: ~/Xknf(s), for t > O, z/> 0 

Z(t + 8) = t k 

limE~T0 ~ A ~ f ( s ) ,  for t_<0, 7 < 0 ,  

the limits existing uniformly with respect to s in ( -co ,  oc) and uniformly with 
respect to t in every finite interval, where Ankf(s ) is obtained by the definition 
(2.2). It is clear that (3.8) gives a generalization of Taylor's formula for an f 
which is merely uniformly continuous. Note that if f has a derivative of order k, 
then limn~0 zhknf(s) = f(k)(s) = lim, T0 Ankf(s). 

We now give the proofs of theorems: 

PROOF OF THEOREM 2.1. From (2.3) it follows immediately that 

(3.9) 1/01 E f ( x )  = ~ Ko( t ){ f (x  + ht) + f ( x  - ht)}dt. 

Since f is in the class BU(-oo ,  oc), an application of (3.8) to f ( x  + ht) and 
f ( x  - ht), separately to the two terms with ht > 0 and - ht < O, respectively, 
yields that 

(3.1o) 

f ( x  + ht) = f (x )  + lira ~-" (ht)~Ai f(w~, 
~o ~=1 i! ,7 , , 

f ( x  - ht) -- f ( x )  + lim ~ ( -~ t ) '  A~f(x),  
rf[O ~ 

i = 1  

where for fixed x, the preceding convergences are uniform in ht, 0 < t < 1. Using 
this fact, which permits interchange of limit and integration, and the orthogonality 
properties of K0 (see (1.2)), we obtain from (3.9) and (3.10) that for each x, 
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(3.11) 

- - ~ < x <  cx), 

1 1 

1 [ l im f lKo( t ) { i :~ r ( -h t ) iA~ f ( x ) }d t ] .  
+ 2 L,,T o Jo 

For fixed r, x and ~7, define the function ~/by 

i 

(3.12) ~(y) = Z ~ ; S ( x ) ,  
i = r  

0 < y < l ;  

then 7(y) is analytic in [0, 1]. Taylor's expansion of ~/(y) in y at 0, with Lagrange's 
form of the remainder at the r-th term, gives 

r--1 y j  . r 

(3.13) ~(Y) = ~ 7., ~(~)(°) + Y ~(~)(~)'r! 
j=O 

where 0 < ~ < y and 7 (j) denotes the j - th  derivative of 7. Now applying formula 
(3.13) to the two terms on the RHS of (3.11) with y = ht, 0 < t < 1, it follows in 
view of the orthogonality properties of K0 that  

hr 1 ~limf01 (3.14) Ef(x)  - f(x) = ~ ~ (v~o g°(t)tr/3(Th ~' x)dt 

/o I } + lim Ko(t)(-t)~(rl, -~, x)dt 
nTo 

where 

(3.15) :~(~, ~, x) = Z :,~+.:(x). 
i=O 

Now expanding A~+rf(x) by making use of the definition of A ;  (see (2.2)), we get 

(3.16) /~(v, ~, x) = ~ v -~ (-1)~-k~;f(x + k~) 
i=0 k=0 

- 1 =EE ( j+k)!  k (-1)JA;f(x+k~l) '  
j = 0  k=0 

where the last equality is obtained by put t ing j + k = i and making j and k as new 
summation indexes. Now rearranging the terms in RHS of (3.16) one can easily 
see (since the series is absolutely convergent) that  

(3.17) ~(~?, ~, x) = e -~/'~ A•f(x + k~l). 
k=O 
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For fixed r, r~ and (, let ~- denote a discrete random variable whose distribution 
function is constant except for jumps of size (1/k!)((/~?)ke -~/~ at the points kv, 
k = 0, 1, 2 , . . .  (which consti tute the sets A + or A~ according as ~ > 0 and ~ < 0 
as defined in the s ta tement  of the theorem). Then  observe that  E~,n(~-) = ( and 
from (3.17) 

(3.18) /307 , ~, x) = E ~ , n A ; f ( x  + "r). 

Since a(~-, ~) > 0 for ~- # ~ (see (2.4) for the definition of a(T, • )) and letting Is+(~ ) 
stand for the indicator function of S+(~), i = 1, 2, (see s ta tement  of Theorem 2.1 
for the definition of S+(~)),  we obtain 

(3.19a) I~(~, ~, x)l ~< E~,,TlA~f(x-4-T)l 
< sup IA;f(  + 

-,-~s+(~) 

+ [ sup o,+(-r, ] 

with a + (7, ~) = a 1+~" - a 1+~ [1 + (T - ~) log a] (see (2.4)). A similar inequality as in 
(3.19a) holds with ~, + S i (~) and a + (% ~) replaced by - ~ ,  S~-(-~) and a - (T ,  --~), 
respectively, i = 1, 2. Let us call tha t  inequality (3.19b). Observe tha t  

(3.20) l imE~ma+(r ,  ~) = lim e -¢/"  1 al+k , _ al+~ 
nlo 71o k.w 

k=O 

= lim[ae~(a"-l)/,1 _ al+~] 
vl0 

= a e ~ l o g  a _ a l + ~ = 0 ,  

uniformly in ~ in (0, e), e > 0. Similarly one can show that  limnt0 E _ ~ m a -  (% - ~ )  
= 0 uniformly in - ~ in ( -~,  0). Now taking suP0<~<~ and sup_~<_~< 0 and then 
l iminf~0  and liminfnT0 on both sides of (3.19a) and (3.19b), respectively, and 
combining (3.14) (3.18), (3.19a), (3.19b) and (3.20), we obtain 

h r ( 1 ) / ' 1  1 
(3.21) 

provided that  (2.5)-(2.8) hold, where 

C+(x)  = l iminf  sup sup I A ~ f ( x  + T)I and 
~10 0<~<~ ~cs+(~ ) 

C ~ - ( x ) = l i m i n f  sup sup IA~f(x+~-) l ,  
nTO -c<-~<o TeS[ (~) 

as defined in Theorem 2.1. This completes the proof of Theorem 2.1. [] 
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PROOF OF THEOREM 2.2. Since Xi's and i.i.d, with density f ,  using a trivial 
inequality we have for each x, - cc < x < c~, 

(3.22) Var / (x)__  ~(nh2) -1 {VarK0 ( ~ - - ~ ) +  VarK0 ( ~ ) } .  

If suffices to show that  

( - ~ )  [ ~01 ~01 ] (nh2) -1Var Ko <_ (nh) -1 f(x) Kg(t)dt + hC+(z) tKg(t)dt , 

since the proof of a similar domination of the other term is the same. With this 
demonstration, thus, the proof of the theorem would be complete. First note that  

_< (~h) -1 Kg(t)f(x + ht)dt 

{ / o  1 _< (nh) -~ f(x) Kg(t)at 

+l imfK~( t ) (~A~f (x )~d t} , v~o  Jo i=1 Z. ] 

the last inequality is obtained using (3.10), since the convergence in there is uni- 
form in ht for fixed x. Now using an argument similar to the one used to obtain 
(3.13), one can show that  

(3.24) l imj~°XK2(t)(~-~A~f(x)) i=1 

limfo K2(t)(ht)(~_~ ~ . , - - )  = Z A/+lf(x) dr, 750 i=o 
where 0 < ~ < ht; and using an argument similar to the one used to obtain (3.17), 
one can show that  

i = e-(Uv) E k 1 1 (3.25) ~ ~-zx~+l/(x)i! ~ ~.zx,/(x + k~) 
i=0 k=0 " 

= E~.n[A~f(x + ~-)], 

where ~- is a random variable as defined in the proof of Theorem 2.1. We may now 
use the inequality 

(3.26) IE~,,7(A~f(x + T)) I < sup IA~f(x + T)I 
~es~+(~) 

+ [ sup 'Alf(x +T), E£,r/[O~+(T, ()]] 
LTes+(~) o,+('r, ,~) 



342 R. J. KARUNAMUNI AND K. L. MEHRA 

where S+(~),  S+(~) and a+(~ -, ~) are as defined in Theorem 2.1, to  obtain tha t  

(3.27) ILHS of (3.25)1 _%< sup IA~f(x + ~)1 

[ I A I / ( x  + T)[ 
+ / sup ¢)]. 

Again, since exp[(~/r/)(an - 1)] --* a l+f,  as ~/l  0, it follows t ha t  limn$0 EG,[a+(~- , 
~)] = 0 uniformly with respect to ~ in (0, e). Therefore,  from (3.27) one obtains  
( taking l iminf,10 on bo th  sides of (3.27)) 

(3.28) l iminf  sup A~+lf (x)  _< C+(x), 
~/~0 0<~<e 

where C+(x) = lim inf,~0 sup0<~< ~ sup~Es+(~ ) [A,Tf(x + ~-)[, provided (2.5a) and 
(2.6a) hold. Now combining (3.23), (3.24) and (3.28), we have for each x, - co < 
x < co, tha t  

(3.29) (nh2)-iVarKo ( ~  S- )  

<_ (nh) -1 [ f ( x ) ~ 0 1 K 2 o ( t ) d t + h C + ( x )  jfo 1 tK~(t)dt] , 

so that ,  in view of the assert ion jus t  after (3.22), the  result  follows. One obtains  
(2.10) now by using the s tandard  identi ty E l f ( x )  - f(x)]  2 = [LHS of (2.9)] 2 + 
V(](x)). This completes the proof  of Theorem 2.2. [] 

PROOF OF COROLLARY 2.2. If If(r)l < At, then  (2.5)* implies tha t  IC+(x)[ 
< Ar for all x, and if If(1)l < h i ,  (2.5a)* implies IC+(x)l < A1 for all x; similarly 
for Cj(x)  using (2.7)* and (2.7a)*. Since If(x)l < A0, the proof  of the corollary 
would follow from (2.9) and (2.10) if we show tha t  (2.6)*, (2.8)*, (2.6a)* and 
(2.8a)* are satisfied. In fact, it suffices to  establish (2.6)* and (2.6a)*; (2.8)* and 
(2.8a)* follow similarly. Now since f(r) and f(1) are bounded,  it is enough to 
show tha t  sup0<0<~ supzes+ (o)[ a+  (~-, 0)]-1 < C~, where a + ('r, O) = a 1+~" - a 1+° - 
al+O(z - 8)loga, a > 1. We wilt show tha t  a+(~ -, 0) bounded  away from zero on 
S+(O) c {T:  [7- -- 0[ > 5}. To see this, note  tha t  using Taylor 's expansion in v 
a round  8, we have for some real s between T and 0, 

(3.30) a+(~ -, O) = (~- - O)2al+'(loga)2 
2 

52 
> ~ -a ( l oga )2 (>  0) if [~-- 01 > 6, 

the last inequality in (3.30) following since ~- and 0 are positive on S+(O) 
which implies s > 0. Thus  (a+(~ -, 0)) -1 < (2/62a)-l(loga) -2, so tha t  
sup0<e<~ sup~es+(~)[a + (7, 0)]-  1 < co. The  proof  is complete.  [] 
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PROOF OF THEOREM 2.3. First note that  under the condition (c), IAnf (x+  
T)I _< L1 and, consequently, C+(x), C~(x)  <_ L1 for all f e TLo,L1,L~ and all x. 
Similarly the condition (b) implies that  C+(x), C~-(x) <_ Lr for all f C TLo,L1,Lr 
and all x. Also the conditions (b) and (e) imply that  [LHS of (2.5)/L~] and [LHS 
of (2.5a)/L1] do not exceed suP0<e<~suprez+(e)[a+(T , 0)]-1, which is shown to 

be finite in the proof of Corollary 2.2. Thus all conditions (2.5) to (2.8) and 
(2.5a) to (2.8a) of Theorems 2.1 and 2.2 are satisfied. Accordingly, in view of the 
condition (a), the results (2.14) and (2.15) follow from (2.9) and (2.10). The proof 
of assertions (2.14)* and (2.15)* is verbatim the same. The proof is complete. [] 

4. Concluding remarks 

The methods and arguments presented above for establishing "optimum" rates 
of convergence to zero of bias and MSE of kernel estimators of density functions, 
without any differentiability assumptions, can also be applied to kernel and other 
estimators of regression curves, namely, mean and quantile regression functions. 
These and other related results would be presented in a subsequent paper. We 
conclude this paper with the treatment of two examples referred to above and the 
extensions of the main Theorems 2.1 and 2.2 to cover the estimation of f(P), the 
p-th derivative of f,  p _> 1. Define for a fixed x, - oc < x < oc, 

(4.1) f(P)(x) = (nhP+l) - 1 E  2 Kp -~ Kp , 
i=1 

where Kp is a kernel function of order (r, p), (r > p). In analogy with Theorems 
2.1 and 2.2, we can easily prove the following: 

THEOREM 4.1. Let ](P) be defined by (4.1) with a kernel function Kp, mea- 
surable, vanishing off (0, 1) and of order (r, p), (p >_ 1). Let f(P) be bounded and 
uniformly continuous on (-oc,  co). For given 0 > O, 7] > 0 and 5 > O, let S +, S + 
and c~ + (r, 0), ~" E A +, and similarly S~, S~ and ~-(T,  0), r E A~ be as defined 
in Theorem 2.1. Then, if for given e > 0, (2.5) to (2.8) hold with f(P) in place of 
f ,  we have for each x 

(4.2) 
L1 

hr-P [C+(x) + C~-(x)] IKp(t)ft~dt, tE] (P) (x ) -  f(P)(x)l <_ 

where C+(x) and C~-(x) are as defined in Theorem 2.1 with f(P) in place of f .  
Further, if (2.5a) to (2.8a) and (4.2) hold, then 

(4.3) E l f  (p) (x) - f(P)(x)] 2 

< + C:(x)] 
4(r!)2 b~ 

-~ (nh2p+l) -1 If(P)(X)bl + 
i -  

[ + cf  (x)lb2], 
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where bl = f~ K~(t)dt, b2 = f~ t2K~(t)dt, ba = f~ IKp(t)tff dt and C+(x), C~(x) 
are as defined in Theorem 2.2. 

Results analogous to Corollaries 2.1 and 2.2 and Theorem 2.3 can be proved 
for the estimator (4.1) as well. 

We shall now treat the two elementary examples, namely, 1.1 and 1.4 in or- 
der to illustrate the nature of the two main conditions (2.5) to (2.8) imposed in 
Theorems 2.1 and 2.2. The implications of the results of this paper, however, go 
much further. 

Example 1.1. (continued) Consider the uniformly continuous density given 
by Example 1.1. Let us verify whether the conditions (2.5) to (2.8) and (2.5a) to 
(2.8a) are satisfied at this point. First note that A~f(0 + ~-) = 1 and for r > 2, 
A~f(0 + T) = 0 identically for all ~- • SI+US + and positive O, ~ and 6, and also 

for 7 • S I U S  ~ and any negative q and 0, and positive 5. This means that for 
r = 1, (2.5a), (2.7a) hold and that (2.6a), (2.8a) will also hold if we show that 
suP0<0<~ suPres+ [a+(T, 0)] -1 < CC and sup_~<0< 0 suP~es; [a-(T, 0)] -1 < OC; but 
this was established while proving Corollary 2.2 above. For r > 2, (2.5) to (2.8) are 
trivially satisfied since A~f(0 + T) = 0 identically. We considered only the point 
x = 0, but it can easily be verified that the required conditions (2.5a) to (2.8a) 
as well as (2.5) to (2.8) hold for any x # 0 as well. Note that f is differentiable 
at x ¢ 0, and thus, A~f (x  + T) = f(~)(~) for some ( lying between x + ~- and 

X+W+r~] (see (2.11)). But, for x # 0, f(~)(() = 1 i f r  = 1 and f(~)(~) = 0 i f r  _> 2. 
Hence, for x ¢ 0, C + (x) = C~-(x) = 1 and C + (x) = C{-(x) = 0 if r >_ 2, as well. 
Accordingly, the conclusions of Theorems 2.1, and 2.2 etc. hold for all points x. 

Example 1.4. (continued) Let us consider Example 1.4 with 8 = 0 and 
a = 1, and consider the point x = 0 at which f (x )  is not differentiable. Now f is 
uniformly continuous, and for r _> 1, and 7 • S+US + (see (2.2)), 

k=0 

1 r r~? r 

k=O 

1 r ~ ~ ( r )  
= -~V- e- k' (--1)k'ek% 

k~=0 

(e -I)" 

1 r~  e~  1 < _ 1 

- -  - 2  

Therefore (2.5) and (2.5a) hold, and further (2.6) and (2.6a) would also hold if 
again suP0<e<¢ supres+ [a(% #)]-i < oo holds; but this is so as shown in the proof 
of Corollary 2.2. The same argument applies with 7/negative also; accordingly it 



CONVERGENCE OF KERNEL DENSITY ESTIMATORS 345 

follows similarly that (2.7), (2.7a), (2.8) and (2.8a) also hold. Thus the conclusions 
of Theorems 2.1 and 2.2 hold at x = 0 for r _> 1, and evidently, at all other points 
as well. 
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