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Abs t r ac t .  The regression re(x) = E { Y  I X = x} is estimated by the kernel 
regression estimate rh(x) calculated from a sequence (X1, Y1),. . . ,  (X~, Y~) of 
independent identically distributed random vectors from R d × R. The second 
order asymptotic expansions for E~n(x) and var rh(x) are derived. The expan- 
sions hold for almost all (tt) x E R d, # is the probability measure of X. No 
smoothing conditions on # and m are imposed. As a result, the asymptotic 
distribution-free normality for a stochastic component of ~(x)  is established. 
Also some bandwidth-selection rule is suggested and bias adjustment is pro- 
posed. 
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I. introduction 

Let (X, Y), (X1, Y1) , . . . ,  (X~, Yn) be independent identically distr ibuted 
R d x R-valued random vectors, and let re(x) -- E { Y  I X = x} be the regres- 
sion function of Y on X with E l Y  I < co. Let # denote the probability measure of 
X. 

We est imate m(x)  with the following kernel est imate 

where K is a bounded nonnegative Borel kernel and h -- h(n) E R + is the smooth- 
ing parameter  (bandwidth).  In the above definition and in the paper, 0/0 is t reated 
as0 .  
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Estimator ~h was motivated by the classical Rosenblatt-Parzen density func- 
tion estimate and was introduced independently by Watson (1964) and Nadaraya 
(1964). 

Stone (1977) found a class of non-parametric regression estimates which can 
be consistent for all distributions of X even those not possessing density. This 
result has been extended to the estimate ~t by Devroye and Wagner (1980) and 
Spiegelman and Sacks (1980). The pointwise distribution-free consistency of 
was first studied by Dervoye (1981). He, assuming that EIYI  p < oo, p k 1, proved 
that Etrh(x  ) - m(x)lP converges to zero as n increases to infinity, for almos~ all 
(#) x C R a. Weak and strong consistency at almost all (#) x E R a has been exam- 
ined by Krzy~ak and Pawlak (1984), Greblicki et al. (1984) and Zhao and Fang 
(1985). The distribution-free pointwise weak and strong rate of convergence has 
been investigated by Krzy2ak and Pawlak (1987). For the distribution-free results 
concerning other kernel regression estimates, we refer to the paper of Greblicki 
and Pawlak (1987), see also (1985). 

In this paper, contrary to the above authors, we do not examine another 
consistency problem, but rather we obtain asymptotic distribution-free expansions 
for Erh(x)  and var rh(x). The expansions are of the order O((nhd) -2 ) .  The worked 
out technique, however, allows us to consider the remainder terms of any order of 
smallness. Not one continuity assumption on m is made and the results are valid 
for all distributions of X. 

As a result, the asymptotic formulas for var rh(x) and Erh(x)  are established, 
and the asymptotic distribution-free normality of rh(x) - E~n(x) is derived. This, 
in turn, allows us to consider the bandwidth selection problem in the case of 
discontinuous regression functions and underlying distributions. Moreover, certain 
adjustment of bias of the estimate is proposed. 

The asymptotic normality of rh(x) and the asymptotic expressions for var rh(x) 
and E ~ ( x )  have been examined by a number of authors (see Rosenblatt (1969), 
Schuster (1972) and Collomb (1977)). They imposed very restrictive assumptions 
on the distribution of (X, Y) and on the smoothing sequence (see also Prakasa 
Rao (1983), Section 4.2). 

For other properties (uniform consistency, robust estimates and estimation of 
a broad class of functionals of the conditional distribution function) of the kernel 
regression estimate with random design we refer to Mack and Silverman (1982), 
H/irdle and Marron (1985) and Hiirdle and Tsybakow (1988). See also Collomb 
(1985) for further references. 

2. Preliminaries 

Throughout the paper, norms are either all Z ~  or all Z2. By Sx, h we denote 
an open sphere with a radius h centered at x E R d. Suppose that the following 
conditions are satisfied: 

(2.1) h(n) ---* 0 as n ~ oo, 

(2.2) nhd(n)  ---+ oo as n ---* oc, 

(2.3) ClI{llxll_<r} - K ( x )  < c2I{llxll_<r} , 
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where Cl, c 2 and r are positive numbers, and I is the indicator function. 
For further considerations, we shall need 

LEMMA 2.1. Let Z 1 , . . . ,  Zn be independent identically distributed random 
variables. Then for any real q > 1 

E{[Sn/nlq } <_ c(q){(n -1 var Z~) q/z + n-(q-~)E[Zl _ EZllq}, 

n Z where Sn : ~-]~j=l( J - EZj) and c(q) is a positive constant. 

This inequality is due to Rosenthal (1970) (see also Burkholder (1973) for 
detail about the constant e(q)). 

LEMMA 2.2. Let (W1, V1), . . . ,  (Wn, Vn) be pairs of independent identically 
n n distributed random variables. Let S,~ = ~]~i=1 Wi, Q~ = ~~i=1 V~ and let EW1 -- 

EV1 = O. 

If EW~ < c~, EV~ < cx~ then 

(a) E{SnQ~} = 3n(n - 1)EV12E{V1W1} + nE{V13W1}. 
(b) 2 E{SnQn} = n ( n  - -  1)[EV2EW 2 + 2E2{VIW1}] + nE{V2W2}. 

E{S~Qn} = n(n - 1)[3EV2E{V1W 2} + EV~EW~ (c) 2 3 

+ 6E{V~W1}E{V~W1}] + nE{V~W~}. 

PROOF. Let us consider the identity (c). Clearly, 

2 3 2 3 = E{SnQn} + + E{Sn+IQn+I} 3E{S2Qn}EV~ ES~EV~ 

+ 6E{SnQ~}E{V1W1} + 6E{SnQn}E{V~W1} + EQ~EW 2 

+ 3EQ2E{W2V1} + E{W2V13}. 

Since E{S2Qn} : nE{V1W2}, ES2n : nEW~, EQ2n = nEV 2, E{SnQ 2} : 
nE{WIV~}, E{SnQn} : nE(V1W1) and EQ~ = nEV 3, it follows that  

2 3 2 3 = E{SnQn} + E{ Sn+l Q,+I  } 2hi 3EV~E{V1W 2 } 

+ EV3EW~ +6E{VIW1}E{Va2W1}] 

+ E { V ? W } } .  

Noting that  2 3 ES1Q 1 = EW2V~ and then iterating the above recursive formula, 
one can easily find the postulated identity. Since the others' identities may be 
proved in the same way, the proof of Lemma 2.2 has been completed. 

LEMMA 2.3. Let g be a Borel measurable function and let f ig(x)[#(dx) < oe. 
If (2.3) holds then 

f K ( f - - ~ )  g(Y)#(dY) 
---* g(x) as h ---* 0 
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for almost all (it) x • R d. 

The proof of Lemma 2.3 for a more general class of kernels may be found in 
Greblicki et el. ((1984), Lemma 1). 

We shall also need the following easily verified identity 

p 

(2.4) u - l =  ~ ( - 1 )  i ( u -  u°)i 1) ~+1 ( u -  u°)p+l 
~:0 J0 ~ + ( -  uu~ +~ ' 

where p > 0, u and u0 # 0. 
Furthermore, we shall use Corollary 10.50 in Wheeden and Zygmund (1977) 

which says that 

(2.5) ~h(X) -- It(S~,h) * ~(x) as h ~ 0, 

for almost all (It) x E R d. 
Here A is the Lebesgue measure on R d and ~(x) is the Radon-Nikodym deriva- 

tive of the It-absolutely continuous part of A. It is clear that ~(x) is finite for almost 
all (#) x E R d. 

3. Main results 

In the theorems presented in this section we give the asymptotic distribution- 
free expansions for EFn(x) and varrh(x). Moreover, some consequences of the 
obtained expressions are established. 

THEOREM 3.1. Let EIYI T M  < c~, ~ > O. If  (2.1), (2.2) and (2.3) hold then 

Erh(x) = mh(x) + rh(x) + O((nhd) -2) 

for almost all (it) x • R d, where 

and 

THEOREM 3.2. Let all the conditions of Theorem 3.1 be satisfied. If, in 
addition, EIYI 2+~ < c~, e > O, then 

var~n(x) = v h ( x ) / n E K  ( ~ h  X ) + O((nhd) -2) 

for almost all (it) x 6 R d, where 
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The proofs of Theorems 3.1 and 3.2 are deferred to the next section. 

R e m a r k  1. Let us note that the class of kernels satisfying condition (2.3) is 
practically confined to the uniform kernel, i.e. the kernel which equals 1 for IIxll _< 1 
and 0 otherwise. This is due to the fact that the results of this paper rely on the 
distribution-free inequality in (4.3) which has been established by Devroye ((1981), 
Lemma 2.1). He has proved under condition (2.3) that E l ~ ( x  ) - m ( x ) l  p --, 0 as 
n ~ oc, p > 1 for almost all (#)  x E R d. It seems to be difficult to extend this 
result for a broader class of kernels. Nevertheless, assuming that # is absolutely 
continuous and following the proof of Devroye's lemma one can extend the class 
of applicable kernels. 

Specifically, if c:H(l lx l l )  <_ g ( x )  <_ c2H(llxl l) ,  where H ( t )  is nonincreasing 
bounded function with 0 < H(0) and support [0, a), a < oz, then the following 
density-free version of (4.3) holds 

{ } E 
i=1 j = l  

where supK(x)  = k* and f ( x )  is a density of X. 
Furthermore, it is seen that if Y is a bounded random variable (the case 

occurring in the conditional distribution function estimation and discrimination 
problem) then the class of kernels can be as large as in Lemma 1 of Greblicki et 
al. (1984), i.e. including those without compact support. 

R e m a r k  2. Owing to (2.3) and (2.5) it is easy to prove that h d / E K ( ( x - X ) / h )  
is finite for almost all (#)  x E R d and every h > 0. If, moreover, Y is bounded 
then Theorem 3.2 implies that var rh(x) converges to zero if n h  d ~ oc. On the 
other hand the bias E ~ ( x )  - re(x)  tends to zero if both n h  d ~ oc and h ~ 0 
are satisfied. More precisely, we have decomposed Edn(x )  - re(x)  into two terms 
m h ( x )  -- re (x )  and rh(x)  + O ( ( n h d ) - 2 ) .  The first term goes to zero if h --* 0, 
whereas the second one if n h  d -~ oc. Thus, the bias converges to zero if both (2.1) 
and (2.2) are satisfied, whereas the variance if only (2.2) holds. For comparison, 
the bias of the kernel density estimate tends to zero if h --* 0 and the variance if 
nh  d --~ ~ .  These observations suggest the following decomposition of the estimate 

= - m h ( X ) )  + m h ( X ) .  

Now, the first term of the decomposition tends to zero (in probability for almost 
all (#)  x C R d) if n h  d ~ co, while the second converges to m ( x )  if only h -~ 0. 

Now, let us consider the expansions obtained in Theorems 3.1 and 3.2. First, 
let us note that  because of Lemma 2.2, m h ( x )  ~ m ( x )  as h ~ 0 for almost all 
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(#) x E R d. Next, we write 

wheI'e 

MIROSLAW PAWLAK 

rh(x) = eh(x)EK2 ( ~ h X )  / n E 2 K  ( ~ h X )  , 

Owing to Lemma 2.2, it follows that eh(X) ~ 0 as h ~ 0 for almost all (#) x E R d. 
Further, by virtue of (2.3) and (2.5) we have 

(3.1) EK 2 ( ~ h  X ) / n E 2 K  ( ~ h X )  <_ (c2/clcrd)~h(z)(nhd) -1, 

where c = A(S0,1). 
Thus, the second term in the bias expansion converges to zero at least as 

fast as (nhd) -1. This term, however, can vanish under some conditions. If, for 
example, K is the uniform kernel, then rh(X) -- O. These considerations yield 

COROLLARY 3.1. Under all the conditions of Theorem 3.1 

nhd(E~n(x) - mh(x)) --* 0 as n --* c~ for almost all (l~) x E R d. 

Let us take the variance expansion into account. Let a2(x) denote the condi- 
tional variance of Y, i.e. 

a2(x) = E { ( Y -  m(X)) 2 IX  = x}. 

The term Vh(X)/nEK((x - X)/h) may be transformed to 

(3.2) 

where 

It follows from Lemma 2.3 and EY 2 < c~ that 

(3.3) a~(x) ~ a2(x) as h ~ 0 

for almost all (#) x E R d. 
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Moreover, observing that 

E K  2 ( ~ h  X )  / nE2K ( ~ h  X )  >~ (C~/C2crd)qOrh(X)(nhd) -1 

and using (2.5) and (3.1) we have 

COROLLARY 3.2. Suppose that all the conditions of Theorem 3.2 hold. Then 

lim sup nh d var ~h(x) < (c2/clcrg)~(x)a 2 (x) 
n-- -~  OO 

and 
lim inf nh d var rh(x) _> (c~/c~crd)qo(x)a2(x) 

n - - ~ O O  

for almost all (I ~) x • R d. 

The expression in (3.2) may be further decomposed noting that 

EK2 ( ~ h X )  / n E 2 K  ( ~ h  X )  = ~ah(X)ph(x)(nhd) -1, 

where 

go( ) = ISo,o(X),  = 

Let us denote 

(3.4) lim ph(x) = p 
h--*0 

for almost all (#) x • R d. 
Thus, (2.5), (3.2) and (3.3) follow. 

COROLLARY 3.3. Under all the conditions of Theorem 3.2 and (3.4) 

nh d var Vn(x) --~ qo(x)a2(x)p as n --~ oo 

for almost all (#) x • R d. 

The function ph(x) plays the role of a similarity measure between the uniform 
kernel K0 and the kernels satisfying (2.3). If K = K0 then clearly ph(x) -- 1. 
If, moreover, a < r then due to (3.1) ph(x) <_ c2/cl. It is not simple, however, 
to determine limh-_.0 ph(x) for general #. For # being absolutely continuous or 
atomic, or a mixture of both of them, that limit may be found easily, which can 
be seen from the discussion below. 

The next corollaries give us the important result of the previous considerations, 
that is, the asymptotic distribution-free normality of vh(x) - Erh(x) and rh(x) - 

mh(x). 
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Let all the conditions of Theorem 3.2 be satisfied. Let (3.4) 

COROLLARY 3.6. Let # have a density f. 
Theorem 3.2 hold. Then 

and 

~ah(X)--~ l / f  (x) 

for almost all (#) x E R d. 
From this and (3.4) we have 

as h - ~ 0  

Suppose that all the conditions of 

nhdvardn(x) ~ a2o(X) as n --* oe 

for almost all (#) x E R d, where 

Let, in turn, # = #c + ~ta, where ttc is absolutely continuous with respect to 
and #a denotes the atomic part of tt. It is not difficult to verify, assuming that 

K(0) exists, that 

/ g  ( ~ h - ~ )  ~.t(dy) -----~ ~.ta({x})g(o) as h--4 O. 

COROLLARY 3.4. 

hold. If ~(x), u2(x), p ~ 0 then 

- N ( 0 ,  

in distribution as n ~ ~ for almost all (#) x E R ~. 

The proof of Corollary 3.4 is postponed to the next section. 
Combining the above result with Corollary 3.1, we have 

COROLLARY 3.5. Under all the assumptions of Corollary 3.4 

(nhd)l/2(rn(x) -- mh(X) ) ---* N(O, ~(x)a2(x)p) 

in distribution as n ~ ~z for almost all (#) x E R d, 

Let us make a series of assumptions regarding the measure #. At first, let # 
have a density f ,  i.e. let # be absolutely continuous with respect to A. Theorem 
9.13 in Wheeden and Zygmund (1977) says that 

lim h -d / K  ( ~ - ~ )  f(y)A(dy) = f(x) /K(y )A(dy ) ,  
h---*O 

for almost all (A) x E R d. 
This, together with the fact that f (x)  > 0 for almost all (#) x E R d gives us 

ph(X) ~ f K2(y)A(dy) / ( f  K(y)A(dy)) 2 
/ 
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Employing this observation one easily concludes that ph(x) ~ 1 as h ~ 0 for 
almost all (#) x E R d. Moreover, the remainder term in the variance expansion is 
O(n-2) .  This and (3.3) yield 

C O R O L L A R Y  3.7. Let # have both absolutely continuous and atomic part. Let 
K(O) exist. I f  the conditions of Theorem 3.2 are satisfied then 

nh d var ~n(x) --~ 0 

and 

n v a r ~ ( x )  ---* a2(X)/#a({X})  as n ---* oc 

for almost all (#) x E R d. 

In the light of these results and Corollary 3.5 we have 

COROLLARY 3.8. Let the conditions of Corollaries 3.5 and 3.6 hold. Then 

(nhd)l/2(rh(x) - mh(x) )  ~ N(O, a~(x)) 

in distribution as n ---* ee for almost all (#) x E R d, where a~(x) is defined in 
(3.5). 

COROLLARY 3.9. Let the conditions of Corollaries 3.5 and 3.7 hold. Then 

nU2(rh(x) - mh(x) )  ---* N(O, a2 (x ) /pa ({x} ) )  

in distribution as n --~ cx~ for almost all (#) x E R d. 

Up to now we have examined the asymptotic normality of the stochastic com- 
ponent rh(x) - m h ( x ) .  To show that rh(x) - r e ( x )  has the same limit distribution 
one needs to consider the deterministic part mh(x)  -- re(x). This requires some 
smoothness conditions on re(x). 

Let, e.g. m ( x )  be Lipschitz of order c~, 0 < a _< 1, in the neighborhood of x. 
Then, ]mh(x) -- re(x)] ~ ch c~ (Krzyiak and Pawlak (1987), Lemma 2). 

Therefore we have 

COROLLARY 3.10. Let all the conditions of Corollary 3.5 hold. I f  m is Lips- 
chitz of order a, 0 < a < 1, in the neighborhood of x and i f  nh d+2a --~ 0, then 

- re(x))  N(O, 

in distribution as n ~ ~ .  

The above considerations allow us to treat the case of optimal h, i.e. when 
nh d+2a ~ c, c > O. To do this, let us make specific assumptions concerning m(x)  
and distribution of X. Let, e.g. m(x)  be continuous at x E R and let it have left 
and right first derivatives in a neighborhood of x. Assume also that a density of X 
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and its derivatives are continuous at x. Then letting h(n) = v(x)n -1/3, v(x) > 0 
and after a simple algebra we have 

(3.6) _ - - >  

in distribution as n --~ ~ ,  where 

y(x) = -  [m(1)(x + 0 ) / _ L Y K ( y ) d y + m ( 1 ) ( x - O ) L ~ y K ( y ) d y ] / i K ( y ) d y  

and a~(x) is given by expression (3.5). 
The above result can be employed for the problem of selection of h. To do 

this one has to choose v(x) (the factor n-U3 is optimal since it assures an optimal 
asymptotic rate) which minimizes the Lq local error, q > 1. 

Owing to (3.6) such optimal v(x) is determined by minimizing 

/ + z(ao(x)lvll2(x))lq¢(z) dz, 

where ~b denotes the standard normal density function. 
Clearly, that  v(x) depends on a 2 (x), f(x) ,  m O) (x + 0) and mO)(x - 0). Those 

values can be easily estimated from the available data. Such "plug-in" scheme 
for q = 2 has been examined by Tsybakov (1987). He requires, however, much 
smoother conditions for re(x) and f (x)  (see also Mack and Mfiller (1987)). In Hall 
(1984) a similar approach has been studied with respect to a global error. Hall 
and Wand (1988a, 1988b) investigate such rule in the context of nonparametric 
density estimation. For an alternative approach of choice of the bandwidth based 
on a cross-validation method we refer to H~rdle and Marron (1985). 

The above discussion can be easily extended for other types of singularities 
in m(x) and f(x),  e.g. discontinuity of re(x) and f (z) ,  discontinuity of first 
derivatives, etc. van Eeden (1985) examines that  problem in the context of density 
estimation. 

The established higher-order expansions can be employed to design more ef- 
ficient estimates. That  is, we are able to make adjustment of the estimate to 
improve its quality. 

According to Theorem 3.1 Erh(x) = mh(x) + rh(x) + O((nhd)-2), where 
mh(x) ~ re(x) and rh(x) --* O. The order of rh(x) is (nhd) -1. 

Set 
= 

w h e r e  th( ) = + r h ( x ) ) .  
Owing to Theorem 3.1 one can easily get 

E m ( x )  = m (x) + 

That is, rh(x) is biased O((nhd) -2) compared to O((nha) -1) for the original es- 
timate. Moreover, since th(x) --~ 1 as h --~ 0 then the asymptotic behaviour of 
var rh(x) and var ~ ( x )  are equivalent. 
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Obviously, the value th(X ) is unknown and it can be estimated as follows 

t(x) = ~ ( x ) / ( ~ ( x )  + ~(x)), 

where 

and 

÷ ( x )  = - 

2 ) /3(x) = E K2((x - X~)/h) K((x- Xi)/h) 
i =1  

Here ~n'(x) stands for the kernel estimate with K(x) replaced by K2(x). 
One can conjecture that  such defined adjustment Th(x) (with th(x) replaced 

by i(x)) improves the original estimate quality. Some finite sample experiments 
would be desirable here, it is, however, beyond the scope of this paper. 

The asymptotic expansions for var Th(x) and ETh(x) have been established by 
Collomb (1977). By requiring the existence of f ,  assuming the continuity of a2(x) 
and f (x)  and imposing E Y  2 < oc, nhd/n w ~ oc, w > 0, f K(y)dy = 1, he reports 
that  

var rh(x) = (a2(x)/ f(x))  ] K2(y)dy(nhd) -1 + o((nhd)-]). 

This first order formula fails if, e.g. a 2 (x) ~ 0 (which is a case in the absence of 
noise). Then, simple algebra resulting from Theorem 3.2 yields 

~n(x) = hn -111 grad re(x)[I 2 / ]lyll2 g (y)dy/ f (x) + O( (nhd)-2), v a t  

where appropriate smoothness conditions for m and f have been assumed. 
Schuster (1972) showed the asymptotic normality of ~(x) ,  under conditions 

much more restrictive than in Corollary 3.8 (see also Rosenblatt (1969)). The 
asymptotic normality of the nearest neighbor type regressions estimates have been 
proved by Mack (1981) and Stute (1984). In the latter reference, the asymptotic 
normality (at almost all (#) x C R) of the nearest neighbor version of the kernel 
estimate is derived. The required assumptions are: a continuity of the distribution 
function of X, nh 3 -~ oc, nh 5 ~ 0 as n ~ ~ and finiteness of E Y  2. 

4. Proofs 

PROOF OF THEOREM 3.1. Let us denote 

n n 

an = E Y I K i / n E K 1 ,  bn = E Ki /nEK1,  
i----1 i-----1 

Clearly, r~(x) = an/bn. 
have 

where 

Using (2.4) with p = 3 and taking u = bn, Uo = Ebn we 

(4.1) 7h(x) = a,~-an(b,~-Eb,~)+a~(b,~-Eb~)2-a,~(b,~-Eb~)3+an(b,~-Eb,~)4/bn. 
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The next step in our proof is to evaluate the expected values of all terms in (4.1). 
We first bound the last summand.  By Hhlder's and Jensen's inequalities, the 
expected value of the term does not exceed 

w h e r e p > l a n d p - l + q - l = l .  
Taking 

}Kil < 

E [ K i / E K ,  I q <_ ( c 2 / E g l )  q- ' ,  q > 1, 

and Lemma 2.1 into account we get 

EIb n - Ebnl 4q <_ c (4q){ (c2 /nEKl)  2q ÷ (2c2/nEKx)  4q-1 + (2/n)4q-1}. 

By virtue of (2.3) and (2.5) the right side of the above inequality is not greater 
than 

+ 1] 4 -1 + 

where c is the constant defined in (3.1). 
Thus, 

E1/qlb n - E b ,  I 4q = O((nhd) -2) a.e. (#). 

Devroye ((1981), Lemma 2.1) proved that  

(4.3) E IY~IVK~ _ _  Kj  <_ 7(c2/cl) f g(y)#(dy)/#(S, ,~h) ,  
j = l  J S=,,.h. 

where g(x) = E{[YI  p I X  = x}.  
This, together with the fact that  fs=,h g(y)#(dY)/t~(Sx,h) ---* g(x) as h ~ 0 a.e. 

(#), see Wheeden and Zygmund ((1977), p. 189) follow that  the expected value of 
the last term in (4.1) is O((nhd) -2) a.e. (#). 

Let us take the other terms in (4.1) into consideration. Clearly, Ea~ = mh(x)  
and by Lemma 2.3 

E{a,~(b~ - Ebn)} = E { Y ~ K ~ } / u E 2 K 1  - E { Y ~ K , } / n E K 1  

= E { Y 1 K 2 } / n E 2 K  - mh(x ) /n .  

Next, employing (2.3), (2.5) and Lemma 2.3 we get 

E{a~(bn - Ebb) 2} = E{(an - Ean)(bn - Ebn) 2} + mh(z )varbn  

= n - 2 [ E { Y 1 K 3 } / E 3 K 1  - 2 E { Y 1 K ~ } / E 2 K 1  

- m h ( x ) E K 2 / E 2 K 1  + 2mh(z)]  

+ m h ( x ) E K ~ / n E 2 K 1  - m h ( x ) / n  

= m h ( x ) E K ~ / n E 2 K 1  - m h ( x ) / n  + O((nhd) -2) a.e. (/~). 
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Furthermore, 

(4.4) E{an(b~ - Ebn) 3} : rnh(x)E{(b~ - Ebn) 3} + E{(a,~ - Ea~)(bn - Eb,~)3}. 

The first term in the above expression is equal to 

n-2E{((K1 - EK1)/EK1) 3} = O((nhd) -2) a.e. (#). 

Employing Lemma 2.2(a) with Wi = (Y~Ki - EY~Ki)/nEK1 and V~ = (Ki - 
EKi)/nEK1, one can bound the second term in (4.4) by 

3n-2EK21 [E{IY~IK~}L E2K1 + 'rnh(x) ,] /  E2K~ 

[EIYIlK~ 3EIYll/(3 3EIYIIK~ 
-~- n -a L E4Kt -t- EaK------ ~ -t- E2K1 

EK31 EK2 I] 
+ I~h(X)IE--~K ~ + 31mh(~)lE--~l  + 31,~(~) • 

From (2.3) and (2.5), it follows that  the above expression is O((uhd) -2) a.e. (#). 
The proof of Theorem 3.1 has been completed. 

PROOF OF THEOREM 3.2. Making use of the notation of the proof of Theo- 
rem 3.1, squaring (4.1) and taking the expected value, we get 

(4.5) Erh2(x)= Ea~ - 2E{a2(b~ - Ebn)} + 3E{a2(b~ - Ebn) 2} 
-4E{a2n(bn - Ebn) 3} + 3E{a2(bn - Ebn) 4} 

- 2E{a2(bn - Ebn) 5} + E{a2(bn - Ebn) 6} + E t  2 + 2E{antn}  

-- 2E{an(bn -- Ebn)tn}  + 2E{a~(b~ - E b ~ ) 2 t ~ }  

- 2E{a~(b~ - Ebn)3t~},  

where 
tn = an(b~ - Ebn)4/b~. 

Proceeding as in the proof of Theorem 3.1, we have 

Ea~ = var {Y1K1} /nE2 K1 -[- m2(x) 

and 

E{a~(bn - Ebn)} = 2 .~h(x)n-I [E{Y1K~I} /E2K1 - mh(x)] 
+ O((~hd) -2) a.e. (~). 

With the help of Lemma 2.2(b) the third term in (4.5) is equal to 

3m2h(x)EK21/nE2K1 - 3rn2(x)/n + O((nhd) -2) a.e. (#). 

Similarly, due to Lemma 2.2(c) and a little algebra one can verify that the fourth 
term in (4.5) is O((nhd) -3) a.e. (#). In turn, using Hhlder's inequality, Lemma 
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2.1 and the previous arguments we can easily find tha t  the terms fifth, sixth and 
seventh in (4.5) are O((nhd)  -3)  a.e. (#). 

Because of Lemma 2.1 and arguing as in the proof of Theorem 3.1, we get 

Et2n = O((nhd)  -4)  a.e. (#). 

From this and (4.2) we have 

E { a ~ t n }  < (vara  ~l/2E1/2t2 _ nj n + Imh(X)lEItnl  = O((nhd)  -2)  a.e. (#). 

The other terms in (4.4) may be evaluated identically and they are of the order 
O((nhd)  -2)  a.e. (p). 

Since 

E2rh(x) = m 2 h ( X ) + 2 m h ( x ) E { ( m h ( x ) - - m ( X ) ) K ~ } / n E g ~ + O ( ( n h d )  -2)  a.e. (#) 

the proof of Theorem 3.2 has been completed. 

PROOF OF COROLLARY 3.4. It follows from (4.1) tha t  

?Tt(X) -- Erb,(x) -~ an - F a n  - mh(x ) (bn  -- Ebn)  T '~n, 

where ~n can be easily given in an explicit form. Applying Chebyshev's inequality 
and the results from the proofs of Theorem 3.1 and Theorem 3.2 we have 

(nhd)l/2,~,~ --* 0 in probability as n --* co a.e. (#). 

Let us note tha t  
n 

an - -  Fan  - mh(x ) (bn  -- Ebb) = n -1 ~z~ rlj,~ = T~, say, 

n 

Eln-  y,nl p : n - (p -1 )  El ?l, l p 
j ~ l  

(2C2) (p-l) [E{[YllPK1} / E K 1  + Imh(x ) lP] / (nEK1)  p - I  

= O((nhd)  "-1) a.e. 

This enables us to verify the Liapunov's condition. Tha t  is, 

~-~jnl EIn-lrlJ'nlP ---- O((nhd)  l -p /2)  a.e. (#), 
(var T~)P/2 

where p > 2. The proof of Corollary 3.4 has been completed. 

j----1 

where 
x - X  

\ ] 
Owing to Theorem 3.2 and Corollary 3.3 we get 

n h d v a r T ~  --, ~ ( x ) a 2 ( x ) p  as --* oc a.e. (#). 

Furthermore,  for p > 2 and with the help of Lemma 2.3, (2.3) and (2.5) we get 
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