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A b s t r a c t ,  In this paper we present a bound for the mean absolute deviation 
of an arbitrary real-valued function of a discrete random variable. Using this 
bound we characterize a mixture of two Waring (hence geometric) distributions 
by linearity of a function involved in the bound. A double Lomax distribution is 
characterized by linearity of the same function involved in the analogous bound 
for a continuous distribution. Finally, we characterize the Pearson system of 
distributions and the generalized hypergeometric distributions by a quadratic 
function involved in a similar bound for the variance of a function of a random 
variable. 
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i. Introduction 

Bounds  for the  mean  absolute  deviat ion (MAD) are of very recent origin. 
Freimer  and Mudholkar  (1989) gave one such bound  for the MAD. More specif- 
ically, let X be a cont inuous r a n d o m  variable  (r.v.) with d is t r ibut ion function 
(d.f.) F ,  densi ty f ,  a median  5, and fur ther  let there  exist a function z](x) such 
tha t  ~ ( x ) f ( x )  = F ( x )  for x ~ 5 and  ~ ( x ) f ( x )  = 1 - F ( x )  for x > 5. Then  for any  
absolute ly  continuous real-valued function g, MD[g(X) ]  ~ E[z](x)[g'(x)l], where 
g~ is the derivat ive of g. T h e y  used this bound  to character ize  the  double expo- 
nential  d is t r ibut ion by z](x) - 1. In this pape r  we first ex tend  their  results to 
a discrete r.v. We then  use these bounds  to  character ize  the double Lomax  and 
mix tu res  of two Waring dis t r ibut ions (which include the geometr ic  as a special  
case) by l ineari ty of 7]. 

W h e n  it comes to bounds  for the variance of an r.v., re la ted character izat ions  
and o ther  applicat ions,  there  is an extensive l i terature.  Much work in this a rea  
was s t imula ted  by Chernoff ' s  result  (1981): I f  X has a normal  dis t r ibut ion with 
var iance a 2 > 0 and  g is an absolutely cont inuous function such t ha t  E[g(X)] 2 < 
c¢~, then  Var[g(X)]  < a2E[g' (X)]  2, equali ty holding if and  only if g is linear. 
Borovkov and Utev  (1983) let U ( X )  = sup{Var[g(X)] /a2E[g ' (X)]2} ,  where the  
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supremum is taken over the class of absolutely continuous functions g and proved 
U(X) _> 1 and if U(X) = 1 then X must have a normal distribution. Chen 
(1982), using different tools, also proved Chernoff's result and extended it to the 
multivariate normal distribution. Chen (1988) used the Borovkov-Utev result to 
prove the sufficiency and necessity of the Lindeberg condition in the central limit 
theorem. Chen and Lou (1987) used Poincar6-type inequalities to characterize 
infinitely divisible distributions and obtain some related results. More recently, 
Cacoullos and Papathanasiou (1989) derived a lower bound for the variance of a 
real-valued function of an r.v. and showed that the function W involved in this 
bound characterized the r.v. The function W, for example, is constant for the 
normal and Poisson. Earlier, Srivastava and Sreehari (1987) used an upper bound 
for the variance of a real-valued function of a discrete r.v. to arrive at the same 
characterization of the r.v. They cited as particular cases the characterizations of 
the binomial, Poisson and negative binomial distributions. 

In Section 4 we show that the linearity of W characterizes the above three 
distributions in the discrete case, and the normal and shifted gamma distribu- 
tions in the continuous case. Our final results characterize the Pearson system of 
distributions and the generalized hypergeometric by a quadratic W. 

2. The bound for the mean absolute deviation 

Let X be a discrete r.v. taking values { . . . ,  - 1 ,  0, 1, 2 , . . .}  with a median 6, 
d.f. F and probability function (p.f.) f .  We can always take 5 to be an integer. 
Suppose there is a function 77 such that 

F(x), x < 
(2.1) U(x)f(x) = 1 -  F(x),  x > & 

Then V(x) _> 0 for all x and 

(2.2) MD(X)  = E(~(X)) 

where 

(2.3) M D ( X )  = E(IX - 61) 

is the mean absolute deviation of X. We then prove 

THEOREM 2.1. For any real-valued function g defined on { . . . ,  -1 ,  0, 1, . . .},  

(2.4) MD(g(X)) <_ E(u(X)IAg(X)I), 

where Ag(x) -- g(x + 1) - g(x). 

The proof parallels the proof of Theorem 2.1 in Freimer and Mudholkar (1989). 
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PROOF. First  suppose MD(g(X))  < c~. Then  

MD(g(X))  < EOg(X) - g(5)l) 

= Ag(y) f(x) 

5--1 6--1 oo x - - 1  

-< E E + E E 
x------c~ y----x x----6+l y = 5  

6--1 y co c~ 

y = - o o  x = - o o  y = 5  x = y + l  

o o  

= I g(yll (ylf(y)= E( (Xll g(x)l). 
y ~ - - ( x )  

f(x) 

If MD(g(X))  = oc, then  E(Ig(X ) - g(5)l ) = oo. Also, for any A, B > 0 

E Ag(y) 
x ~ - n  

f (x )< 
B 

E IAg(y)I~I(Y)f(Y) 
y = - A  

and since the left-hand side ~ oc as A, B -~ oc, so does the r ight-hand side. [] 

We next  prove the converse of Theorem 2.1 which will be useful for character-  
izing distributions.  

Define for each integer y, hu(x) = 0 for x < y and hy(x) = 1 for x :> y + 1. 
Also define for 0 > - 1 ,  ge,y(x) = x + Ohu(x). Then  ge,y is increasing and we can 
take ge,y(5) to be a median of ge,y(X). L em m a  2.1, Theorem 2.2 and their  proofs 
are similar to  Lemma 3.1 and Theorem 3.2 of Freimer and Mudholkar  (1989). 

LEMMA 2.1. MD(go,y(X)) - MD(X)  = eE(Ihy(X) - hy(5)l). 

PROOF. This follows from the  definition of h~(x), g6,y(x) and the fact tha t  
ge,y(x) is increasing. [] 

THEOREM 2.2. If  for a function ~7 satisfying (2.2) the inequality (2.4) holds 
for all real-valued g defined on the integers, then ~ must satisfy (2.1). 

PROOF. First  apply (2.4) togo,y and use (2.2) to get MD(go ,y (X) ) -MD(X)  
<_ OE(~(X)Ahy(X)). Next  use Lemma  2.1 to arrive at the result E(Ihy(Z ) - 
hy(5)l ) = E(q(X)Ahy(X)) .  Now a direct evaluat ion shows the  r ight-hand side 
of this equali ty to  be ~(y)f(y) and the left-hand side to be F(y) for y < 5 and 
1 - F ( y )  fory___5. [] 
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3. Characterizations by linearity of 7/ 

In this section we characterize a mixture of two Waring (and hence of two geo- 
metric) distributions by (2.4) and linearity of r/. We also characterize a symmetric  
double Lomax distr ibution by linearity of z] and the continuous analogue of (2.4): 

THEOREM 3.1. (Freimer and Mudholkar (1989)) Let X be a continuous r.v. 
with a median 5, density function f and d.f. F. Let rl be defined by (2.1) and satisfy 
(2.2). Then for  an absolutely continuous function g 

(3.1) M D ( g ( X ) )  <_ E(rI(X) lg ' (X) l  ). 

A continuous r.v. X has a symmetric double Lomax distribution or Pareto 
distribution of the second kind if its density is given by 

(3.2) f ( x )  = (a/2c)(1 + Ix - 51/c) -1 -~ ,  - ec < x <: oc, a ,  c :> 0. 

Note tha t  (3.2) tends to the double exponential distribution as a -~ 0, c ~ 0 such 
tha t  c /a  ---+ const. This lat ter  distribution is characterized by (3.1) with V - 1 by 
Freimer and Mudholkar (1989). Suppose now tha t  

(3.3) ~(x) = a + blx - 51, - c¢ < x < c~, 

a linear function in ]x - 5]. We now prove 

THEOREM 3.2. Let X be a continuous r.v. with a median 5, density function 
f and d . f . F .  Let r 1 be defined by (2.1) and satisfy (2.2). Then for an absolutely 
continuous function g (3.1) holds with rl given by (3.3) for some constants a and b 
if  and only if  X has the double Lomax distribution (3.2) with a -- 1/b and c = a/b. 

PROOF. Suppose first X has the density (3.2). Then it follows tha t  r/(x) = 
c /a  + Ix - 61/a which is (3.3) with a = 1/b and c = a/b. Note tha t  M D ( X )  = 
c / (a  - 1) = E(71(X)), a > 1. Thus r] satisfies (2.1) and (2.2). Conversely, sup- 
pose next (3.1) and (3.3) hold. Then by Theorem 3.3 s ta ted below, we get tha t  
f ( x ) / F ( x )  = { a +  b ( 5 -  x)} -1 for x < 5 and f ( x ) / { 1  - F(x)}  = { a +  b ( x -  5)} -1 
for x _> 6. Since 5 is the median and since we must have limx--,oo [1 - F(x)]  = 
0 = lim~_~_~ F(x) ,  we conclude tha t  a > 0, b > 0, and f ( x )  = (1/2a){1 + b[x - 
6[} -1-1/b, - o c  < x < ec, which is (3.2) w i t h a  = 1~band c =  a/b. In order 
that  M D ( X )  be finite we must have 1/b > 1. In this case M D ( X )  = a/(1 - b) = 
E(~?(X)). [] 

THEOREM 3.3. (Freimer and Mudholkar (1989)) Suppose (3.1) holds for  all 
absolutely continuous function g. Suppose also ~ satisfies (2.2). Then 77 must 
satisfy (2.1). 

Next we prove an analogue of Theorem 3.2 for the discrete case. Let X be a 
discrete r.v. on the integers with p.f. 

(1  - _ w x  _ , ,  [ b - - l - x ]  , . [ 6 - - x ]  
p } l ,  A 1  - -  Cl)C 1 / A  1 , X <~ 6 

(3.4) f ( x )  = , [ x - - b ] , . [ x - - b + X ]  
p(A2 - ~2)c2 /a2 , x >_ 6 
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where 6 is an integer, 0 < p < 1, "Y1 > cl > 0, A2 > c2 > 0 and 

(3.5) a [ r ] = a [ r ] ( ~ ) = a ( a + ' y ) . . . ( a + ~ ( r - 1 ) ) ,  r =  1, 2 , . . . ;  a[°] = 1. 

Here ~ is a real number. Let 6 be a median of X. Note tha t  (3.4) is a mixture of 
two Waring distributions. For (3.4), we have r/(x) = / ~ 1  - ")/~- "/((~ - x )  for  x < 6 

andrl(X ) = c 2 + ~ , ( x - 5 )  f o r x _ > 6 .  Thusrl(X ) = a + b [ x - 6 1 ,  - o c <  x < 0% if 
and only if c2 = A1 - 7 = a and V = b. Further 5 is a median if 

(3.6) 1/2 _< p < A2/2c2 

and M D ( X )  = (1 - p)(A1 - 7)/(A1 - cl - 7) + pc2/(A2 - c2 - 7), A1 - cl > 7, 
A2 - c2 > 7. Now M D ( X )  = EOT(X))  = a + b M D ( X )  if 

(3.7) A l = a + b ,  c l = a + b - 1 ,  A 2 = a + l ,  c 2 = a ,  ~ / = b  and b < l .  

In this case M D ( X )  = E(r l (X) )  = a / (1  - b). We summarize the above in 

PROPOSITION 3.1. I f  X has the distribution (3.4) with restrictions (3.6) and 
(3.7) on its parameters, then (2.4) holds with ~? satisfying (2.1), (2.2) and (3.3) 
and for  all real-valued funct ions g defined on the integers. 

Remark 3.1. Proposit ion 3.1 covers a mixture of two geometric distributions 
as a special case when b = 0. 

We close this section by proving the converse of Proposit ion 3.1 thus charac- 
terizing a mixture of two Waring distributions. 

THEOREM 3.4. Let X be a discrete r.v. on the integers with p.f. f, d.f. F 
and a median 6. I f  for  a funct ion ~1 satisfying (2.2) and (3.3) for  some constants 
a and b, (2.4) holds for  all real-valued funct ions g defined on the integers, then X 
must  have the distribution (3.4) with restrictions (3.6) and (3.7). 

PROOF. By Theorem 2.2, rl must satisfy (2.1). Since 7/also satisfies (3.3) we 
have f ( x ) { a  + b(6 - x)} = F(x) ,  for x < 6 and f ( x ) { a  + b(x - 6)} = 1 - F ( x )  for 
x >_ 6. From these it follows tha t  

(3.8) 
f ( 5 -  1)(a + b)(a + b -  1)[6-1-x]/(a + b) [~-x], x < 6 

f ( x )  = f ( 6 ) ( a  + 1)a[~-~]/(a + 1)[ x-~+l], x _> 5 

where a It] -- afr](b) is given by (3.5). Since 6 is a median, we must have f ( 6  - 
1 ) ( a + b ) +  f ( 6 ) ( a + l )  = 1, f ( 6 - 1 ) ( a + b ) +  f (6 )  >_ 1/2 and f ( 6 ) ( a + l )  >_ 1/2. Thus 
lett ing p = f ( 5 ) ( a  + 1) -- 1 - F(5  - 1) > 0, we see tha t  (3.8) satisfies (3.4) with 
restrictions (3.6) and (3.7). The fact tha t  b < 1 follows from M D ( X )  = a / (1  - b) 
and f ( 5 ) a  = 1 - F(5)  > O. [] 
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4. Characterizing distributions by variance bounds 

In this section we characterize some distributions by bounds on variances of 
functions of random variables. Cacoullos and Papathanasiou (1989) proved the 
following theorem: 

THEOREM 4.1. (Cacoullos and Papathanasiou (1989)) Let X be a continuous 
r.v. with density f, and mean # and let g be real and absolutely continuous. Then 

(4.1) inf{Var[g(X)] V a r ( X ) / E 2 [ W ( X ) g ' ( X ) ] }  = 1 
g 

holds for some function W with E { W ( X ) }  -- Var(X) if and only if W satisfies 

f (4.2) (# - t ) f ( t )d t  = W ( x ) f ( x ) ,  - oc < x < oc. 
o 0  

Thus W (4.2) characterizes the distribution of X.  As examples of W they cite 
W ( x )  = a S and W ( x )  = x as characterizing the normal and exponential distri- 
butions respectively. Here we will show that W ( x )  = a + bx, with a, b constants, 
characterizes precisely the normal and gamma. Similarly we show that "W(x) = a 
quadratic in x" characterizes the Pearson system of continuous distributions. 

Cacoullos and Papathanasiou (1989) also prove the discrete analogue of The- 
orem 4.1: 

THEOREM 4.2. (Cacoullos and Papathanasiou (1989)) Let X be a nonneg- 
ative integer-valued random variable with p.f. f and mean I z, and let g be a real- 
valued function defined on the nonnegative integers. Assume f(O) > O. Then 

(4.3) inf{Var[g(X)] V a r ( X ) / E  2 [W(X )A g(X ) ]  } = 1 
g 

for some function W with E ( W ( X ) )  = Var(X) if  and only i f  W satisfies 

x 

(4.4) E (  # -  y ) f ( y )  = W ( x ) f ( x ) ,  x = O, 1 , . . . .  
y=O 

W, as before, characterizes the distribution of X. They cite as examples 
W(x)  = A > 0 characterizing the Poisson and W ( x )  -- c(1 - x/n) ,  with n a 
positive integer and c > 0, characterizing the binomial. Srivastava and Sreehari 
(1987) arrive at (4.4) through a different variance bound and characterize the 
negative binomial by W ( x )  = c(1 + x /v ) ,  c, Y > 0, in addition to characterizing 
the Poisson and the binomial as above. Here we show that "W(x) = a linear 
function of x" characterizes these three distributions. Also, "W(x) = a quadratic 
function in x" characterizes the generalized hypergeometric distribution of Kemp 
and Kemp (1956). 

The following theorem characterizes the normal and the gamma distributions 
by linearity of W: 
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THEOREM 4.3. Let X ,  g and W be as in Theorem 4.1. Then (4.1) holds with 
W ( x )  = a + bx for some constants a and b i f  and only i f  X has either a normal 
distribution or a shifted gamma distribution. 

PROOF. Suppose X - 0 has the gamma distr ibution G(a, ~) with density 

(4,5) f ( x ;  O, 0~, ~) -~- {~a/ r (oz)}(x-0)  c~ - l exp{ - (x -0 )~} ,  x > 0 oL, ~ > 0, 

where 6 is real. Then (4.2) holds with W ( x )  = - ~ / ~  + x / ~  which is linear in 
x. If 0 - Z is G(a ,  ~), then (4.2) again holds with W ( x )  = O/fl - x / ~ .  If X is 
N ( # ,  a2), then (4.2) holds with W ( x )  = a 2. 

Conversely, suppose (4.1) holds for all absolutely continuous g and W ( x )  = 
a + bx for some constants  a and b. Then since E ( W ( X ) )  = a + b# = Var(X)  > 0, 
either (i) b = 0 and a > 0 or (ii) b # 0, and # + a/b and b have the same sign. By 
Theorem 4.1 and W ( x )  = a + bx it follows that  

(4.6) f ' ( x ) / f ( x )  = (p - b - x ) / ( a  + bx). 

Now in case (i) this leads to N(F 4 a), a > 0. In case (ii) (4.6) leads to the result 
tha t  X - 0 is gamma (4.5) if b > 0 and 0 - X is gamma (4.5) if b < 0, where 
(~ -- (#b + a)/b, ~ -- 1/Ib I and t~ -- - a / b .  [] 

We next characterize the Pearson system of continuous distr ibutions by "W(x)  
= a quadrat ic  in x". 

THEOREM 4.4. Let X ,  g and W be as in Theorem 4.1. Then (4.1) holds with 
W ( x )  = a + bx + cx 2 for some constants a, b and c, i f  and only if  the density of 
X belongs to the Pearson system of continuous distributions. 

PROOF. "Only if" part:  Writing W ( x )  = bo + bl(x  - ~t) + b2(x - #)2, we 
get by Theorem 4.1 that  g ' (x ) /g (x )  = - ( b l  + (1 + 2b2)x)/(bo + blX + b2x 2) for 
the density g(x) of X - #. If 1 + 2b2 -- 0, then the differential equation leads to 
the be ta  density g(x)  = {1/2B(1 + c~, 1 - (~)}(x + d)~(d - x) -~,  - d < x < d, 
where d = v/b 2 + 2 b 0 - b l  and a = b l / ( d + 5 1 ) .  (It can be shown that  d > 0 
and Ic~ I < 1.) If 1 + 2b2 ~ 0, then the above differential equation reduces to 
g(x ) /g (x )  = - ( x  + cl) /(co + ClX + c2x2), where Co -- bok, Cl = blk, c2 -- b2k and 
k = (1 + 2b2) -1. This is an equation defining the Pearson system. 

"If" part:  It is known tha t  all the distr ibutions in the Pearson system satisfy 
the above equation (see, for example, Johnson and Kotz (1970), p. 9). [] 

We next take up the characterization of discrete distributions. 

THEOREM 4.5. Let X ,  g and W be as in Theorem 4.2. Then (4.3) holds with 
W ( x )  = a + bx for some constants a and b i f  and only i f  X has either a Poisson, 
binomial or a negative binomial distribution. 

PROOF. "Only if" part: To avoid trivialities we assume X is nondegenerate.  
Then from (4.4) it follows that  a = # > 0, b + 1 > 0 and 

(4.7) f ( x )  = f ( 0 ) a  Ix]/(b + 1)Xx!, 
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where a [z] = a[X](b) is given by (3.5). Now note tha t  

(4.8) X is bounded if and only if b < 0 

which is easy to see. Now, we, accordingly, distinguish three cases: (i) - 1 < b < 0, 
(ii) b -- 0 and (iii) b > 0. Now (4.7) and (4.8) show X to be B(m,  -b)  (for some 
positive integer m) in case (i), Poisson with mean a > 0 in case (ii) and negative 
binomial with parameters r = a/b and p = 1/(b + 1) in case (iii). 

"If" part  follows from Cacoullos and Papathanasiou (1989) and Srivastava and 
Sreehari (1987). [] 

Our final characterization is of the generalized hypergeometric distr ibution (as 
defined by Kemp and Kemp (1956)) by "W(x) = a quadratic in x". 

THEOREM 4.6. Let X,  g and W be as in Theorem 4.2. Then (4.3) holds 
with W(x)  -- bo + blx + b2x(x - 1) for some constants bo, bl and b2 satisfying 
(bl - b2)2 _ 4bob2 >_ 0 if  and only if  X has a generalized hypergeometric distribution 
with p.f. of the form 

(4,9) , ( x ) =  (:)(nbx)/(a:b),_ x - - 0 , 1 , . . . .  

PROOF. "Only if" part: By Theorem 4.2 it follows tha t  b0 -- # > 0, b14-1 > 0 
and for b2 ~ 0 

(4.10) f (x )  = f(0)~[x]/3 M/x!~E4, 

where a [x] = a[X](1) is given by (3.5), - a,  - / 3  are the (real) roots of x 2 + {(bl - 
b2)/b2}x + 50/52 = 0 and 7 = (bl + 1)/b~. Now (4.10) can be writ ten in the form 
(4.9) (see Kemp and Kemp (1956)). 

"If" part: Suppose X has the distribution (4.9). Then it is easy to check tha t  
(4.4) holds with ~/= an/(a  + b) and W(x)  = (a - x)(n - x ) / (a  + b). [] 

Remark 4.1. Kemp and Kemp (1956) gave eight sets of conditions under 
which (4.9) represents a discrete distribution. Type II(B) and Type III(B) in their 
classification scheme have no integral order moments  and hence are ineligible as 
distributions for X which is assumed to have first two moments  finite. 
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