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A b s t r a c t .  The distribution with probability function pk(n, ~, t3) = 
A,~,k(a, fl)/(a + fl)[n] k = 0, 1, 2 , . . . ,  n, where the parameters a and /3 are 
positive real numbers, An,k (~, fl) is the generalized Eulerian number and (a + 
fl)[n] = (a + fl)(a +/3 + 1)-- .  (c~ + fl + n - 1), introduced and discussed by Ja- 
nardan (1988, Ann. Inst. Statist. Math., 40, 439-450), is further studied. The 
probability generating function of the generalized Eulerian distribution is ex- 
pressed by a generalized Eulerian polynomial which, when expanded suitably, 
provides the factorial moments in closed form in terms of non-central Stirling 
numbers. Further, it is shown that the generalized Eulerian distribution is 
unimodal and asymptotically normal. 

Key words and phrases: Eulerian numbers, Eulerian polynomials, Stirling 
numbers, random permutations, unimodality, asymptotic normality. 

1. Introduction 

Carli tz and Scoville (1974) in t roduced a generalized (symmetric)  Eulerian 
number  A(r, s [ a, /3)  in connect ion with the problem of enumerat ing (a , /3) -  
sequences (generalized permutat ions) .  Recurrence relations and other  algebraic 
propert ies  of these numbers  were developed. It  can be shown tha t  

(1.1) pk(n, a,/3) = An,k(a, /3)/(a +/3)[~], k = 0, 1, 2 , . . . ,  n, 

where the parameters  a and /3 are positive real numbers  and An,k(a, /3) = 
A(k ,  n - k I a,/3) is a legit imate probabil i ty function. The  dis tr ibut ion with 
probabi l i ty  function (1.1) may  be called a generalized Eulerian distribution.  

Morisi ta  (1971), after  a series of exper imental  studies with ant lions, suggested 
a model  in which each ant lion was allowed to sett le in fine sand (or in coarse sand) 
with a probabi l i ty  propor t ional  to the environmental  density. He then provided 
a recurrence relat ion for the probabil i ty tha t  k out  of n ant lions set t led in fine 
sand. J ana rdan  (1988), in an interesting mathemat ica l  and statist ical  t r ea tmen t  of 
Morisita 's  model, proved tha t  an explicit solution of this recurrence can be given 
in terms of the generalized Eulerian number  E~,k(a, b). This  number  is related to 
the generalized (symmetric)  Euler ian number  A(r, s I a, /3)  of Carlitz and Scoville 
(1974) by En,k(a, b) = A ( n -  k, k I a, b) = A(k ,  n -  k I b, a). 
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In the present paper, which is motivated by Janardan ' s  work, it is shown 
that  the problem of deriving the probability function of the number Ln of ant 
lions choosing fine sand to settle (in Morisita's model) when the environmen- 
tal densities are positive integers is equivalent to the problem of deriving the 
probability function of the number X~+I of rises in a random (c~,/3)-sequence of 
Zn+l = {1, 2 , . . . ,  n + 1}. The notion of an (a, ~)-sequence, introduced by Carlitz 
and Scoville (1974), consti tutes a generalization of the notion of a permutat ion.  
From the above equivalence the probability function of L~ is deduced (Section 
2). The probability generating function of this distribution, when the environ- 
mental  densities are positive real numbers, is expressed in terms of a generalized 
Eulerian polynomial. Further,  this polynomial, if suitably expanded, provides an 
explicit expression of the factorial moments in terms of non-central Stirling num- 
bets (Section 3). It is also shown tha t  the n-th generalized Eulerian polynomial 
has n distinct non-positive real roots. Using this result, one can prove tha t  the 
generalized Eulerian distribution is unimodal  and asymptotical ly normal (Section 
4). 

2. Morisita's model, random permutations and (c~,/~)-sequences 

Morisita (1971) considered n ant lions, each of which was allowed to choose 
to settle either in fine or coarse sand, and postulated tha t  

(2.1) 

(2.2) 

(2.3) 

Pr( the first ant lion to choose coarse sand) 

= 1 - Pr( the first ant lion to choose fine sand) = a/(a  + b), 

Pr( the n-th ant lion to choose coarse sand given tha t  k 

ant lions are in find sand) = ( a + k ) / ( a + b + n - 1), 

Pr( the n-th ant lion to choose fine sand given tha t  n - k - 1 

ant lions are in coarse sand) = (b + n - k - 1)/(a + b + n - 1) 

where the parameters a and b are positive real numbers. 
Consider an arbi t rary permutat ion cr = (al,  a 2 , . . . ,  an+l) of the set Zn+l = 

{1, 2 , . . . ,  n + 1}. A pair of consecutive elements (a~, a~+l) in cr is called a rise if 
a~ < ai+l  and a fall if al > ai+l .  If  k(a) is the number of rises of the permuta t ion  
(r, then clearly 0 < k(a) < n and the number of falls of the same permutat ion is 
n - k(a).  The number of permutat ions of Zn+l with k rises (and n - k falls) is 
equal to the Eulerian number An+l,k+l.  

Suppose tha t  a permutat ion is randomly chosen from the set of the (n + 1)! 
permutat ions of Zn+l and let Xn+l  be the number of its rises. Then the probabili ty 
function of the random variable X,~+I is given by 

(2.4) pk(n) -- Pr(Xn+l  --/¢) -- An+l,k+l / (n  + 1)!, k ---- O, 1, 2 , . . . ,  n. 

In order to relate Morisita's model with a random permutat ion  model, consider 
the following construction of a random permutat ion of Zn+l. Start ing with the 
number 1, the remaining n numbers, 2, 3 , . . .  , n +  1, are placed one after the other 



ON A GENERALIZED EULERIAN DISTRIBUTION 199 

in all possible ways. There are two possible ways of placing 2: either to the left or 
to the right of 1, inducing a fall: (2,1) or a rise: (1,2). Thus, 

(2.5) Pr(placement  of 2 induces a fall) 

= Pr(placement of 2 induces a rise) = 1/2. 

Further,  there are n + 1 possible ways of placing n + 1. If it is placed between the 
two elements of a rise or to the left of the elements already placed, the number 
of rises remains unchanged while the number of falls is increased by one. If it is 
placed between the two elements of a fall or to the right of the elements already 
placed, the number of rises is increased by one while the number of falls remains 
unchanged. Thus, 

(2.6) 

(2.7) 

Pr(placement of n + 1 induces a fall given tha t  k rises 

are already induced) = (k + 1) / (n  + 1), 

Pr(placement of n + 1 induces a rise given tha t  k falls 

are already induced) = (n - k + 1) / (n  + 1). 

It is apparent from the preceding analysis tha t  there is a one-to-one corre- 
spondence between the set of different choices of the n ant lions to settle, when 
a = b -- 1, and the set of the different choices of the n numbers 2, 3 , . . . ,  n + 1 to 
be placed. More specifically, if the j - t h  ant lion chooses fine (or coarse) sand to 
settle, then the number j + 1 is inserted in a place inducing a rise (or a fall) and 
vice versa. This correspondence implies tha t  in the particular case of Morisita's 
model with a = b = 1, the probability function Pr(Ln -- k), k = 0, 1, 2 , . . . ,  n of 
the number Ln of ant lions choosing fine sand to settle is given by (2.4). 

The notion of an (a,/3)-sequence, introduced by Carlitz and Scoville (1974) 
and const i tut ing a generalization of the notion of a permutat ion,  can be related 
to Morisita's model when the parameters  a and b are positive integers. An (a, /3)-  
sequence, of Zn+I, in addit ion to the n + 1 elements of Zn+I, includes a symbols 0 
and/3 symbols 01 subject to the conditions tha t  there is at least one symbol 0 on the 
extreme left and at least one symbol 01 on the extreme right and tha t  the number 1 
has all a symbols 0 to its left and all/3 symbols 01 to its right. There is one (a, /3)-  
sequence of ZI: ( 0 , . . . ,  0, 1, 0 ' , . . . ,  0') and ths (a,/3)-sequences of Zn+I can be 
obtained by inserting the numbers 2, 3 , . . . ,  n +  1 one after the other in all different 
ways. Since there are a + /3  ÷ j - 2 different ways of inserting the number j for 
j -- 2, 3 , . . . ,  n + 1, it follows tha t  the number of (a,/3)-sequences of Z~+I is equal 
to ( a+ /3 )  In]. Consider an arbi t rary (a, /3)-sequence s = (Sl, 8 2 , . . . ,  8nWa-}-13-l-1) of 
Z~+I. A rise is defined as a pair of consecutive elements (si, si+l)  with si < Si+l 
where si may be 0. Similarly a fall is defined as a pair of consecutive elements 
(si, s i+l)  with si > si+l where si+l may be 0'. If k(s) ÷ 1 is the number of rises 
of an (a, /3)-sequence s of Zn+l, then 0 _< k(s) <_ n and the number of falls of the 
same (a,/3)-sequence is n -  k(s) + 1. The number of (a,  fl)-sequences of Zn+l with 
k + 1 rises (and n - k + 1 falls) is equal to A(k,  n - k I a,/3) = A(n  - k, k I/3, a), 
the generalized symmetric  Eulerian number studied by Carlitz and Scoville (1974). 
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Thus, putting An,k(c~, /~) ---- A(k,  n - k I s ,  fl) it follows that 

(2.8) 
k 

Note that 

(2.9) An, k(1, 1) = An+l,k+l, An, k(1, O) = A=,k. 

Suppose that  an (a, ~)-sequence is randomly chosen from the set of the 
(c~ + ~)[n] (a, ~)-sequences of Zn+l and let X~+I be the number of its rises. 
Then, the probability function pk(n, (~,/3) = Pr(X~+I = k + 1), k = 0, 1, 2 , . . . ,  n 
is given by (1.1), where the parameters c~ and/~ are, in this case, positive inte- 
gers. Further, the preceding analysis of the construction of an (a, fi~)-sequence, by 
virtue of Morisita's postulates (2.1), (2.2) and (2.3), with a = b and ~ = a positive 
integers, implies Pr(Ln = k) = Pr(Xn+l = k + l )  = pk(n, a, ~), k = 0, 1, 2 , . . . ,  n. 

In the general case of Morisita's model where the parameters a and b are 
positive real numbers, not necessarily integers, the probability function Pr(Ln = 
k), k = 0, 1, 2 , . . . ,  n, of the number L~ of ant lions choosing fine sand to settle can 
be obtained as (1.1) with a = b and/3 = a, by comparing the recurrence relation 
for Pr(Ln = k) deduced from postulates (2.1), (2.2) and (2.3) with the recurrence 
relation for the ratio An,k(a, /~)/(c~ + ~)[n] deduced from the following recurrence 
relation of the generalized Eulerian numbers An,k(c~, ~) = A(k,  n - k I o~, t3) 
(Carlitz and Scoville (1974)) 

(2.10) An+l,k(a,/3) = ( /3+k)An,k(a,  ~) + (a + n +  1 - k)An,k-l(c~,/~) 

k = 0, 1, 2 , . . . ,  n + 1, n = 0, 1, 2 , . . .  

with Ao,o((~, ~) = 1, Ao,k(a,  /3) = O, k # 0 (see also Janardan (1988) where 
A~,k(a,/3) = E~,k(~, a)). 

3. Generating functions, factorial moments and generalized Eulerian polynomials 

The probability generating function of the generalized Eulerian distribution 
(1.1), on using the generalized Eulerian polynomials 

(3.1)  An(t; ~,/~) = ~-~An,k(a ,  ~ ) t  k, n = 0, 1, 2 , . . .  , 
k=0 

may be obtained as 

(3.2) 
n 

G n ( t ;  = k = An(t; +  )Enl. 
k=O 
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The factorial moment  generating function is then given by 

(3.3) 
oo 

Fn(t; a, /3)  = E t t ( r ) ( n ,  a, fl)t~/r! = An( t+  1; a , / 3 ) / ( a  + fl) M 
r~-0 
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) An(t; 4,/3) = (1 - t) ~+~+n Z ~ +/3 + r - 1 (/3 + r)nt L 
r = 0  ?" 

The generating function of the generalized Eulerian polynomials 

A(t, u; 4,/3) = E An(t; a,/3)un/n!, 
n=O 

on using the expression (3.4) may be obtained as 

A(t ,u;  a,  f l ) = E ( 1 - t )  ~+#+~ a + / 3 + r - 1  ( / 3 + r ) n f f u n / n  ! 
T 

n ~ O  r ~ O  

= ( l - t )  a+~ a + / 3 + r - 1  t r E [ ( / 3 + r ) u ( l _ t ) ] n / n !  
r ~ 0  r t ~ 0  

= ee~( l_0(  1 _ t)~+ ~ ~ a + / 3  + r - 1 [te,~(~_~)]~ 
r 

~"~0 

= e # ~ ( l - t ) ( 1  _ t ) ~ + # [ 1  _ te~(~-t)]-~-~. 

Thus, 

(3.4) 

where 

~(r)(~, 4,/3) = Z[L(~)], r = 1, 2 , . . . ,  ,(0)(~, 4,/3) = 1, 

with L (~) = Ln(L~ - 1)(nn - 2 ) . . .  (Ln - r + 1). 
The derivation of the factorial moments by expanding the right-hand side of 

(3.3) is facilitated by the following brief s tudy of the generalized Eulerian polyno- 
mials. 

Introducing in (3.1) the expression (2.8) of the generalized Eulerian numbers 
An,k (~,/3) and since An,k (ct,/3) = 0 for k > n, it follows that  

An(t; a, fl) 

= Z ( _ I ) i  a + / 3 + n  a + Z + k - j - 1  
k=o j=o J k - j (/3 q- k - j)ntk 

= E ( _ I )  j o~+/3-[-n tj a + / 3 + k - j - 1  ( / 3 + k _ j ) n t k _  j 
~=0 J k=~ k - j 

= ~ ( - 1 ) ~  ~ + / 3 + ~ .  ¢ ~ + / 3 + r -  1 ( /3+~)~t ~. 
j=0 3 v=0 r 
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Note, in passing, that  

implying 

(3.5) 
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lim A(t, u; a, /3) = (1 - u) -~ -z ,  
t - - ~ l  

• A~,k(a, /3) = (a + ~)[~], 
k----O 

in agreement with the result in Theorem 3.2 of Janardan (1988). 
The generating function of the generalized Eulerian polynomials may be 

rewritten in the form 

A(t, u; c~,/3) = e"~(t-1){1 - [ e  ~(t-1) - 1]/(t - 1)} -~ -~  

which, on using the non-central Stirling numbers (Koutras (1982)) 

1 E ( _ l ) k  (~)(c~ + k) n, (3.6) S(n, r l a) = 
k=O 

with the generating function 

OG 

n ~ f  

can be expanded as 

r = O, 1, 2 , . . .  , n ,  

n = 0, 1, 2 , . . .  

r = O ,  1 , 2 , . . .  , 

° ilT/t 1 / - r r  
r ~ 0  

= (~+#)C~JS(n,~ [~) ( t -1 )  n-~ ~"I~!, 
n=O 

yielding for the generalized Eulerian polynomials the expression 

n 

(3.7) An(t; ~,/3) : E ( ~  H-/3)[r]S(n, r I c~)(t - 1) n-r. 

Returning to the generalized Eulerian distribution, its factorial moment  gen- 
erating function (3.3), by virtue of (3.7), may be expanded in powers of t as 

n 

E~(t; ~, /3)  : ~ { ( ~  +/3)E~-~1/(~ +/3)I~J}s(~,  ~ - ~ I ~)t  ~ 
r - ~ O  

= ~ { S ( n , n - r , o O / ( o ~ + # + n - 1 ) } t r / r L  
r~-O 7" 
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Thus, 

p ( r ) ( n , t ~ , / 3 ) = S ( n , n - r l ( x ) / ( ~ + f l + n - i ~ ,  r = 0 ,  1, 2 , . . . ,  n (3.8) 
/ \  ] r 

and #(r)(n, ~,/~) = 0 for r = n + 1, n + 2 , . . . .  
The computation of the factorial moments (3.8) is facilitated by the following 

expression of the non-central Stirling numbers as polynomials of the non-centrality 
parameter: 

(3.9) S ( n , n - r l c ~ ) = ~ ( n k ) s ( n - k , n - r ) c ~  k 
k----0 

where S(n, r) = S(n, r 10) is the usual Stirling numbers. 
From (3.8) with r = 1 and r = 2, on using (3.9) and 

S ( n -  l, n - 1 )  = S ( n -  2, n -  2) = 1 ,  

S ( n , n - 2 ) = 3 ( 4 ) + ( 3  ) 

it follows that 

(3.10) 

and 

(3.11) 

S ( n , n - 1 ) =  ( n )  
2 ' 

[ ( n )  ] /  
#(n, ~, /3) -- #(u(n,  c~, /3) = 2 + us  (~ + ~ + n - 1), 

n 

2 [ 3 ( 4 ) + ( 3 ) (  3 c ~ + 1 ) + ( 2 ) ° ~ 2  ] 
#(2)(n, c~, t3) = (c~ + t3 + n - 1)(c~ +/3 + n - 2) 

n 
2 ( 4 )  + (3)(2o~ + 2~ + 1 ) +  ( 2 ) ( a  + ~)2 +na/3(c~ + ~ - 1 )  

( ~ + / 3 + n -  1 ) 2 ( a + f l + n -  2) 

in agreement with the expressions obtained by Janardan (1988). 
Before concluding this section it is worth noting that the expression (3.4) has 

the following direct probabilistic application. 
The n-th (power) moment about an arbitrary point fl of a random variable X 

obeying a negative binomial, or binomial distribution, can be expressed in terms 
of the generalized Eulerian polynomials. 

4. The asymptotic behavior of the distribution 

The probability generating functions Gn(t; a, t3) of the generalized Eulerian 
distribution (1.1) which is given by (3.2) in terms of the generalized Eulerian 
polynomials An(t; a, ~) can be written as 

n 

(4.1) Gn(t; c~, 13) = H ( q j  +pi t ) ,  qj -- 1 - p j ,  j = 1, 2 , . . . ,  n, 
j = l  
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0 < pl < p2 < "'" < pn = 1. This representat ion is shown by proving that  the 
generalized Eulerian polynomial An(t; a, ~) has n distinct real non-positive roots 
for all n = 1, 2 , . . . .  This proof may be carried out  by induction as follows: 

The generalized Eulerian polynomials An(t; a,/3) satisfy the difference- 
differential equation 

d 
(4.2) An+l(t ;  a , /3 )  = t(1 - t )~An(t;  a,/3) + t(a +/3 + n)An(t; a,/3), 

n = 0 ,  1, 2 , . . .  

with A0(t; a , /3 )  = 1, which may be deduced from (3.1) on using the triangular 
recurrence relation (2.10) of the generalized Eulerian numbers  An, k(c~,/3). From 
(4.2) it follows tha t  

At(t; a,/3) = (a +/3)t, A2(t; a,/3) = (a +/3)t[(a +/3) t  + 1 t 

that  is the  s ta tement  holds for n = 1, 2. Now suppose that  An(t; a,/3) has n 
distinct real non-positive roots and consider the function 

B~(t; a , /3 )  = (1 - t)-(~+~+n)An(t; a,/3). 

Then Bn(t; a , /3)  has exactly the same finite zeroes as those of An(t; a,/3) and 
the identity (4.2) becomes 

d B Bn+l( t ;  a , /3 )  = t ~  n(t; a , /3) ,  n = 0, 1, 2, . . . .  

Bn(t; a, 13) also has a zero at t = - o o ,  and by Rolle's theorem, between any two 
zeroes of Bn(t; a,/3), the derivative dBn(t; a, ~3)~dr has a zero. This implies that  
Bn+l  (t; a , /3 )  has n distinct zeroes on the negative axis; obviously t = 0 is another 
zero, making n +  1 altogether. Since An+l(t ;  a , /3 )  is of degree n +  1 by induction, 
we have found all roots and the s ta tement  is proved. 

As a consequence of this property of the generalized Eulerian polynomials,  the  
generalized Eulerian number  A,,,k (a , /3)  is a strictly logarithmic concave function 
of k, tha t  is 

(4.3) [An,k(a, /3)]2 > An,k+l(a, /3)An,k-l(C~, /3). 

Further,  it follows that  the generalized Eulerian distr ibution (1.1) is unimodal 
either with a peak or with a plateau of two points (see, for example, Comtet  
(1974), p. 270). 

Let us, now, consider the sequence of independent  zero-one random variables 
Zn j ,  j = 1, 2 , . . . ,  n, with P(Xn,j = O) = qj, P(Xn,3 = 1) = pj, j = 1, 2 , . . . ,  n. 

Then the probabil i ty generating function of the sum Sn = ~ Xn,j is given by 
j = l  

(4.1) and hence 

P(Sn = k) = An ,k (a , / 3 ) / ( a  +/3)["], k = 0, 1, 2 , . . . ,  n. 
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From (3.11) it follows tha t  Var(Sn) --+ oc as n -+ c~. Therefore, letting 

Yn,j -- [Var(Sn)]-l/2[Zn,j - E(Zn, j)] ,  j -- 1, 2 , . . . ,  n 

and Fn,j (y) = Pr(Yn,j < y), it follows tha t  for a given e > 0 there exists no such 
that  [Yn, k[ < e for all n > no, implying that  the Lindeberg condition 

n 

lim ~ f y2dF~, j (y )=O,  

of the bounded  variance normal convergence criterion is fulfilled. Hence 

[s az(s ) ] 
(4.4) l i m  P L ~ < x  = ~ ( x )  

with • being the dis tr ibut ion function of the s tandard  normal distribution. 
Note that  (4.4) still holds when E(S~)  and Var(Sn) are replaced by approxi- 

mate  values (as n --* cx)). 
The r - th  factorial moment  (3.8) may be approximated as follows: 
Introducing the expression 

r - - k  

r - k + j  
j=O 

where S2(m, j )  is the associated Stirling number  of second kind (see Comtet  
(1974), p. 226) into (3.9), (3.8) may be wri t ten as 

()( ) /( ) n n - k  ak a + f l + n - 1  
, ( r )  (n ,  /3) = k r + j - k  r " 

j = 0  k=0  

Since $2(2r, r) = (2r)!/(r!2r), $2(2r - 1, r - 1) = (2r - 1)!/[3(r - 2)!2r-1], it 
follows that  

p(r)(n, (~, /3) = n(2~)/2r + [ra + r ( r -  1)/3]n(2~-1)/2 ~-1 
(c~ + fl + n - 1)(~) + °(n-~+2)" 

A further approximation of the factorial polynomials of n leads to 

p(r)(n, o~,/3) ---- (n/2)  r + [rol + r(r - 1)/3](n/2) r-1 + o(n-r+2) .  

Therefore, 

#(n, a,/3) = n /2  + o(1), #(~)(n, a , /3 )  = (n/2)  2 + (a + 1/3)n + o(1). 

Instead of using these approximate  values to find an approximate  value of the 
variance, it is be t te r  to derive such a value by approximating its exact value (3.11). 
In this way, we find 

a2(n,  a , /3)  = n i l 2  + o(1). 

Thus in (4.4) we may  use 

(4.5) E(Sn)  = n/2,  Var(S~) = n i l2 .  
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