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A b s t r a c t .  Based on a sample of size n, we investigate a class of estimators 
of the mean 0 of a p-variate normal distribution with independent components 
having unknown covariance. This class includes the James-Stein estimator and 
Lindley's estimator as special cases and was proposed by Stein. The mean 
squares error improves on that  of the sample mean for p _> 3. Simple approx- 
imations for this improvement are given for large n or p. Lindley's estimator 
improves on that  of James and Stein if either n is large, and the "coefficient of 
variation" of 0 is less than a certain increasing function of p, or if p is large. An 
adaptive estimator is given which for large samples always performs at least as 
well as these two estimators. 
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1. Introduction and summary 

Here we s ta te  our ma in  results. Proofs  are given in Section 2. 

Suppose  we observe a r a n d o m  sample  of size n f rom Np(O, v I )  with p _> 3 and 
v > 0 unknown.  Let  ) (  be the sample  mean.  I ts  risk is 

E I X  - O] 2 = p v n  - 1 .  

Suppose  ~3 ~,, v x 2 / ( v  + 2) independent ly  of )~. 
We seek an es t imate  of O with smaller risk t h a n  tha t  of )~. 
This  p rob lem arises in 1-way analysis of  variance with  equal observat ions per  

cell and more  general ly in regression analysis wi th  normal  residuals with v equal 
to  n less a constant .  

Let  H be any  p x p idempoten t  ma t r ix  of rank rH ~ 3. The  es t imator  for 0 
t ha t  we shall consider is 

(1.1) OH : f (  -- n - l ~ ( r H  -- 2)H) ( [H)~J  -2.  

Versions of this es t imate  were proposed in (2.34) of Stein (1966), (4.3) of Sclove 
et al. (1972), (1.6a) of George (1986b) and  in (1.4) of George (1986c). 
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Unlike these papers our concern is primarily on how the estimator performs 
as the sample size n increases. Like George, we consider an adaptive version of 
(1.1). However, our adaptive estimator is much simpler than his. 

When H = Ip, it is the estimate of James and Stein (1961) 

~ J S  ---- 2 - -  n - - l ? ~ ( p  - -  2)2J2[ -2. 

When H -- Ip - 1 1Pip it is known as Lindley~s estimate 

9L = 2 -- n - l ~ ( p  -- 3 ) ( 2  -- 1)~.)(IX[ 2 - p)~7.2)-2 where )(. = l ' f ~ / p .  

For a numerical example using ~L, see Efron and Morris (1973a, 1973b). 

We shall study the risk of ~H firstly for large n and then for large p. In either 
case we shall show that for/-/1 and/-/2 of the same rank, 9H1 has smaller risk than 

(~H2 if IH191 < [/-/29 I. This is not directly helpful as 0 is unknown. 
However, our main result, Theorem 1.3, tells us to choose 0H1 rather than ~H2 

if [H1)([ < IH2)~[. 
More generally it gives us a rule to choose H efficiently from a predetermined 

set - -and thus, in general, how to improve on both the James-Stein estimate and 
the Lindley estimate. 

Our first result is well known, although it does not appear to be specifically 
stated anywhere. It shows that 0H has smaller risk than X. 

(1.2) Set h(A, r) -- r 2 E ( r  + 2K) -1 for r > 0 

and K Poisson with mean A/2 > 0 

"~H ~- n v - l l H g l  2 and 

A(H)  = h ( A H ,  rH  -- 2). 

THEOREM 1.1. 

(1.3) E]gH -- 812 : n - l v { p  -- hA(H)} w h e r e  b = v / ( v  + 2). 

N o t e  1.1. This was proved for H = I by James and Stein (1961) and for 
H L  -~ I - 1 l ' / p  by Lindley--see the discussion to Stein (1962). We denote their 
corresponding values of 

P 

TH = IHg12/p  by 7 j s  = 1912/p and 7L ---- p-1 E ( ~ i  __ ~)2 
1 

P 
where 0 = p-1 ~,  0i. Also T H ~ T J S .  Thus T H is bounded as p increases if say {9i} 

1 
are bounded. 

N o t e  1.2. By (1.3), E I g H  -- ~912/EIf~ - 012 lies between 1 - b(rH -- 2 ) / p  at 
]H01 -- 0 and 1 at IHgl -- oc. 
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COROLLARY 1.1. If  the direction of O, i = o/IOl, is k n o w n  and H = I - ii' 
then EIOH -012 = n - l v ( 3 v  + 2p)/(u + 2) for all Iol, so that the risk of OH relative 
to that of X is about 3/p for v /p  large. 

This is an exceptional situation and will not be referred to again. 
The following expressions for h(A, r) are due to Stein (1966) and Efron and 

Morris (1973b). 

(1.4) 

(1.5) 

OO 
h(~, T)= r2e -~/2 ~ ( r  + 2h)-'(-~/2)h/h!, 

h = 0  
(X) 

h(A, r) = r  }-~(-A/2)hF(r/2 + 1)/F(r/2 + 1 + h) 
h = 0  

= r{1 - A(r + 2) -1 + A2(r + 2)-1(r  + 4) -1 . . . .  } 

= r1Fl(1; r/2 + 1; -A/2) ,  

where pFq is the hypergeometric function; for r > 0 an even integer, (1.5) can be 
written 

r/2 

(1.6) h(A, r) = ( r /2 ) ! ( - ; /2 )  -r/2 e -~/2 - h~=O(--A/2)h/h! i . 

These expressions and others easily follow by noting that  h(A, r) is equivalent to 
the incomplete gamma function 

fo  x ~/(a, x) ---- ta- le- td t ,  a > 0 .  

T H E O R E M  1.2 .  

(1.7) h(;,  r) = r2e-~/2(-A/2)-~/2~/(r/2, -A/2) /2 .  

For an approximation to the risk for large n, by (1.3) we need to approximate 
h(A, r) for large ~. From (6.5.32) of Abraznowitz and Stegun (1964) it follows that  
for I_> 1, 

(1.8) 
I--1 

h( /~ ,  r ) / r  2 = -- E ( - - ~ / 2 ) - i - 1 ( r / 2  -- 1 ) i / 2  -t- R I  

i = 0  

: ,~ -1  _ ( r  - 2 ) ~  - 2  ~- ( r  - 2 ) ( r  - 4)A -3 . . . .  + RI 

where 
In/I < ( ~ / 2 ) - S - l l ( r / 2  - l h l / 2  and 

(a)i ---- a ! l ( a -  i)! ---- a ( a -  1 ) - - - ( a - - i  + 1). 
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If I < r/2, 

f 
;~/2 

R I  = ( - 1 ) I ( r / 2  - 1 ) r ( ) ` / 2 ) - r / 2 e  - ~ / 2  x r / 2 - X - l e X d x  
do 

(this follows from integration by parts).  
For r _> 0 even this implies (1.6), while for r odd and I -- (r - 1)/2 it reduces 

to a result of Egerton and Laycock (1982). 

Note 1.3. (1.8) with I = cx~ yields the expansion for uF0(1; 1 - r/2; 2/),); 
this is divergent if r is not even. 

Since RI = o ( r l ) `  - I - l )  as ) ` / r  --~ 00, (1.8) gives a useful expansion for )`/r 
large and I fixed. 

Copas (1983) gives expressions equivalent to the following approximations 
((3.12) and p. 349); 

(C1) 

(c2) 
h()`, r )  - r 2 / ( ) `  + r - 2), 
h()`, r) - r2()` + r + 2)/()` 2 + 2r)` + r 2 + 2r). 

Table 1 gives h()`, r)/r and the deviations from it for (C1), (C2) and (1.8) with 
I = 2 and 3--referred to as (I2) and (I3). For )`/r small (I2) and (I3) perform 
poorly, as expected. 

Table  1. A compar i son  of 4 a p p r o x i m a t i o n s  to h(A, r ) .  

r h(A, r ) / r  C1 C2 I2 I3 

100 3 .030 .000 .000 .000 .000 

8 .075 .000 .000 .000 .000 

18 .155 .000 .000 - . 0 0 4  .000 

20 

10 

3 .142 - . 0 0 1  - . 0 0 2  .000 .000 

8 .302 --.006 --.002 --.022 .002 

18 .487 --.013 --.001 --.307 .197 

3 .265 --.008 --.008 .005 .002 

8 .474 --.026 --.003 .154 .038 

18 .659 --.033 .000 --1.74 2.29 

3 .446 --.054 -- .017 --.034 .010 

8 .652 --.075 --.003 --.972 .564 

18 .797 -- .060 --.001 --8.72 23.5 
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COROLLARY 1.2, Define "rH, TJS and TL as in Note 1.1. 

(1.9) A ( H )  = (rH -- 2)2AH1{1 + O ( r H / A H ) }  

= v(rH -- 2)2(npTH)-I{1 -- V(rH -- 2)(np'rH) -1 + O(n-2 )}  

= ~ O ( n - l p )  i f  T H > 0 

[ r H - -  2 i f  T H = O. 

Hence for  b of (1.3) and T L > 0 

(1.1o) 
ElOjs  - 012 - EIOL - 012 = pn-2bv2Up{1  + O(n-1 )}  and 

ElOss - OI2/EIOL - 012 = 1 + n - l b v B v  + O(n -2) 

where Bp 
(that is, Bp > O) ¢==ee 
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= TLI(1 -- 3/p)  2 -- Tj~(1 -- 2/p)2; thus OL improves on OJS for  large n 

(1.11) 

(1.12) 

I01/1~1 < ( p -  2 ) / ( 2 -  5 /p)  1/2 

CV(O) < (p - 3)(2p - 5)  - 1 / 2  

where CV(O) = TL/2/IOI, the "coefficient of variation of 0"; i f  < in (1.12) is 

replaced by >, then ~JS improves on OL for  large n. Similarly, i f  ~'ys > 0 and 
TH > 0 then OH improves on OYS for  large n ¢=~ 

IHOI/IOI < (rH - 2) / (p  - 2) -: ',- 

IHOI/I(I - H)OI < ( r H  - -  2 ) ( p  - -  rH) - l / 2 (p  + rH - 4) -1/2. 

Note 1.4. RHS of (1.11) and (1.12) both  increase with p. 

Table 2. Maximum values of 101/10] and coefficient of variation for Lindley's estimate,  ~L to 

improve on the James-Stein estimate,  ~JS for large n. 

p 3 4 5 6 7 8 9 10 20 30 40 50 100 c~ 

RHS (1.11) 1.73 2.31 3 3.70 4.41 5.12 5.82 6.53 13.6 20.7 27.8 34.8 70.2 oo 

RHS (1.12) 0 .577 .894 1.13 1.33 1.51 1.66 1.81 2.87 3.64 4.27 4.82 6.95 c~ 

Note 1.5. (1.10) is a part icular case of Hi = I - ii' where i is any given unit 

vector. Thus 0H~ improves on OJS for large n -( ',- 

(p - 3)21H,01-2 > (p - 2)2101-2 * = *  IH~OI/li'OI < RHS (1.12) 

I s ina i  < 1 - (p - 2) -1  

where a is the angle between i and/9. This will be true for p sufficiently large if c~ 
is bounded away from rr/2. Also IHiOI 2 = I0 - ii'OI 2 = ]0] 2 - (i'O) 2. 
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According to (1.9) for large n we would like to choose H to minimise IHO[ 
/ (rH -- 2). This motivates the following adaptive estimate. 

(1.13) 

(1.14) 

wheFE 

THEOREM 1.3. Let H be a finite set of p x p idempotent H with rank rH ~_ 3. 
Choose [-I from H to minimise IH f ( i / ( rH  -- 2). Then for fixed p, as n ~ c~, 

El0 o - 012 = n - l v { ;  - bZ~(H)} + O(e -~n) 

_ S n - l v { p  - bA0(H)} + O(n -3) i f  "r(H) > 0 

- I n - l v { p  bAI(H)} + O(e -~n) i f  7 ( H )  = 0 

and A > O. 

A ( H )  = max{A(H):  H E H } ,  

T(H) = min{T(H): H E H } ,  

A0(H)  = n - l v / { m i n [ l H O I / ( r H  - 2): H E HI} 2, 

A I ( H )  = m a x { r H  -- 2: HO = 0} 

This theorem shows that for large n, 0B performs as well as the best estimator 

from {OH: H E H}.  
In practice one might choose H = {I} U H0 where H0 = {I - i i ' ,  i E Z} for 

some finite collection of unit p-vectors Z = {i}; according to the rule in Theorem 
1.3 we can replace H0 by {I - ix i~x} where i maximises ]i')~ I in Z; thus H = I 
or I - iXi~x accordingly to whether 

IX l / (p  - 2) < o r  > 1 2  - i x i ' x Y ( l / ( p  - 3).  

1.6. If we change the origin by 5 E R p we obtain the "translated" Note 

estimator 

where 

O = O(H, 6) = f ( -  Z Y  

Y = H(J~ - 5) and Z = n - l v ( r H  -- 2)lY1-2 

Its risk is that of 0H with 0 replaced by 0 - 6. Thus its risk is that of OH if 6 lies 
in the null space of H; (this has dimension p - ru ) .  It's "positive-part" version is 

0 + = 3  + ( g , 5 ) =  { 0 ( H ' 6 )  if Z < I  
6 + ( I  - H ) ( J ~  - 6) if Z _> 1. 

Also [E0 + - 0[ 2 < El0 - 0[ 2. However one can show the difference is only O(n -3) 
for fixed p. 

We now extend Theorem 1.3 to include such translated estimators. 

THEOREM 1.4. Let H be a finite se t  of p x p idempotent H with rank rH >_ 3, 
and L a finite subset of R p. Choose (H, 5) from H x L to minimise IH()~ - 
5)l / (rH -- 2). Then for  fixed p, as n --* oe 

f n - l v { p  - b A o ( H ,  L)} + O(n -3) i f  T ( H ,  L) > 0 
EI/~(/-)' ~) - 012 : I n - l v { p  AI(  H ,  L)} -1- O(e -An) i f  T(H, L) : 0 
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where 

A0(H, L) = n - l v / { m i n  IH(O - 5 ) l / ( r H  - 2): H ~ H ,  L E L} 2, 

A1 (H,  L) = max{rH -- 2: H(O - 5) = 0}, 

r ( H ,  L) = min{[H(O - 5)[: H E H ,  L E L} and A > O. 

Note 1.7. George (1986a, 1986b and 1986c) considers quite a different sort of 
adaptive es t imate--an adaptively weighted linear combination of {~(H, 5), H E 

^ . 

H ,  5 E L}. Our estimator O(H~ 5) is much simpler. 

So far we have looked at how the risk behaves as the sample size n increases 
with the dimension p fixed. We now consider what happens when n is fixed but 
p --~ co. 

LEMMA 1.1. 

(1.15) 

and 

(1.16) 

Also 

F o r r  > 2, 

(1 + r /~)  -1 < ~h(~, r)r  -2 < 1 

h(A, r) = r2A-l{1 + O(r/A)} as r/)~ -~ O. 

(1.17) h(rc, r ) / r  ~ (1 + c) -1 

Note 1.8. 
Inequalities are also given by Sathe and Shenoy (1986). 
using 

(i) h(,k, r ) / r  2 is decreasing in (A, r); 
(ii) h(A, r ) / r  is increasing in r; 

(iii) h(,~, 2) -- 4,k-1(1 - e-~/2). 

THEOREM 1.5. Suppose n is fixed and 

IgSi2/rH ~ r* and rH/p  --* ~ as 

T h e n  

(1.18) 

as r --~ oo for  f i x ed  c. 

The first inequality in (1.15) is by Casella and Hwang (1982). 
Others axe obtainable 

p---+ oo. 

a(H)/p-~ ~/(1 + n v - i ~  *) as p - ~  o o .  

This result immediately implies. 

THEOREM 1.6. Suppose that rill/rH2 --~ 1 as I9 --* cc and r n l / p  is bounded 
away from O. Then OH1 has smaller mean square error than 8H2 for large p and 
J ~ e d  n .*--> 111101 < IH20I,  o r  m o r e  p rec i s e l y ,  
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COROLLARY 1.3. Under the conditions of Theorem 1.5 

l i m s u p )  EIOH - O I 2 / E I f ( - O [  2 = 1 - b~/(1 + n v - l T  *) ~ 1 
p-~ec / 

with equality -: '.. either rH/p  ~ 0 or [goI2/rH --~ ~ as p ---, e~. 

Thus the risk of  0H relative to that  of X is generally bounded below 1 for 
fixed n and increasing p. But  for fixed p and increasing n it tends to 1 if IHOI 7 ~ O. 

2. Proofs 

PROOF OF THEOREM 1.1. 

A ~ =  0 " 

and H X  = U' 

mean 

where 

Set r = rH, H = U'ArU where U'U = Ip and 

(Y1)y2 with Y1 E R r "  T h e n Y ~ N p ( U O ' v n - l I )  

( r 0 1 ) .  So ,OH--O[ 2 = Y - U O - ( r - 2 ) ~ n - l ( Y O l ) , Y 1 [ - 2 2 h a s  

pvn -1 - 2 b v n - l E A  + b(r - 2 )2 ( v /n )2EB  

A = (Y - UO)' (YOO1) IY~[ -2 

B = Igl1-2. 

= ( g l  - u o ; g l  Igl1-2, and 

By James and Stein ((1961), pp. 364-365), 

E A  = (r - 2)E( r  - 2 + 2K)  -1 and 

where K ,,~ Po(6/2)  and ~ -- nv- l l (UO)l l  2 

Corollary 1.1 follows from HO = O. 

PROOF OF THEOREM 1.2. 

/01 /0 E(b + K)  -1 = E tN+b-ldt  = 

e - ~  -b ~0 I~ 

Set [Xls = (E]XIS) 1/s. 

LEMMA 2.1. IOH--OIs = O ( n  -1/2) f o r t H  > s > 2. 

PROOF. IOH --OIs <_ Cs + n - l v ( r -  2)Cs w h e r e r = r H ,  

c~  = 12 - 0Is = O ( n  -~ /2)  

E B  = n v - l E ( r -  2 + 2K)  -1 

----AH. [] 

t b-1 exp p(t  - 1)dt 

sb-l  e~ds = e-"(--#)-b,7(b,  --#). 
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and 
D~ = [ [ H X [ - l l s .  

Now by p.3 of James  and Stein (1961), 

IH212 n- lvx2r( /~H) -1 2 ~- ---- n V~r+2 K 

So 

for K ,.~ P o ( A H / 2 ) .  

= + ( ~ +  • 

--1 

Therefore for r > s > 2, 

r ( s / 2 ) D : ( n / v ) - 4 2  = E B  T + K ,  s / 2  

< o o  

since B(a ,  b) = f l  t a_ l (  1 _ t ) b_ ld  t decreases with b. Therefore Ds = 0 ( n l / 2 ) .  [] 

PROOF OF THEOREM 1.3. We give this for the case H =  {H1, H2}, ri = rH, 
and A(0): IHlOI / (r l  - 2) < IH201/(r2 - 2). (Proof  for the general ease is similar.) 
By large deviation theory 3A > 0 such that  

P([-I  = H1) = P ( A ( f i ) )  = 1 - O(e-Z'n) .  

Therefore 

EIO[¢ - 012 = EIOH - OI2 I( A ( X )  ) + EIOH~ - 012 

= EIO.1  - 012 + zX 

where A = E ( A 2  - A 1 ) B ,  B = 1 - I ( A ( f ( ) )  and Ai  = 10H~ - 012. For 

r - l + s  -1 = 1  and 1 < r < o c ,  
2 

I E ( A 2 -  A 1 ) B  t <_ E I A ,  tTIBI~. 
1 

Also IB]~ = O(e-~n/s ) .  Take 1.5 < r _~ 2, so 2 _~ s < 3. By Lemma 2.1, 
[Ai[T = O ( n - 1 ) ,  so A = O(e-~n/s ) .  Hence (1.3) implies (1.13). (1.14) follows by 
(1.9). D 

Theorem 1.4 is proved similarly. 

PROOF OF LEMMA 1.1. The 2nd inequality comes from 

E ( b + g )  -1 < E ( I + K )  - 1 - - # ( 1 - e  -~)  for b >  1 

(1.15)~(1.16) .  o 

and # = A/2. 

Theorem 1.5 follows from (1.17). Corollary 1.3 follows from (1.3), (1.18). 
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