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A b s t r a c t .  This is a paper about the foundation of robust inference. As a 
specific example, we consider semiparametric location models that involve a 
shape parameter. We argue that robust methods result via the selection of a 
representative shape from a set of allowable shapes. To perform this selection, 
we need a measure of disparity between the true shape and the shape to be 
used in the inference. Given such a disparity, we propose to solve a certain 
minimax problem. The paper discusses in detail the use of the Kullback-Leibler 
divergence for the selection of shapes. The resulting estimators are shown to 
have redescending influence functions when the set of allowable shapes contains 
heavy-tailed members. The paper closes with a brief discussion of the next 
logical step, namely the representation of a set of shapes by a pair of selected 
shapes. 

Key words and phrases: Robustness, distributional shapes, Kullback-Leibler 
divergence. 

1. Introduction 

Huber  (1964) argued tha t  a location es t imator  ought  to behave well not  just  
at one par t icular  dis tr ibut ional  shape. Consequently,  his robust  es t imator  retains 
a low asymptot ic  variance in a class ~ of shapes. Robust  est imators  are good 
candidates  for procedures  to be used in compute r  packages, i.e. methods  tha t  
are applied routinely. Hampel  (1968, 1971, 1974) added a new interpretat ion.  
He argued tha t  the local behavior  of the es t imator  near  a par t icular  shape is of 
interest,  and tha t  this can be used to derive optimal  robust  est imators  (Hampel  
et al. (1986)). Hampel ' s  approach involves the statist ical  functional T which 
defines the parameter  to be est imated.  The  center of a symmetr ic  distr ibution,  
for example,  can be described by many  different functionals. Of these, Hampel  
proposes a specific choice, given approximate  knowledge about  the underlying 
distribution.  Today, robustness is often taken to be equivalent to the stabili ty of 
the inference procedure,  an idea which follows in J. W. Tukey's  footsteps. 

Our paper  is about  the foundat ion of the robust  approach.  Following Huber  
and Hampel ,  we believe tha t  robustness has to  do with details of assumptions 
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that underlie inferential procedures. Suppose our statistical model takes the form 
{Pn:u = (0, A), 0 E RP}, where 0 describes the parameter we really wish to 
estimate and A contains all the additional parameters that we must consider in 
order to be realistic. Note that such a parameter A often takes values in an abstract 
space. 

A typical non-robust method chooses a convenient Ao and proceeds on that 
basis. On the other extreme lies the nonparametric approach which proceeds by 
estimating 0 and A together. Between these two lies the robust approach, where 
one selects an appropriate A and proceeds on that  basis. To formalize that selection 
we use a measure of disparity between models for 0 having different A-values. In 
order to find models that result in robust inferences about 0, one must, therefore, 
have two basic ingredients, namely 

i) a class of allowable values for the parameter A, and 
ii) a measure of disparity between a contemplated value of A and the true 

value of A. 
Given these two ingredients, we propose the following problem which gener- 

alizes Huber's approach (1964). One can think of the selection of a A-value as 
finding a representer for the class of allowable A-values. This representative ele- 
ment ought to be at the center of the class, meaning that  the maximal disparity 
from the selected model to any of the others is made as small as possible. This 
leads to the minimax problem 

min max disparity(q; A). 
A a con templa ted  value ~) a t rue  value 

These above two components of the robust approach are "necessary". There is no 
meaning in the term robustness unless we are sure what attribute of the inference 
we want to be robust about and under which circumstances. 

In the next section we will explore an unrealistically simple situation where 
the robust approach is applicable. We then revisit the most widely discussed 
instance of robustness, namely the case of a vaguely known shape parameter. In 
this connection we study a natural measure of disparity that has never been used 
in robustness, namely the Kullback-Leibler divergence. 

2. An example 

Let X 1 ,  X 2  be independent random variables with a normal distribution hav- 
ing unknown mean # and unknown variance a 2. We want to study interval es- 
timation of #. This means that  # is our 0 and a2 is our A. For this problem, 
Student's t-interval corresponds to the "nonparametric" solution, because it esti- 
mates a 2. This interval is given by [(X1 +X2)/2±6.351X1 -X21]. It has a coverage 
probability equal to 95% and an expected length of 14.34a. 

We can also look at the described experiment as being composed of simpler 
models of the form {N(#, a): a known, # C •}. In this case the 95% confidence 
interval for # is i~ = [(X1 + X2)/2 + 1.39a]. This solution corresponds to the 
"narrowly parametric" solution in our analog. The interval i~ has, if the assumed 
model holds, an expected length of 2.77a and a 95% coverage probability. 
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As the class of allowable A-values, we take an interval a E [OL, o'U], for some 
0 < aL < (rU. The disparity function is an asymmetric  function of the contem- 
plated scale A and the true scale ~. Its value 0 < d(~; A) indicates how well the 
inference based on model A behaves, if the da ta  actually follows model ~. The 
confidence interval i~ has an expected length of 2.77A and coverage probability 
(2(I)(1.96A/~) - 1), assuming ~ describes the true model ((I) denotes the s tandard  
normal distribution). An ad hoc choice for d, balancing the increased expected 
length and the decreased coverage probability, is 

(2.1) d(~; A) = 2 .77(A-  ~)+ + log \ 0.05x + '  

where x = 2(I)(1.96A/~) - 1, and (z)+ = z, if 0 ~ z and = 0, otherwise. 

Example. Suppose a E [1, 9]. The above disparity function between models 
leads to the minimax model N(#, 7.45). However, a direct comparison of the 
"robust" interval with the "nonparametric" one seems unfair, because one would 
surely take into account tha t  a E [aL, flu] even in the adaptive approach. For 
tha t  reason we include in the evaluation a modified version of Student 's  t which 
uses the est imate s~ = min(av ,  max(aL, s)) of a instead of the usual est imate s. 
The ratio 21/2(X1 + X2)/(2s~) is no longer invariant under scale changes and the 
critical value depends on the unknown a. To facilitate the comparison, we used 
the correct critical value for a = 7.45. Expected lengths and coverage probabilities 
of the three intervals are shown in Figs. 1 and 2. 
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Fig. 1. Expec ted  lengths of three  confidence intervals. 
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Fig. 2. Coverage probabilities of three confidence intervals. 

Apparently, Student's t-interval pays a heavy penalty for its "adaptiveness", 
as is shown in the dramatic increase of the expected length. The modified version 
undoes some of this, but not all. In Fig. 2, we can ewluate the robust procedure 
with regard to coverage. The worst coverage is reached at a = 9 with about 89.5%. 
Notice how in the region a ~ [4, 6] the "robust" interval has a higher coverage than 
that of the "modified adaptive" one, even though the expected length is shorter. 

This trivial example shows what we mean by robustness. Robust techniques 
come into play whenever there axe "nuisance" parameters that  axe difficult to 
estimate, but may have a substantial bearing on the inference. In such situations 
one typically pays too heavy a price for estimating these parameters. Robustness 
is an alternative. One selects a value for the nuisance parameter, and then uses 
the selected model to make inferences. 

In the simplest situations this approach works quite well. In more complicated 
cases, or if one wants an even better method, one can generalize this idea. As a 
first step, instead of selecting a single representer for the class of allowable A- 
values, one can select two representative models. Both can then be fit to the data 
and a compromise between the two inferences can be found. In general this will 
improve over the simpler robust method, while still not attempting to estimate 
the nuisance parameter. 

Example. Consider once more the example involving location and scale and 
suppose ~ E [1, 9]. In order to select a pair of models, the disparity function must 
be modified to measure the discrepancy between a pair of contemplated models 
and a true model. If one thinks again of the disparity as a kind of distance in the 
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set •, then the problem 

min max (d(r/; .~1)Ad(rl; A2)) 
()~,)~2)E[a~,au] ~ ~E[aL,aU] 

makes sense (x A y ---- min(x, y)). The disparity (2.1) will now lead to the si- 
multaneous model {N(#, 2.5), N(#,  8.1)}. Sophisticated compromise confidence 
intervals for this model are described in Morgenthaler (1986b). It is no longer 
feasible to analyze their distributional properties without simulation. 

In the next section we will discuss Huber's robustness problem (1964) involving 
distributional shapes and we will consider two alternative choices for the disparity 
function. 

3. Shape parameters 

3.1 Huber's disparity and entropy 
Huber (1964) considers point estimation for a location model {F(x - #): it E 

R}. This model has an infinite dimensional "nuisance parameter" A, namely the 
distribution function F(x), which is assumed to be symmetric around 0. We call 
such a parameter a shape parameter. This is an example which falls under the 
category of Section 2. Based on a smallish number of observations, it is difficult 
to estimate F or its density f .  It is especially hard to infer much useful knowledge 
about  the most crucial aspect of F ,  its tail behavior. 

It is well known that there exist adaptive location estimators that are efficient 
if our class jc of allowable shapes is $- = {absolutely continuous, symmetric distri- 
butions with center of symmetry at 0} (Stone (1975) and Beran (1978)). However, 
efficiency is defined asymptotically and the performance of these efficient nonpara- 
metric estimators in smallish sample sizes (n _< 20) is unknown. 

In robustness one works with smaller classes ~-, the leading example being 
the gross-error model GE(c, q~) = {(1 - e)O + ell: H symmetric}, where q) is the 
standard normal distribution and e > 0 is fixed (see Huber (1981)). Huber (1964) 
considers the disparity function 

V(F; G) = asymptotic variance of Tc (= MLE based on G) when the data 

follows the true model F. 

In order for this function to be well defined on GE(e, ~) x GE(e, ~), one must 
choose a subset of GE(e, ~) that contains sufficiently nice models. 

Example. (Huber (1964)) Let SU(~, ~) = {F E GE(e, ~5): F absolutely 
continuous, - l o g /  convex, with support R}. (A distribution with the property 
"- log(densi ty)  convex" is called strongly unimodal.) In this case one can show 
that there exists a unique Fo E SU(e, O) such that 

V(F; Fo) V(Fo; Fo) V(Fo; a) 
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for any choice of F and G from SU(e, a2). The shape Fo is, therefore, at the center 
of SU(~, a2) in the sense of the disparity function V(F; G). (It should be noted 
that Huber's minimax estimator (1964) satisfies a more general proposition. One 
may choose F from a bigger class than SU(c, ¢).) 

A divergence function between distributions that  is of statistical importance, 
especially in connection with hypothesis testing, is the Kullback-Leibler diver- 
gence. When F and G are absolutely continuous with F 's  support contained in 
G's support, this function is equal to 

F I(F; G) = ( logf  - logg)fdx 
O 0  

(Kullback (1968)). 

In all other cases, I(F; G) = ~.  
If our set 9 r contains only smooth distributions then the Kullback-Leibler di- 

vergence is a reasonable measure for the problem of estimating #. One connection 
is immediate. Note that  ( - l o g  f)  and ( - l o g  g) are the contrast functions corre- 
sponding to the M-estimators TF and Ta, so that  the function I(F; G) has an 
intuitive interpretation in location estimation. A different connection has been 
revealed in Morgenthaler (1986a). When we attempt to adapt our estimation pro- 
cedure to the underlying shape, we face the task of distinguishing between shapes 
based on the observed data. This is a testing problem and the Kullback-Leibler 
divergence enters quite naturally. In fact, an optimal procedure that  compromises 
between two fixed shapes proceeds on the basis of the Kullback-Leibler divergence, 
not on the basis of Huber's distance measure. 

It is important to realize that the K-L divergence only makes sense for smooth 
shapes. From now on we assume our shapes to be absolutely continuous with 
support equal to R. In fact, our set 5 r can always be represented as a subset of 
L°~(R) N L 1 (R), because all of our distributions have bounded densities. 

For the analysis of I(F; G) it is helpful to consider first the simpler shape 
disparity 

/? i(F; G ) =  - loggfdx.  
(X?  

To understand the behavior of this function, consider 

F En(G) = - logggdx, 

the entropy of G. The G£teaux derivative of En at G in the direction F is, if it 
exists, equal to 

OEn(F; G) = d En(Gt) ]t=o = i(F; G) - En(G), 

where Gt -- (1 - t)G + tF.  In other words, the shape F* 6 9 r ($" convex) that 
maximizes En must be a saddle point of i(F; G). 
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PROPOSITION 3.1. Suppose .~ is a compact, convex set of absolutely con- 
tinuous distributions that have support equal to R, as well as bounded densities. 
Assume that En is bounded on .~. Then it follows that En has a unique maximizer 
F* G :F and furthermore 

i(F; F*) < i(F*; F*) < i(F*; G), VF, G E Y. 

PROOF. The functional - E n  is lower semi-continuous (Rockafellar (1971)). 
Let F, G E 5 r with F ~ G, and define Gt -- ( 1 - t ) G + t F .  The function h: (0, 1) 
R defined by h(t) = - En(Gt)  is in C2(0, 1) and satisfies 

F h"(t) = ( f  - g ) 2 / g t d x  > 0 (gt = (1 - t)g + t f ) .  

It follows that h(t) is strictly convex. This implies the existence and uniqueness 
of the point F* where En  achieves its maximum. Since the G£teaux derivative at 
F* in direction F exists, it must satisfy 

i(F; F*) - En(F*)  = OEn(F; F*) < O, VF E .F. 

We therefore have one of the claimed inequalities. The second inequality simply 
follows from the well-known fact that 

I(F*; G) _> 0 VG. [] 

As an application of this proposition, let us reconsider the example of nice 
gross-error shapes, SU(e, ~). Denote by co(SU(e, O)) the convex hull of SU(c, O). 
The assumptions of the previous proposition are satisfied by co(SU(e, ¢)).  

PROPOSITION 3.2. Huber's least favorable distribution Fo (1964) with density 

(1 - ~)~(y),  
f o ( y )=  (1 e)cp(k~)exp(-k,(lyl-k~)) , 

if lyl _< k~, 
if lyl > k~, 

maximizes entropy in the class co(SU(E, (I))). (The value ofk~ satisfies 2~(k~) /ke-  
2(I)(-k¢) = e/(1 - e); and ~ denotes the standard normal density.) 

PROOF. The shape Fo E co(SU(e, ~)) maximizes En(F) ,  if and only if, 

OEn(G; Fo) = i(G, Fo) - En(Fo) ~ 0, VG. 

We will first show the existence of a constant 0 < c(G) < cxD for any G E SU(e, ~) 
such that 

g(x)  - So(x) < 0 
(3.1) 

g(x)  - fo (x)  >_ 0 

for almost all x > c(G) and 

for almost all 0 < x < c(G). 
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The first assertion of (3.1) is trivial. For a G with lighter than exponential tails, it 
follows from strong unimodality. For a G with exponential tails, it is a consequence 
of the construction of Fo, whose splice point k¢ is as large as possible. 

The second assertion in (3.1) is a consequence of strong unimodality. Because 
fo(X) -- (1 - e)~(x) < g(z) for all 0 < x < k~ and for all g in SU(E, 02), any density 
g that does not satisfy (3.1) would have to cross over the density fo (at least) twice 
in the interval [k~, co), say at xl and Xl < x2. Beyond x2, g would be smaller than 
fo; between Xl and x2 it would be bigger; and at some point between k~ and x2 it 
would be smaller. Consider the function - l o g  g at the points k~, x2, and a point 

between k~ and xl with g(~) < fo(X). Since g(k~) > fo(k~), the straight line 
connecting (k~, - logg(k~)) and (x2, - logg(x2)) lies below - log fo(X) (x > k~). 
The inequality - l o g g ( ~ )  > - l o g  fo(x) shows that - l o g g  cannot be convex. 

The inequalities (3.1) imply that Fo maximizes entropy within SU(e, 02). Take 
any G E SU(e, 02). Both fo and 9 are symmetric probability densities, implying 

f ~  ~o c(G) (g(x) - fo(x))dx = - (g(x) - fo(x))dx <_ O. 

Furthermore, since - log(fo(x)) is increasing on R+, we find 

fc - log fo(X)(g(x) - fo(x))dx <_ - log fo(c(G)) (g(x) - fo(x))dx 
(G) (a) 

---= log fo(c(G) ) .~c(G)(g(x) -- fo(x) )dx 

fo c( a ) 
_< log fo(x)(g(x) - fo(x))dx. 

This implies 

fo ~ fo(x)(g(x) - fo(x))dx < O. log 

With this, Proposition 3.2 is proved, because the convexity of En(F)  implies that 
its maximum over the set co(SU(e, 02)) is achieved in SU(e, 02). D 

The disparity functions V(F; G) and i(F; G) behave similarly and both lead 
to tractable optimization problems. Both of them possess a saddle point. Because 
of this fact, however, we cannot generalize to the selection of two shapes. Suppose 
we consider the minimax problem involving pairs of shapes, 

inf sup i(F; G1)/k i(F; G2). 
(G1 ,G2) E$'× ~- FE~" 

Any pair (F*, G), with F* the entropy maximizer and G arbitrary, solves this 
problem. A similar comment applies to Huber's disparity V(F; G). 



A F R A M E W O R K  FOR ROBUSTNESS 139 

3.2 Kullback-Leibler divergence 
It is clear how one must modify the two divergence measures from the last sec- 

tion. In Huber's case (1964) we ought to consider asymptotic efficiency rather than 
asymptotic variance. In the case of i(F; G), we ought to switch to I(F; G). We 
have previously derived the formula I(F; G) = i(F; G) - En(F) = OEn(F; G) + 
En(G) - En(F).  The function I(F; G) has a geometrical interpretation. It is 
equal to the difference between the concave "surface" En(F) and its "tangent" 
OEn(F; G) + En(G) at the point G. This representation makes the analysis of 

(3.2) min max I (F;  G) 
GE~- FC9 ~ 

feasible. 

PROPOSITION 3.3. Let ~ be a compact, convex set of absolutely continuous 
distributions having support equal to R, as well as bounded densities. And suppose 
that En is bounded on ,T. Then there exists a unique point G* C .~ that solves 
(3.2). 

PROOF. 9 r is the convex hull of its extremal points. Denote by L the linear 
functional which is equal to En at all these extremal points. The functional ( E n -  
L) is then a concave, bounded functional on ~ .  It has therefore a unique maximizer 
G* E 5 c. Furthermore, it follows that O(En - L)(F; G*) = OEn(F; G*) - L(F) + 
L(G*) <_ 0, VF E ~'. Let F~ E ~" be an extremal point. We then find, using the 
previous inequality, that 

I(F~; G*) = OZn(Fe; G*) + En(G*) - En(Fe) <_ En(G*) - L(G*). 

Let G C -~ be any shape such that the inequality 

I(F~; G) <_ En(G*) - L(G*) 

holds for all extremal points F~. From this it follows that 

En(G) < En(a*) - L(O*) - OEn(F~; G) + En(F~), VF¢. 

This implies 

En(G) - L(G) <_ En(G*) - L(G*) + OL(F~; G) - OEn(F~; G), VF~. 

Since both OEn(. ; G) and OL(. ; G) are continuous linear functionals, there must 
exist an extremal point Fe where On(Fe; G) - OEn(Fe; G) < O, unless the two 
functionals are identical. In both cases we conclude that G = G*. 

We have shown that  G* is the unique value of G in jc such that I(F~; G) < 
En(G*) - L(G*) for all extremal points F~. This, together with the fact that 
I(F~; G*) < En(G*) - L(G*) for all extremal points F~, implies that G* is the 
unique minimizer in ~" of maxI(F~; G). (Here max is taken with respect to all 
extremal points Fe, which suffices because of the convexity of I(F; G) with regard 
t o F . )  [] 
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3.3 Strongly unimodal shapes close to the Gaussian 
We will apply Proposition 3.3 in the case of co(SU(e, ~)), the convex hull of 

the strongly unimodal shapes. The extremal points of co(SU(e, O)) must already 
be contained in SU(e, <~) and it is easy to guess their shape. Let A _> 0 and define 

(1 - e ) ~ ( x ) ,  
(1 - c)~(xl) exp(-xl([x[ - xl)), 

f),(x) = (1 - e)~(x~)exp(-xu([x[- Xu)), 

For any choice of xl < xu with A = (xl+x~,)/2, 
symmetric and positive. One finds that 

if [x[ > xu or Ix[ < Xl, 
if xl < [xl < A, 
if A < Ix[ < x~. 

this function is continuous, 

o ~ f~(x)dx = 1/2 - e/2 + (1 - e)(~(xl) - ~(xu)) 

+ (1 - e)(~(xl)/xz - ~(xu)/x,)  
- (1 - e)qo(xl) exp(-xz(x~ - xz)/2)(1/xz - 1/x~). 

Setting this expression equal to 1/2 leads to an equation which must be satisfied 
by (xl, xu) in order to make f~ a density. It turns out that for A large enough, 
the density fx belongs to co(SU(e, ~)). (And it is certainly an extremal point, 
since by construction fx(A) > f(A), Vf E SU(e, O), f # f~. This is therefore also 
true for all f E co(SU(e, ~)), f ~ f~.) When the value of A is close to zero, the 
point xt is negative and fA is no longer strongly unimodal. In that case the proper 
definition is 

(1 - ~ ) v ( ~ ) ,  
(1 - e ) ~ ( x ~ )  e x p ( - x u ( ] x [  - x ~ ) ) ,  

f~(x) - -  (1 - e)~(xu)exp(-xu(A - x~,)), 

if Ixl > x . ,  
if  ~ < Izl < x . ,  
if Ixl < A, 

with 
1/2 : (1 - e) - (1 - e)~(xu) - (1 - e)~p(Xu)/Xu 

+ (1 - ~ ) ~ ( x ~ )  e x p ( - x u ( ~  - x ~ ) ) ( ~  + 1/x~). 

We conjecture that the family of densities {f~: A > 0} contains all the extremal 
points of co(SU(e, (I))). To determine the solution G* of 

min max I(F; G) 
GEco(SU(e,¢')) Feco(SU(e,O)) 

we resort to numerical analysis, since an analytic solution seems impossible. We 
have chosen a discrete subset of {f~: A k 0} and considered the problem 

(3.3) rain max I(F; G), 
G'6<F;~I ..... F),n> Fc{F),I ..... F),n} 

where ( F A I , . .  • , FAn} denotes the convex set spanned by F~I , . . . ,  Fxn. In (3.3) we 
made use of convexity which implies that for any fixed G, the maximum of I(F; G) 
must be achieved at one of the extremal points. The function I (F ;  G) was eval- 
uated numerically using Romberg's integration. All the densities in co(SU(e, (~)) 
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Fig. 3. Approximate solutions in the classes S U  and AS. 

are well behaved, so that the evaluation of the Kullback-Leibler distance is not 
tricky. 

Figure 3 shows the function - logg*  for G* being the solution of (3.3) when 
n = 24, A E {0(0.01)0.05, 0.1, 0.15, 0.25, 0.5, 0.75, 1(0.5)6.5, c¢} and ~ = 0.1 
(the symbol a(h)b denotes a, a + h, a + 2h , . . . ,  b). 

Also shown in the plot is Huber's shape (1964), which, as we know, solves the 
entropy maximization problem. It can be seen from this plot that the Kutlback- 
Leibler shape is more squeezed in the shoulders of the density. The third shape 
shown in the plot will be explained in Section 4. 

3.4 The gross-error model 
Proposition 3.3 cannot be applied to the set GE(e, q~) because that set is 

too large. The maximal disparity is always cxD. It is, however, interesting to 
note that the Kullback-Leibler divergence leads to redescending M-estimates when 
applied to a smallish subset of GE(c, ~) that contains shapes that are not strongly 
unimodal. 

Example. We choose the triangle spanned by {¢, H, S} • GE(1/3,  ¢),  where 
H denotes Huber's least-favorable distribution (1964) and S is the slash shape with 
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density s(x) = 0.75(1 - exp( -x2 / (2 (O.75)2 ) ) ) / (x2vr~) .  The following minimax 
shapes are found with the various disparities discussed in this paper. 

V(F; G) --* H, 
I(F; G) --* 0.58. • + 0.29. H + 0.13. S, 
i(F; C) S. 

This shows again the extreme sensitivity of the entropy maximizer to tail thick- 
ness. And it shows that the slash shape which has Pareto tails contributes to the 
Kullback-Leibler solution. 

4. Asymmetric shapes and selection of pairs 

The restriction to symmetric shapes is artificial and is usually justified by 
the need for a unique definition of parameters, applicable to classes of shapes 
(Huber (1964)). In the present context, where parameter estimation is more in 
the background, one can easily treat families of shapes, which include asymmetric 
o n e s .  

Example. A mild model for asymmetry would be the class 

AS(e, (I)) : {F  = (1 - e)(I) + ell: F absolutely continuous, 

- log(f) convex and support of F equal to R}. 

We may again represent AS(e, ok) by a subset of L°~(R) ALl(R).  The set AS(e, ~) 
is then compact and its closed convex hull is equal to the convex hull of the extremal 
points of AS(e, (I)). These now have densities of the form 

= { 
(1 - e ) ~ ( x ) ,  
(1 - e )~(xl )exp(-xz(x  - xz)), 
(1 - e)~(x~) exp( -x~(x  - x~)), 

if x < Xl or Xu < x, 
if xz < x < ~, 
if)~ < x < xu. 

Again, ~ = (xz + x~)/2 and in order for f~ to be a density, we require 

(1 - e) + (1 - e)~(x~) + (1 - e)(~(xl)lx~ - ~ (x , ) t xu )  

- (1 - e)~(Xl)exp(-x/(% - xz)/2)(1/xl - 1/xu) = 1. 

It is obvious that if F C ~" implies F m E $', then the shape selected by 
(3.2) will be symmetric (define F m by fm(x)  --- f ( - x ) ) .  This is the case for 
AS(e, 4)) and Fig. 3 shows ( - logg*) ,  the approximate solution to (3.2) when 

= co(AS(e, (I))) with e -= 10%. An approximation was again computed us- 
ing a discrete set of extremai points. We took 37 distinct values for A, namely 
0.0(0.1)0.5, 1.0(0.5)6.5, as well as their negative counterparts. As we just re- 
marked, the solution is symmetric. When asymmetry is not ruled out, the selected 
shape has heavier shoulders than was the case with the solution from last section 
(see Fig. 3). 

The asymmetric model can also serve as an example for the more general 
approach to the selection of models. Suppose we wish to select two shapes G1, G2 
simultaneously. We have already indicated in Section 3 that in this case a minimax 
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problem for pairs of shapes is appropriate. A possible choice for the corresponding 
disparity function is d(F; G1) A d(F; G2). In the case of the Kullback-Leibler 
divergence this leads to 

(4.1) min m a x I ( F ;  G 1 ) A I ( F ;  G2). 
(G1,G2)E~'x,T" FE,T 

This problem can be tackled with the methods of Section 3. The solution of (4.1) 
is equal to the solution of 

(4.2) min max I(F; G1), min max I(F; G2) 
G1 E.T'I FE.T'I G2E~-2 RE-T-2 

with ~-1 = {F E 9r: I(F; G1) < I(F; G2)}, and 9v2 correspondingly. We know 
that each of the two subproblems in (4.2) has a unique solution for any choice of 
two compact convex subsets Y - Yl U $2. However, the solution of (4.2) only 
solves (4.1) if 

I ( F ;  e l )  - -  I(F; G2), VF E .~1 ['-] ff22. 

Example. In the case of co(AS(e, (I))) it is easy to guess the proper partition 
"~'1 U -)['2 = co(AS(e, (I))). Recall that the extremal points of co(AS(e, (I))) are 
{fa: ,k E R}. These will be separated into {f~: ,k _< 0} U {f~: ,k R 0}, thus defining 
the partition ~-1 U-)~2 • The convex set )rl has, of course, additional extremal points 
besides {fx: £ _< 0}. All of these additional extremals have the form wf),+(1-w)f ,  
with ,k < 0 and # > 0 and it is easy to find an equation for w. First of all, note 
that because of symmetry we know that the solution of (4.1) consists of a pair 
(G, Gm). (Recall that gin(x) = g(-x).) The newly created extremal points must 
satisfy 

I(F; G ) :  I(F; Gin). 

In other words 

F F F log gfdx = log gm fdx = log gfmdx. 
d o  d o  D O  

When f = w f), + (1 - w)f~,, this yields 

/_ ~ logg( /_ ,  - f~)dx 
o ~  

W ~ ( :x )  

jr_ logg((f~ - f_)~) + (f_z - f,))dx 
d o  

using the fact f ~  = f_~. An approximate solution for n = 10% was obtained using 
the discrete extremal set {fx: )~ E A and - ~  E A} with A = {0.05, 0.3, 0.6, 1.0, 2.0, 
3.0, 5.0, 6.0, oo}. Because we now have to deal with a partitioned set, there are 
90 extremal points to be considered, even in this discrete version of the problem. 
To gain an impression of the degree of asymmetry present in the solution, one has 
to consult Fig. 4, where the score functions for the various estimators discussed 
in this paper are shown. The asymmetry present in the solution is quite marked, 
the score function is closer to the linear score function of the arithmetric mean on 
one side. 
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5. Score functions 

If we intend to use the models proposed in this paper, it becomes neces- 
sary to not only know - log(density), but also the derivative of that  function. 
Since we were unable to solve the minimax problems analytically, and had to use 
numerical analysis on a discretized set of extremals, we only have approximate 
solutions. These approximations will typically not have smooth densities due to 
the discretization. Some nonparametric smoothing is appropriate in this case. 
Figure 4 shows plots of the score function associated with the minimax problems 
we discussed in the previous sections. The method of smoothing we used was a 
(cubic) spline smoother with smoothing parameter (sum of squared error)/(sum of 
squared error from the least squares line) = 0.01. Care was taken, not to evaluate 
the approximate solutions near points, where these solutions have discontinuous 
first derivative. 

2.00 

• 
Huber  

Pai r  from AS 

0.00 

- 1 .00  

- 2.00 I t I I 
- 1 0 . 0  - 5 . 0  0 . 0  5 . 0  10 .0  

x 

Fig .  4. V a r i o u s  s m o o t h e d  s c o r e  f u n c t i o n s .  

The comments that  were made when we discussed plots of - log(density) are 
confirmed in these graphs. 
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6. Concluding remarks 

Robust statistics as used in the literature deals with the stability of inferential 
procedures. The theoretical paradigms for robustness have been almost exclusively 
concerned with tail heaviness of error distributions in measurement models. Fur- 
thermore, they have concentrated on defining desirable properties of inferential 
procedures. In this framework of thinking one chooses, from all the estimators 
having these desirable properties, the one which is optimal. In this paper we dis- 
cuss a different approach to the robustness problem which is similar to the idea 
in Huber (1964). In our framework, the theoretical statistician must "model" the 
possible deviations from the idealistic, i.e. he must know what he wants to be 
robust against. The resulting model is typically very large, it usually contains an 
infinite-dimensional nuisance parameter. Given such circumstances, robust behav- 
ior gives an alternative to the typical reaction of statisticians, namely to estimate 
every unknown parameter. Robust behavior consists in choosing a single, repre- 
sentative value for that nuisance parameter. It is clear from this discussion that 
robustness is useful only when the estimation of the nuisance parameter is diffi- 
cult. In addition, the nuisance parameter must be such that the outcome of the 
inference process is influenced by its value. We think that the robust selection can 
conveniently be described with the help of a disparity function, i.e. a real-valued 
function defined for pairs of nuisance parameters. Both of these elements of robust 
theory, namely a nonparametric supermodel, as well as a disparity function, are 
necessary to gain full generality. 

It may often be relatively straightforward to define appropriate supermodel 
and disparity. But solving the corresponding minimax problems is far from easy. 
We saw some examples involving the Kullback-Leibler divergence as a disparity 
function defined for pairs of distributional shapes. Note however that  once we 
solved such a model selection problem, the solution may be useful for many similar 
situations. 

If one accepts the idea of a representing model, then the concept of a repre- 
senting pair of models is a straightforward generalization. That point is also raised 
in the paper. We show that  in the case of a supermodel containing asymmetric 
shapes, the single representer will often be symmetric, whereas the representing 
pair will be a pair of asymmetric shapes. 
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