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A b s t r a c t .  This study examines means for inferring the distribution of the er- 
ror in nonparametric regression. The central objective is to develop confidence 
intervals for nonparametric regression. Our computational study would seem 
to affirm that our methods are potentially useful in cases of small sample size 
or heterogeneously distributed error. Theoretical developments offer sufficient 
conditions for asymptotic normality. 
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1. Introduction 

Let  {(X(i ) ,  Y(i)):  i = 1, 2 , . . . }  denote  a sequence of i.i.d, pairs, where the 
X's  are in R d and the Y's  are real. 

We presume a regression function 

re(x) -- E l Y  I X  = x] 

exists but ,  aside from some smoothness  propert ies,  has unknown structure.  
Currently,  the pr imary  emphasis of the nonparametr ic  regression l i terature 

is on providing est imators  mn(x) of re(x) ,  the subscript  indicating tha t  mn(z) 
is cons t ructed  from the first n terms of the  da t a  sequence. The  thrust  of the 
present  s tudy  is in a different direction: a nonparametr ic  regression construct  
mn (x) having been specified, our wish is to infer the dis tr ibut ion of mn (x) - m ( x ) .  

A central  motivat ion for inference of the error law was to construct  confidence 
intervals for m(x). Another  potent ia l  use is for hypothesis  testing. Bha t t acha rya  
(1976) has given a definitive me thod  for test ing whether  the regression function 
is constant .  Our  methodology,  while not  as focussed, could be adapted  to test  
whether  re(x) is positive, for instance. Another  potent ia l  use is for est imating 
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error rates and quantifying sub-optimality for nonparametric regression estima- 
tors serving as discrimination functions (as in Devroye and Wagner (1980), for 
instance). 

An idea suggested by a reviewer is that error inference algorithms could pro- 
vide an approach to local bandwidth selection. As we will see in Section 2, the 
kernel regression method depends on a real parameter "b" as well as the data. Re- 
cently, intense investigation has been dedicated to finding data-driven selections 
of this bandwidth parameter which are asymptotically optimal in a least-squares 
sense (e.g., H~rdle and Marron (1985)). Miiller and Stadtmiiller (1987) and Vieu 
(1988) have found estimates of the bandwidth which are conditionally (on do- 
main point x) optimal in various senses. Our developments could potentially pave 
the way for devising bandwidth estimators that asymptotically yield a minimum- 
length confidence interval. The idea would be to evaluate confidence intervals over 
a range of bandwidth values and then select the value b for which this is shortest. 
In this study, we have concentrated on the variability error; one could enhance 
our developments by accounting for bias error, as in H£rdle and Bowman (1988), 
Miiller and Stadtmiiller (1987) and elsewhere, through approximation of deriva- 
tives of m ( ) .  (Bias analysis is needed in the bandwidth selection application.) 

Dikta (1988) has undertaken a parallel investigation for the nearest neighbor 
regression method. His analysis follows a different tack, being based on empirical 
distribution approximation; the experimental findings are in accord with ours. 

In the following sections, we state our confidence band procedure and examine 
it through simulation experiments and asymptotic analysis. A ground rule is that 
like ran(X) itself, our error distribution estimator must be nonparametric and 
data-driven. This section closes with mention of related topics. 

1.1 Classical regression 
In classical Gaussian linear regression, the framework for error estimation is 

already in place. Working and Hotelling (1929) give an illuminating analysis of a 
linear regression problem. These notions extend to "trend surfaces" (e.g., Ripley 
(1981), Section 4.1) where re(x) is assumed to be any regression function which is 
a linear combination of known functions. 

Recent outgrowths of classical multivariable theory are even closer in spirit to 
the present study. Thus, in principle, kriging methods (e.g., Ripley (1981)) admit 
analysis of error distribution. One confronts two drawbacks here: (i) the normality 
assumption, and (ii) the need to infer a covariance function or variogram. Knafl 
et al. (1985) follow this avenue even further in providing error bands of a given 
level over the entire regression function domain. 

1.2 Bootstrapping 
Efron and Tibshirani ((1986), Section 8) have mentioned bootstrapping in the 

context of nonparametric regression. They sketch their plan for bootstrapping in 
the nonparametric regression setting with extreme brevity, but, as we interpret 
it, the idea is to compute replications of the nonparametric estimator m*(x), this 
estimator being obtained from a random sample of size M from the set of observed 
pairs {(X(i), Y(i)): 1 < i < n). Then confidence intervals could be assessed from 
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these replicated values. H~rdle ((1987), Chapter 4) follows out this idea and gives 
an example. Also, he has supplied quantilc estimates, one based very directly on 
bootstrapping and another on use of extreme value theory. Hgrdle and Bowman 
(1988) is also closely related to the present study. Their application is to the fixed 
design-point regression problem, and the attack differs from ours. But this work 
represents a worthy investigation that presumably could be adapted to the present 
regression problem. Our aim was to condition the estimator on the design values 
X(i); we think our scheme may have a slight advantage in this regard. 

The plan to be described can be viewed in a bootstrapping context. Ruther- 
ford (1986) uses Edgeworth expansion arguments very close to those in the seminal 
bootstrapping study by Singh (1981) to analyze convergence rates of the distribu- 
tion estimates. 

2. Procedures for inferring the error distribution 

The present study will concern the kernel nonparametric regression (NPR) 
function, h domain point x of interest, a sequence {b(n)} of positive numbers, 
and a "kernel" pdf k( ) having been specified, the kernel NPR function for the 
data {(X(i), Y(i)): i -- 1 , . . . ,  n} is defined by 

(2.1) ran(x)-'- E Y(i)B(i; x, n). 

Here and elsewhere, unless otherwise stated, the summation is from 1 to n and the 
weights B(i; x, n) are 

(2.2) B(i; x, n )= k ( ( x -  X(i))/b(n)) / [ E  k ( ( x -  X(j))/b(n))] . 

Usually, we will suppress the dependency on x and n by writing simply B(i). 
Our objective is to infer the distribution of mn (x), conditioned on the domain 

points X(n) -- {X(1) , . . . ,  X(n)}. The plan we follow is to define the random 
variable 

(2.3) m~(x) = E Y * ( i ) B ( i )  

where the B(i) 's are those determined by (2.2) and the Y*(i)'s are random vari- 
ables determined by data-driven conditional density estimates gn (y I X(i)) for the 
pdf g(y I X(i)) of the random variable Y I X(i). In our computational studies, 
we used kernel methods to infer these requisite densities. Thus, specifically, we 
adopted approximations of the form 

(2.4) gn(Y IX') ---- qn(X', y)/fn(X'), 

with 

(2.5a) qn(X', y) = 1/(na(n)c(n) d) E k((x' - X(i))/c(n))kA((y - Y(i))/a(n)) 
and 
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(2.55) f~(x') = 1/(nc(n) d) Z k((x' - X(i))/c(n)).  

Here a(n) and c(n) are positive numbers, k(x) is a pdf on R ~, and kA(y) is a pdf 
on R.. Once the estimates gn(Y I x') are at hand, in view of (2.3), our estimate of 
the pdf of ran(x) is given by 

(2.6) h,~(y) = (7rl * 7ru , . . .  • Irn)(y). 

Here "," denotes convolution, and we define 7rj (y) by 

7rj(y) = (1/B(j))gn(y/B(j)  l x(j)). 

3, Computational studies 

Two categories of confidence interval experiments were undertaken. The first 
category investigates behavior in the case of homoscedastic samples, a setting 
which is favorable to the alternative normal approximation. The second examines 
performance in the case that variance depends on the domain values. 

3.1 A common structure of the experiments 
The sample points X(i)  were selected uniformly from [0, 10]. 
The average confidence interval width and percent of coverage were obtained 

by averaging at domain points 

t ( / )  = i / 2 ,  2 < i < 18. 

The unit intervals at the extremities of the domain were excluded because well- 
known end effects might have a complicating influence. 

An Epanechnikov kernel function was selected for k( ) in (2.5a) and (2.5b). It 
has some appealing properties (e.g., H~irdle (1987), Section 4.5), and is defined by 

15/16(1 - x2) 2, I x I< 1, 
k(x) = 0, otherwise. 

The function kA(x, y) in (2.5a) was taken to be the product kernel k(x)k(y), with 
k( ) as just stated. The bandwidth b(n) was chosen to minimize the width of the 
80% confidence interval. 

The parameters a(n) and c(n) for the conditional density function were found 
using the Kullback-Leibler method (e.g., Marron (1987)) of cross-validation. For 
example, c(n) in (2.5a) and (2.5b) is the value which maximizes 

y ~  ln(f_i(x(i); c(n))), 

with f_i(x(i)) being computed from (2.5b) but with the datum x(i) omitted. 
The convolution operation (2.6) was approximated by quadratures. The accu- 

racy was confirmed by comparing different levels of discretization in the quadra- 
ture formulas, and also by comparison with simulations. In these computations, we 
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noted that  simulations were accurate enough to justify dispensing with convolution 
calculations to reduce processing time. 

For purposes of comparison with our kernel method, we also computed inter- 
vals based on the asymptotic normal limiting law. Thus from Schuster (1972) it 
is known that  

(3 .1 )  O'(n)(T/~n(X ) --  E[mn(X)] ) 
has the standard normal variable as its limit; here we have defined 

(3.2) a(n) 2 = nb(n)cr(Y [ x)2/f(x) f k2(x)dx + o(nb(n)). 

Here a(Y I x) 2 is defined to be the variance of Y [ X -- x. In our computations, 
we estimated this by 

a(Y l x) 2 = 1/n. ( ~ - ] ( Y ( i ) -  mn(x( i ) ) ) ; )  . 

This estimate is sensible and consistent if the variance of Y ] x does not depend 
on x; that  is, if the error were homoscedastic with respect to x. 

In the tables to follow, "Asymp. Normal", is an abbreviation for "Asymptotic 
Normal". The associated entries were obtained by pretending that regardless of 
n, the distribution of ran(x) - m ( x )  is, in fact, the normal law with zero mean and 
standard deviation a(n) as determined by (3.2). 

The regression function is 

re(x) -- ((x - 2) 2 - 3)/20. 

Three different distributions for the observations error were investigated, namely 
normal, exponential and uniform. 

3.2 Experiment 1: homoscedastic data 
The intention of this first study is to examine performance when the sample 

size is small; this is the realm for which our methodology is intended. Specifically, 
the sample size n is 20. Each entry in Table 1 results from 100 replications. 

Table 1. Average confidence interval width  and  percent  coverage sample size ---- 20. 

Dis t r ibut ion  of Y 

Variance of Y = 1.0 Variance of Y = 0.5 

Average Percent  Average Percent  

width  coverage width  coverage 

GAUSSIAN 

Kernel Method  1.18 

Asymp.  Normal  1.15 

84 0.87 79 

79 0.82 77 

U N I F O R M  

Kernel  Method  1.06 

Asymp.  Normal  1.16 

82 0.86 78 

80 0.82 72 

E X P O N E N T I A L  

Kernel Method  0.99 

Asymp.  Normal  1.05 

82 0.82 75 

77 0.79 74 
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Figure 1 shows the results of a single replication in the uniform variate case. 
One sees here the true and nonparametric regression functions, and the loci of the 
endpoints of the two types of confidence intervals, as well as the 20 data points. 
Figure 2 is the conditional density function g20(Y I x) at the domain point x = 6.5. 

Fig. 1. 

y ~ • Data 
4 ~ -  ..... 80% Kernel regression bounds 

| - -  80% Asymptotic normal bounds 

l "  • ~.-.:~:.~m.(x) 

- 2  

1 r I I I f I I I I , x  
2 4 6 8 10 

A confidence interval  e s t ima t ion  exper iment .  

Fig. 2. 
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N o n p a r a m e t r i c  condi t ional  dens i ty  e s t ima to r  of Y. 

Table 2 was constructed in a similar manner to Table 1, the difference being 
that here n is 40. In all cases, the confidence interval was constructed so as to 
have containment probability of 80%. The superior performance for the small 
sample case of the kernel method is clear in Table 1. In Table 2, the improvement 
is marginal, reflecting that  with more samples, the asymptotic approximation be- 
comes more justifiable. 
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Table 2. Average confidence interval width and percent coverage sample size = 40. 

Distribution of Y 

Variance of Y = 1.0 Variance of Y = 0.5 

Average Percent Average Percent 

width coverage width coverage 

GAUSSIAN 

Kernel Method 0.82 78 0,65 80 

Asymp. Normal 0.88 77 0.59 73 

UNIFORM 

Kernel Method 0.78 79 0.65 81 

Asymp. Normal 1.16 80 0.64 80 

EXPONENTIAL 

Kernel Method 0.79 86 0.63 86 

Asymp. Normal 0.87 84 0.63 83 

3.3 Experiment 3: heteroscedastic data 
Here n is 20 a n d  the  obse rva t i ons  in  each r u n  were normal .  T h e y  were chosen 

so t h a t  
~ 0 . 5 ,  x _< 5 

Va r (Y  I X -= x) -- ~, 1.00, x > 5. 

As before,  each t a b u l a t e d  e n t r y  was on  the  bas is  of 100 repl ica t ions .  

Table 3. Average confidence interval width and percent coverage sample size -- 20. 

Average Percent 

width coverage 

Kernel Method 0.95 79 

Asymp. Normal 1.01 76 

T h e  f inal  resu l t  we r epo r t  is a r e p e t i t i o n  of the  above  e x p e r i m e n t  wi th  the  

mod i f i ca t ion  t h a t  now n is 200 observa t ions .  T h e  t ab le  is based on  20 repl ica t ions .  

Table 4. Average confidence interval width and percent coverage sample size = 200. 

Average Percent 

width coverage 

Kernel Method 0.49 89 

Asymp. Normal 0.36 65 
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3.4 Commentary on the experiments 
Our interpretation of these studies and others we have undertaken is that the 

kernel method is superior to the simplistic normal approximation rule in the small 
sample case, and at least as good for larger samples. Thus, ignoring the extra 
programming and computational effort involved, the technique is attractive. The 
overall improvement in terms of shorter confidence intervals and percent coverage 
in Tables 1 through 3 is about 5%. The dramatic improvement in Table 4 stems 
from the characteristic that  the asymptotic normal rules do not account for chang- 
ing variance. Had we incorporated such a feature, it would have lost accuracy in 
the homoscedastic case. Bear in mind that throughout all these runs, we used the 
same kernel method code. 

4. Asymptotic convergence of the error distribution estimate 

4.1 Introduction and basic assumptions 
In this section we seek to establish that under certain conditions the distribu- 

tion function of (m*(x) - re(x)), with m*(x) as determined by (2.6), is asymp- 
totically normal. Perhaps more importantly, we show that it converges to the 
actual distribution of (m~(x) - m(x)) and therefore is suitable for inference of the 
regression error. The orders of the errors of these approximations are provided. 

We will adopt the following assumptions: 
About the Data Sequence: 
D.1 For some positive constants c and C, the relations 

(4.1) Var(Z I X = x') > c and E[IY[ 3 [ X = x'] < C 

hold for all x I in some neighborhood of x. 
D.2 The marginal variable X has a continuous pdf f (  ) and x is in its support. 
D.3 In a neighborhood of x, the regression function has a bounded second 

derivative (or Hessian, if d > 1), m " ( ) .  
About the Regression Kernels: 
K.1 The support of k( ) is the d-dimensional open unit ball, and kn( ) has 

support in the open interval ( -1 ,  1). There are positive numbers C1 and C2 such 
that for any z in the respective supports, 

(4.2) C1 ~ k(z) ~C2.  

K.2 For K(z) = k(z) or kA(z) 

(4.3) fzK(z)dz=O 
K.3 K(z) is twice continuously differentiable on its support set. 
About the Bandwidth Parameters: 
B.1 The parameters b(n) and c(n) are both o(n-1/(4+a)), and a(n) is 

o(n-1/5). 
Reference to the Experiments: 
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We comment that  the popular Epanechnikov kernel used in our experiments 
of Section 3 does not satisfy the condition K.1, since it is not bounded away from 
0 on the interval ( -1 ,  1). We thought that  for small, predetermined sample sizes, 
this was not a serious contradiction. For example, one could flatten out the slope 
of the kernel over very small neighborhoods of the endpoints and know that with 
very high probability, this new kernel will return the same values as the original 
kernel, because it is very improbable that within 20 observations, x - X( i )  will 
fall into these minuscule regions where the functions differ. The property K.1 is 
influential only if the sample size is large or unbounded. 

It is known (e.g., Marron (1987)) that  cross-validation bandwidth selectors 
yield sequences that  are O(n-1/(a+4)), in contradiction to B.1, which requires 
o(n-1/(d+4)). Our plan calls for using cross validation and then making the pa- 
rameter slightly smaller, to assure that bias is not the limitation. Another more 
complicated avenue for confronting this distinction could be to extend the algo- 
rithm to include an estimate of the bias term. 

4.2 Convergence analysis 
We remind the reader of the pdf construct (2.4) and (2.5) of the random 

variable m*(x).  That is, 

(4.4) 
g*(Y I x) = 1/(nc(n)da(n)) y~ k((x - X( i ) ) /c(n))kA((y  - Y( i ) ) /a(n))  

1/(nc(n) d) E k((x - X( i ) ) /c(n))  

We will let a* denote the standard deviation of m*(x),  and Ha( ) the cdf of 
(m*(x) - ran(X)). In the same vein, an and Fn(x) are, respectively, the standard 
deviation of ran(X) and cdf of (ran(x) - r e (x ) ) .  

The purpose of the present section is to prove the following statement: 

THEOREM 4.1. Under the hypotheses D.1, D.2, D.3, K.1, K.2, K.3 and B.1, 

sup lHn(a*y) - Fn(crny)l = Op(T(n)q*(n)), 
Y 

where 
q*(n) = (w(n) + nl/2w(n)2+d/2 + (nw(n)d)(-1/2)), 

w(n) = max{a(n), b(n), c(n)}, 

and 7(n) is any sequence increasing without bound. 

Remark. The point of the theorem is that  Fn(y) is a useful object; it imme- 
diately gives confidence intervals for regression estimation error, and could serve 
for hypothesis testing and other decision problems involving mn (x). The function 
Hn (y) can be calculated entirely on the basis of observations. The theorem tells 
us that  these distribution functions converge, and it gives us rates. 

The proof is divided into three lemmas. 
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LEMMA 4.1. Suppose b(n) > n -a for some a in the open unit interval. Define 
=Number of i, 1 < i < n, such that IX(i) - x I < b(n). Then as n ~ c¢, 

(4.5) fi/(nb(n) d) ~ V f (x) ,  in probability, 

V being the volume of the d-dimensional unit ball. 

PROOF. The probability that a point falls into the ball B of radius b(n) 
centered at x is, 

(4.6) Pn = / B  f ( z )dz  = Yb(n)d f ( x )  + o(b(n)d). 

Thus, ~ is a binomial variable with 

(4.7) E[~] = n Yb(n )d f ( x ) + o(nb(n )d), 

and the variance of the binomial variable with parameter (Pn, n) is bounded by 
np,~ = O(nb(n)d). Now the lemma follows by Chebyshev's inequality. 

The results of this section are founded on a standard form of the Berry-Esseen 
Theorem (e.g., Bhattacharya and Rao ((1976), p. 104)) which states that if {Z(i): 
1 < i < n} are independent random variables, each with zero mean and finite 
absolute third moment, then for Q~(z) the df of the sample average 

(1/n)(Z(1) + . . .  + Z(n)), 

we have 

(4.8) sup IQn(  z) - O(z)l < C(n)n -1/2, 
Z 

where 

2 n - 2  ( 4 . 9 )   EZ(i) 2 

Here O(z) is the standard normal df and 

(4.10) C(n) = 2.75 ( ( l /n )  E EHZ(i)*3]) / (v~a~)3. 

For our developments, it is useful to note in passing that, with respect to row- 
wise independent arrays {Z(i; n)}, if the absolute third moments ENZ(i , n)l 3] are 
uniformly bounded for all i and n, and if the variances of Z(i; n) are uniformly 
bounded away from 0, then C(n) in (4.8) may be replaced by a number C not 
depending on n. 

LEMMA 4.2. 

(4,11) 

Let Fn(z) denote the df of ran(X) -- re(X). Then we have 

s u p  LFn(o y) -  (y)L = 
Y 
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where 

(4.12) q(n) = (b(n) + nl/2b(n) 2+d/~ + (nb(n)d)(-1/2)), 

an being the standard deviation of ran(x), and r(n) is any sequence converging to 
infinity. 

Remark. In the classical case that b(n) = n -a for some constant a in the 
unit interval and d = 1, one can check that the normal approximation becomes 
accurate whenever a is in the interval (1/5, 1). The 1/5 threshold makes sense, 
for otherwise the bias term dominates. Schuster (1972) postulates a > 1/5 for his 
proof of asymptotic normality. 

PROOF. Let S(n) be the indices i (i < n) such that Ix(i) - xl _< b(n). We 
let fi be the number of elements in S(n). In the notation surrounding (4.8), the 
variables fB ( i )Y ( i ) ,  i e S(n), will play the role of the Z(i)'s, and f will replace 
n, in the Berry-Esseen theorem. 

From postulate K.1, it is readily confirmed that for all i in S(n), we have 

(4 .13 )  C1/C2 <_ fiB(i) <_ C2/C1. 

With the B(i) 's thus constrained, postulate D.1 then implies that 

is uniformly bounded. Now the Berry-Esseen theorem, applied to the Y(i)'s, 
conditioned by the X(i)'s, implies that for 

(4.14) rh = E B(i )m(X( i ) )  

we have 
sup IP[(mn(X) -- r~)  < anY]  -- ¢ ( Y ) ]  = 0 ( f - 1 / 2 ) .  

Y 

Toward analyzing the asymptotic bias, we have that 

(4.15) Fn(f fny  ) = P[(?Ttn(X ) -- r e (x ) )  (_ 5Pny ] 

---- P [ ( m n ( X )  - ~ )  <_ a n ( y  + ( m ( x )  - rh) /an) ]  
= (I)(y) Jr- [(I)(y -of- ( m ( x )  - ?'Ft)/Gn) -- CI)(y)] -~ O(~t -1 /2)  
~- O ( y )  Jr- ¢ ( y ) ( ( m ( x )  -- ?~'t)/O'n) 

+ O((m(X) - m)/"n) + O(~-1/2), 

where ¢( ) is the standard normal pdf. 
Toward achieving a probability bound for rh - m(x),  write 

(4.16) rh - m(x) = (1/nb(n)d) E k((x - X( j ) ) /b (n ) ) (m(X( j ) )  - m(x)) 
(1/nb(n) d) ~ k((x - X(i))/b(n)) 
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One recognizes the denominator  to be the kernel density es t imator  fn(x) of the 
marginal f(x). Regarding equat ion (4.16), we introduce the notat ion 

- re(x) = Num(n)/fn(x). 

In the following, w is some positive number  less than f (x ) ,  and F is some 
positive number  satisfying 

F 2 < V ,  

V _ 

with 

_ 1 - - 1 - V a r ( y i x  ) f k2(x')dx" 
f(x) 

In terms of these constants and the notat ion of (4.16), we define the events E l ,  
E2 and E3 as follows: 

E l (n )  --= "fn(X) > f ( x ) -  W", 

E2(n) = "lNum(n)[ < T(n)q(n)(nb(n)) 1/2'', 

E3(n) = "an > F / v / ~ n  '' . 

When  all three of these events hold simultaneously, then, as we invite the reader 
to confirm, (4.15) implies tha t  

(4.17) sup IFn(Gny) - (~(Y)l < T(n)q(n). 
Y 

Thus Lemma 4.2 will be confirmed if only we can show that  the probabilit ies of 
the events Ej (n) converge to 1, as n -+ oo, j = 1, 2, 3. 

The convergence of the  probabilities of the events E1 (n) and E3 (n) to 1 follows 
from s tandard consistency results in the l i terature (e.g., Prakasa-Rao (1983)), and 
thus our effort concentrates on analysis of E2(n). We will show that  for some 
number  K and all n 

(4.18) E[ (Num(n) )  2] < K(b(n)2/nb(n) d + b(n)4). 

Toward verifying (4.18), define 

c(u) = k((u - x)/b(n))(m(u) - re(x)). 

Then we have 

(4.19) 
I "  

E[c(X) 2] = / k 2 ( ( x  - u)/b(n))(m(u) - m(x))2 f(u)du 

(m'(x)b(n))2 f(x)b(n) d ./v2k2(v)dv[1 + O(b(n))] 

= O(b(n)2+d). 
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Cross terms E[c(X(i))c(X(j))] = E[c(X(i))lE[c(X(j))] are accounted for as fol- 
lows: 

$ 1  

E[c(X)l = / k((u - x)/b(n))(m(u) - m(x) ) f (u)du 

= b(n) d / k(v)m'(x)(b(n)v + (1/2)m"(x)b(n)2v 2 

+ o(b(n)2))f(x + b(n)v)dv, 

where we have substituted the variable v = (u - x)/b(n). Use property K.2 of 
unbiasedness of k( ) to get 

E 2[c(x)] = O(b(n)a+2d). 

In summary, 

(4.20) E[Num(n) 2] 

= i / ( n 2 b ( n ) 2 d ) ~ { E [ e ( X ( i ) ) 2 ] + E E [ c ( X ( i ) ) c ( X ( J ) ) ] } .  j 

<_ 1/(n2b(n)2d){nE[c(X) 2] + n(n - 1)E2[c(X)l}. 

This is tantamount to the statement that 

(4.21) E[Num(n) 2] = O(b(n)2-a/n + b(n)4). 

The above and a use of the "basic inequality" of Lobve ((1955), p. 157), for 
example, gives 

P [ N u m ( n ) / ~  < v(n)q(n)]--* 1 

as n ~ o~. This is a restatement that  P[E2(n)] --* 1. 
This accounts for all but the last term in (4.12). Get the last term by replacing 

in (4.15) by b(n)dn, according to Lemma 4.1. 

Recall the density construct for Y I (X -- x) stated in (4.4), and its use in 
construction of m~ (x). 

LEMMA 4.3. Let Hn(y) denote the df of (m*(x ) -m~(x ) )  and a~ its standard 
deviation. Then 

sup [Hn(any ) - ~(Y) I = Op(q* (n)T(n) ). 
Y 

where 

q*(n) = w(n) + (nb(n)d) -U2 + (nb(n)d)l/2w(n) 2, 

with w(n) = max{a(n), b(n), c(n)} and ~-(n) any sequence growing without bound. 

PROOF. The moment conditions for the Berry-Esseen theorem are verified 
as follows: since kA(y) has support restricted to lYl < 1 (Hypothesis K.1), k A ( ( y -  
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Y(i))/a(n))/a(n) assigns its entire mass to the interval [ Y ( i )  - a(n), r(i) + a (n ) ] .  
Whence we have 

(4.22) E [ I Y * ( i ) I  3] 

1/a(n) E k((X(i)  - X( j ) ) /c(n))  f kA((y -- Y(j))/a(n))lytady 

E - x ( j ) ) / 4 n ) )  
< E k((X( i )  - X( j ) ) /c(n)) ( IY( i ) l  + a (n ) )  3 

k((X(i)  - X(j) ) /c(n))  

In (4.22), the summations are for j ranging from 1 to n. The reader will recognize 
that the final term is a kernel regression estimator of El( I YI + a(n))31X = X(i)]. 
Lemma 2 of Devroye and Wagner (1980) implies that under our hypotheses D.1 
and K.1 of the uniform boundedness of the conditional third moments of Y and 
of k(z), that  C(n) (in (4.8)) is bounded in n, and so from the Berry-Esseen result, 

P[(m n - m*) < any ] - (I)(y) = O(fi-1/2), 

where 

(4.23) m* = E B( i )E[Y*  I X = X ( i ) ]  

is the expectation of m~(x). Analogously to (4.15) one readily confirms that 

sup IH, (a y) - ¢ ( y ) l  = - 
y 

Toward analyzing the bias term m* - mn(x),  we find it most direct to appeal 
to the analysis of m(x) - m as in the proof of Lemma 4.2, and then to analyze 
m - m*. In fact, from inspection of (4.23), 

mn(x) - m* = E B(i)[m(X(i))  - m*(X(i))]. 

Now the bias analysis for Lemma 4.2 applies to the terms in brackets, and the 
B(i)'s, since they sum to 1, do not affect the convergence rate. Thus the argument 
there can be repeated to get that 

m* - ran(x) = Op(w(n)2-a/n + w(n)4). 

PROOF OF THEOREM 4.1. Lemma 4.1 gives the probabilistic rate of the 
uniform distance of Fn(any) and ¢(y)  while Lemma 4.2 gives the rate between O(y) 
and Hn(a*y). Adding these relations and application of the triangle inequality 
yields Theorem 4.1. 

Remark. We have considered the possibility of improving the result through 
approximating m ( x ) - m  by ~ (  (d/dx)Bi(x) ) ( x - X  (i) ), with B~(x) = Bi as defined 
in (2.2). It does not improve the asymptotic rates. 
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