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I begin by thanking all the discussants for their  very valuable comments.  Many 
issues have been raised and I cannot  hope to answer them all. I part icularly thank  
those discussants who have provided new analyses of one or bo th  types of example 
presented in the paper.  I must also explain immediate ly  tha t  this reply represents 
my own views and not necessarily those of my co-authors,  bo th  of whom made 
impor tan t  contr ibut ions to the paper, as par t  of their  graduate  studies. I hope 
this does not  appear  discourteous but  there are a number  of logistical constraints,  
par t ly  brought  about  by the fact tha t  the three of us are in separate  countries 
and have not  met  nor worked together  for some considerable t ime now, and par t ly  
because of an imminent  deadline. 

Background 

In order to set the paper  in context ,  it may  be helpful to acquaint general 
readers with its background. In the first instance, a version was wri t ten fol the 
"Symposium on the Analysis of Statistical Informat ion" ,  held in Tokyo in Decem- 
ber 1989, and appears  in the proceedings of tha t  meeting. Subsequently, Professor 
Kitagawa very kindly invited us to submit  a modified account,  as a discussion pa- 
per, to Ann.  Inst. Statist.  Math. The  main modification was to be the inclusion of 
at least one example relating to the mapping of disease. The  version tha t  appears  
in the conference proceedings omits examples from Section 4, though the spoken 
presentat ion did include all three. The reason for the omission was tha t  it was not 
yet  clear t ha t  Bayesian mapping was at a stage to be put  forward as a tool for 
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routine use in epidemiology. That remains true today, in my view at least, and I 
have resisted, on several occasions, requests to produce 'Moff-the-shelf" analyses of 
cancer registry data. Much still remains to be done. As regards the archaeological 
example, this was carried out one afternoon in my office in Durham, mainly for 
fun, using an image analysis program modified to take account of missing values. 
At the time, it was not intended for publication, nor have I communicated the 
results to the archaeologists who collected the data. Clearly then, the examples 
have achieved a rather more exhalted status than was originally intended! 

This said, I hope the analyses provide useful illustrations of a line of research 
in spatial statistics that may prove profitable in the future. The constructive com- 
ments of the discussants are extremely helpful in this respect. At the very least, 
the methods will require considerable refinement before they can be considered 
as everyday components of the spatial statistics toolkit. In fact, it is interest- 
ing to note, as Adrian Raftery and Jeffrey Banfield point out in regard to the 
Gibbs sampler, there are quite conventional Bayesian problems, especially those 
concerned with hierarchical formulations, that have benefited from an image anal- 
ysis interpretation. In addition, the methods have also found useful application in 
some other areas, including pedigree analysis (Sheehan (1990), Thomas (1991)), 
speech recognition (Lippman (1991)), neurophysiology (Fredkin and Rice (1991)) 
and classical statistical inference (Geyer and Thompson (1991), Besag and Clifford 
(1989, 1991)). 

Despite the reservations expressed above, it is not my intention to excuse 
myself from responsibility concerning the particular examples in the paper and 
I shall try to answer the criticisms as best I can. I stand by the results of the 
analyses, though obviously there are improvements that could be made to the 
methodology and its implementation. A good example of this occurs in Section 
3 of the paper, which has at least one unsatisfactory methodological aspect, also 
apparent in Besag ((1986), Section 5.1.2), and which I shall modify during the 
course of my reply; however, by good fortune, the correction has little effect when 
applied to the archaeological data and this is also the case in Besag ((1986), Section 
5.1.3). 

I have grouped my responses under headings. Some of my remarks are ex- 
tremely vague and I hope that readers with more complete understanding will be 
able either to substantiate or refute them with better authority. I would be glad 
to hear from anyone who has results or suggestions for further work. 

The role of the prior distribution 

A theme that runs through much of the discussion concerns the role of the 
prior distribution in the Bayesian analysis of spatial data. The issues at stake 
would seem to include the following: (i) the purpose of the prior in relation to the 
observed records; (ii) the effect of different hyperparameter values; (iii) the prop- 
erties of the resulting posterior distribution; (iv) the criterion on which a point 
estimate of an "image" should be based; (v) the estimation of hyperparameters; 
(vi) the relevance and robustness of inferences made from the posterior distribu- 
tion. I shall say a little about each of these issues, with some emphasis on the 
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particular examples in Sections 3 and 4; any at tempt at sweeping generalizations 
would be inappropriate. 

As regards the purpose of the prior, it is stated in Section 2 of the paper, "We 
do not necessarily require that typical realizations of {p(x)} should resemble the 
true scene but  that the distribution should at least support the local regularities 
that are believed to exist." I think we should have added "and that are partially 
evident in the observed records." For example, I would have had serious misgivings 
in Section 3 had there been more than a few missing data points. The aim is 
to massage the data rather than to trample on or invent them. Indeed, I have 
suggested elsewhere (Besag (1986)) that the c-colour Ports model,which becomes 
the Ising model used in Section 3 when c = 2, can be thought of as a representation 
of "prior ignorance" about a patchy scene. This needs some qualification but  first 
there is the simple problem of semantics. I have long objected to extravagant use 
of the term "model" in spatial statistics when no at tempt at proper modelling is 
made. Thus, in Besag (1974, 1975), I used the terms "scheme" and 'Mprescription" 
but to little avail and so I have reluctantly reverted to standard terminology. There 
are other situations where detailed models are highly appropriate, as for example 
in the use of deformable templates in structural image restoration (Chow et al. 

(1988), Amit et el. (1991)) or in texture analysis (Geman and Graffigne (1987)), 
though, even here, simple, flexible priors may be preferable (Geman et aI. (1990)). 
Whichever the case, goodness-of-fit tests (cf. the remark by Dietrich Stoyan), or 
something less formal, are likely to be of importance only in choosing between 
different models (cf. Yosihiko Ogata's comments) or as a means of discrimination 
between textures, as in Geman et al. (1990). As in almost all Bayesian analysis, 
it is the data that are of paramount importance. Nonetheless, an exact goodness- 
of-fit test for the Ising model is given in Besag and Clifford (1989). 

However, the issue raised by several discussants concerning Ising and Potts 
priors is not one of semantics but refers to the capacity of such models to produce 
"long-range order"; that is, for moderate and large values of/3, pixels arbitrarily 
far apart have values that are positively correlated and, on an infinite array, this 
implies the existence of infinite, connected (in terms of neighbourhood), single- 
colour patches. On the other hand, small values of ~ do not have sufficient local 
dependence to produce a blobby structure. Although the obvious conclusion is that 
one needs to look elsewhere for useful priors, I shall at tempt to argue the contrary, 
though without total conviction! I should add that my argument is not an "after 
the event" one, an at tempt to extricate myself from an embarrassing situation, 
since I have warned about long-range order and the slowness of Metropolis or 
Gibbs sampler convergence for a good many years now. Whether I should have 
heeded my own warnings more carefully remains to be seen! 

My first premise is that the important properties of the prior, the ones on which 
we need to concentrate, are those that are to any appreciable extent inherited by 
the posterior. This is presumably not in question but it does pose a very difficult 
problem. In physical terms, the observed records have the effect of applying an 
external magnetic field to the system. Infinite single-colour patches will still occur 
on the infinite array under certain conditions and need not all be of the same 
colour, since the external field is not uniform. Thus, in principle, the posterior 
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distribution may be concentrated on restorations that are almost one-colour or 
on segmentations that are in strong conflict with the observations and have no 
semblance of reality. Moreover, the maximum probability (MAP) estimate may 
produce such a result, even when the posterior distribution is more diffuse! Indeed, 
this occurs with the Potts prior for small positive values of/3, provided the records 
are sufficiently uninformative; clearly then this is not the product of long-range 
order. It is this additional setback that I take to be the "real message" in the 
paper by Greig et al. (1989) and it is the basis of my frequent arguments (e.g. 
Besag (1986, 1989)) against the use of MAP, unless the posterior distribution is 
known to be unimodal (as in the posterior density of u and v, given y, ~ and A, 
in Section 4 of the paper). In fact, it is the general multi-modality that drives 
my second, more risky premise, that primarily I am interested in the posterior 
distribution only for values of x for which the likelihood is relatively large. Thus, 
I do not really want to sample the complete posterior distribution in the presence 
of multi-modality. The premise is a not too distant cousin of Savage's Principle of 
Precise Measurement, as I shall outline below. 

As has been made clear, the prior used in Section 3 is a fairly crude represen- 
tation of my initial beliefs about the local regularities in the true scene. A more 
complete description would have included the fact that a priori I believed the data 
to be meaningful in that they would provide a fair reflection of the true state of 
nature. How could I have catered for this? Well, in the spirit of empirical Bayes, I 
might, for example, have modified the prior so as to penalize images whose colour 
frequencies differed markedly from those of the maximum-likelihood classifier, in 
the manner of Green (1986). The effect of this would be to leave the posterior 
distribution virtually unaltered, apart from rescaling, conditional on being in the 
required neighbourhood. Ergo, inferences from the unmodified prior would agree 
with those from the modified version, provided the simulations of the former did 
not stray from the relevant region. However, the unmodified posterior would gen- 
erally have features elsewhere that are wholly incompatible with my prior beliefs. 
Note that the rationale adopted here ties in closely with that underlying ICM 
(Besag (1986)), in which a pointwise (local) maximum of the posterior distribu- 
tion is sought, initiated by maximum likelihood. 

Some additional points, again that require further thought, are as follows. 
The particular modification mentioned above is not sufficient on its own, from 
the viewpoint of theory rather than practice. If Metropolis method or the Gibbs 
sampler is run for long enough, with/3 moderately large, the resulting simulations 
seem not to be blobby but merely partition the pixels into c essentially single- 
colour regions. This conflicts with the pictures that are often produced but where 
sampling has not been continued for a sufficiently long time; this can be extremely 
long! Thus, I feel that Sigeru Mase's suggestion of "isolated convex-like compo- 
nents" may be overstated, unless there is evidence in the data, though I agree 
there will be a tendency to smooth out concavity and this may be desirable or 
undesirable dependent on the context. Incidentally, the fact that simulations of 
Potts, including Ising, models take so long to reach their proper conclusions adds 
fuel to the argument that it is their early behaviour, based only on local properties, 
that is manifest in running the simulations of the posterior. Note here that if the 
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Swendsen-Wang (1987) algorithm is used for simulation, the above remarks may 
no longer be relevant, since groups of pixels have their colours changed simulta- 
neously and long-range characteristics can appear more speedily with appreciable 
probability. Of course, it may occur that the data are in conflict even with the 
local characteristics of the prior, in which case sampling from the modified and 
unmodified posteriors will be very different. However, I want to know and to worry 
when this is the case, so that I can take appropriate action, which might be to 
reject the data or the prior; this suggests working with the unmodified prior, else 
one may not notice the conflict. It is worth contrasting tasks in spatial statis- 
tics with those in image analysis; in the former, one is not and may never be at 
the stage of making fully automated decisions. Whatever else, more experience is 
required before applying simplistic priors as a matter of course. 

I come now to the values of hyperparameters. The main problem is with those 
in the prior, rather than with those in the likelihood. One approach is to preassign 
the value in the prior, which may well be the best thing to do in a single-parameter 
family. This can extend to more complicated priors if training data are available. 
Otherwise, one needs to estimate the hyperparameters. Two methods were sug- 
gested in the paper. Yosihiko Ogata feels that the fully Bayesian procedure in 
Section 4 is the main contribution of the paper. I shall be disappointed if he is 
correct, since I have the feeling that other methods, based for example on the EM 
algorithm, may eventually be preferred, despite their failure to allow for hyperpa- 
rameter uncertainty in constructing interval estimates for the true scene. Rather 
than discuss this further in the context of mapping, I should like to concentrate 
here on the example in Section 3 of the paper. This makes use of an entirely ad 
hoc method, borrowed from Besag ((1986), Section 5.1.2), and contravenes one of 
the basic rules of Bayesian image analysis, namely that one should never lose sight 
of the data. Briefly, the idea was to obtain a restoration 2 of the image, estimate 
the likelihood parameters 0 from l(y]Sc; O) and the prior parameters/3 from p(5:;/3), 
then obtain a new restoration, and so on. The problem is that, in estimating ~, 
one loses sight of y. It follows that the starting point of the algorithm is crucial, 
even when the posterior distribution for fixed/3 is nicely behaved. For example, 
if the Potts prior is adopted and the starting point is a single-colour scene, the 
estimate of/3 will be infinite, the data will be presumed uninformative and nothing 
will change. In fact, if maximum pseudo-likelihood estimation is used to estimate 
~, an infinite value is obtained for any restoration that satisfies the "majority 
vote" condition; for an example, see Besag ((1986), Fig. 4c), though it should be 
noted that the true scene was deliberately chosen to have awkward features and, 
as it happens, the eventual restoration itself is not too bad. Even when things 
apparently go well, it should be noted that the estimate of/~ obtained especially 
from ICM or MAP restorations will tend to be larger than would be found from a 
typical scene from the posterior distribution. 

The above problems can be fixed as follows, using a very simple and neat 
method introduced by Qian and Titterington (1991). In place of the parameter 
estimation stage above, one chooses ~ and 0 to maximise the pseudo-likelihood, 

n 

I-[ P(YiI:~-i;~,O)" 
i = t  
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The apparent robustness of this procedure is extremely attractive and is demon- 
strated on the archaeological data in Figs. R1 to R3. In each case, there is an 
initiating scene and three subsequent classifications, at stages 1, 4 and 11, each 
stage consisting of parameter estimation, followed by 1000 cycles of the Gibbs 
sampler, at the current parameter values, and classification, as in Section 3. Thus, 
Fig. R1 is initiated by naive classification (cf. the first panel in Fig. 1), Fig. R2 
by an array of zeros, and Fig. R3 by an array of ones. There is one very minor 
modification to the Qian-Titterington algorithm in that the current parameters 
were chosen to be the medians of the new values and those previously used. This 
was to prevent alternating between high and low estimates and requires further 
thought; note that this behaviour does not occur when using ICM, rather than the 
Gibbs sampler, which was the context of the Qian-Titterington paper. The initial 
and final estimates of/3, for Figs. R1 to R3, were (1.077, 0.768), (0.230, 0.739), 
(-0.230, 0.737); those for ~ were (0.408, 0.435), (0.496, 0.433), (0.496, 0.435). I 
anticipate that the Qian-Titterington algorithm will become a standard method 
of parameter estimation in many image analysis problems. It has an underlying 
rationale and an obvious intuitive appeal. Note that Qian and Titterington (1991) 
contains more sophisticated versions of the algorithm, though these are possibly of 
more specialized interest. One point that needs to be borne in mind in program- 
ming the algorithm is that, in common with almost any "missing-data" method, 
concavity cannot be assumed. 

This would seem a good point at which to add a comment about more conven- 
tional pseudo-likelihood estimation, which is mentioned by Dietrich Stoyan. The 
idea was introduced in Besag (1975) for realizations from Markov random fields. 
Rigorous proofs of consistency (mine was not!) appear in Geman and Graffigne 
(1987), Gidas (1987), Guyon (1987) and Comets (1989). There are still many 
open problems concerning the efficiency and asymptotic normality of maximum 
pseudo-likelihood estimators in this context; some results appear in Besag (1977) 
and Guyon (1987). The technique was extended to Markov point processes in 
Besag (1978) and there have been several recent papers on this topic, including 
Jensen and Moiler (1989), which establishes consistency. Pseudo-likelihood esti- 
mation has also been used for replicate data from complicated exponential family 
models; for the theoretical basis, see Grenander (1989). In a general setting, 
pseudo-likelihood techniques have the advantage of simplicity and flexibility; in 
particular, they avoid the need to evaluate any awkward normalizing constants 
(partition functions). However, they should not be applied indiscriminately in 
(e.g. Gaussian) situations where the parameter space is constrained, since the 
constraints will not necessarily be honoured; nevertheless, see K/insch (1987) for 
an interesting application to intrinsic Gaussian autoregressions. As computing 
capabilities continue to increase, one anticipates that pseudo-likelihood methods 
will gradually be superseded (see, for example, Geyer and Thompson (1991)) but 
they may retain a place in the type of applications considered in the previous 
paragraph. The reason is that pseudo-likelihood is concerned essentially with 
local characteristics and hence can be more relevant than methods based, for 
example, on the full likelihood for the wrong model. It should be borne in 
mind that, despite the wealth of theoretical and simulation work that exists in the 
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Gibbs sampler classifications using Qian-Titterington parameter estimation. In each 
Figure, the four panels provide the initial scene and classifications after 1000, 4000, and 
11000 cycles. 
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literature~ there are very few convincing demonstrations that Markov random fields 
and especially Markov point processes provide a satisfactory global fit to real data. 
From this viewpoint, the studies mentioned by Dietrich Stoyan are perhaps of aca- 
demic rather than practical interest. It should be noted that Diggle et al. (1990) 
limit their investigations to processes with a single interaction parameter, whereas 
pseudo-likelihood methods extend easily to more complicated situations, partic- 
ularly since the log pseudo-likelihood for exponential family models is generally 
concave. Also, the methods can be made reasonably immune to boundary as- 
sumptions by appropriate conditioning. Having said all this, I agree with Dietrich 
Stoyan that, when the model is correct and interaction is strong, pseudo-likelihood 
is relatively weak, as is shown for Gaussian models in Besag (1977). As regards a 
means of improving single-pixel pseudo-likelihood, when the model is correct, this 
can be achieved by looking instead at blocks of pixels. This leads one to wonder 
whether there is an analogous procedure for point processes. 

I should next like to consider some aspects of prior distributions in Bayesian 
mapping. Recall that the aim in Section 4 was to provide a reasonably accurate 
and more readily interpretable map of underlying risk within a set of contiguous 
administrative zones. The data consisted of the number of cases, the number 
at risk and possibly covariate information for each zone. Ideally, risk should be 
constant or explained entirely by the covariates, which I take to be the point made 
by Brian Ripley, though it is difficult to respond to an unpublished example! 
Otherwise, and this is the usual situation, there remains residual variation and, 
in the paper, this was thought of as having two possible components, one spatial, 
the other unstructured, suggesting a corresponding prior distribution in the form 
of a convolution. Several discussants commented particularly on the form of the 
spatial component, so let me begin there. 

If one is to use a Gaussian prior, then there are two main approaches. The 
first is that in which one models the covariance structure by a positive definite 
or semi-definite matrix, as in the geostatistical or "kriging" approach, outlined by 
Adrian Raftery and Jeffrey Banfield. Note that the inclusion of a "nugget" effect is 
already catered for by the non-spatial component v. The geostatistical approach 
has much to offer and clearly provides a worthwhile line of future research in 
epidemiology, especially since it does not require stationarity and treats areas as 
areas, rather than as points. In principle, I am less attracted by its usual reliance 
on distance as a suitable metric but this is probably unimportant at the required 
level of approximation. 

The alternative, pursued in the paper, is to "model" the precision structure 
of the spatial component. This approach is really the dual of that above, as 
is implicit in Adrian Raftery and Jeffrey Banfield's discussion. Note that they 
concentrate for definiteness on the case of finite variances but that the extension 
to intrinsic processes is immediate -- and necessary in the present context. They 
also express concern about the choice of neighbourhood system, especially when 
the zones have very irregular sizes and shapes. I am somewhat embarrassed that 
I have no experiments to report, particularly since they could be easily carried 
out; certainly they will happen in the near future. The most obvious thought is 
to include adjacencies of adjacencies as neighbours. Donald and Stuart Geman 
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raise a more interesting idea in possibly adapting the neighbourhood structure to 
external factors by some objective rule. They also comment on the closely related 
issue of the rather strange conditional variance structure in equation (4.3). Lest 
anyone think that this is a deliberate choice, let me describe how it comes about. 
It may be helpful to any readers outside the field to begin by considering the 
salient features of conditional autoregressions, partly because the standard book 
reference, Ripley ((1981), p.88), assumes invariant conditional variances, which is 
of little direct relevance to irregularly distributed sites and, even for regular arrays, 
is questionable at the boundary. 

A conditional Gaussian autoregression or auto-Normal scheme (Besag (1974, 
1975)), for a random vector u = (Ul, u 2 , . . . ,  un) T, has conditional moment struc- 
ture, 

(R1) E(ui lu_i)  : E ~ j u j ,  
j¢i 

(a2) Var(ui lu- i )  -- ~i > O, 

where the parameters are subject to further constraints, described below; any 
mean structure has been omitted here without loss. If/3ij = 0, ui and uj are 
conditionally independent; otherwise i and j are neighbours. Write B for the 
matrix with (i, j )  element, 

~" 1, i = j,  
Bij 

- i ¢ j .  

Provided B is non-singular, it follows that E(u)  = 0. Also u has dispersion matrix 
V = B-1A where A = diag{~i}. The additional conditions for a proper Gaussian 
distribution are now seen to be that A-1B must be symmetric and positive definite, 
the former condition being equivalent to 

~iji';j = ~jil'~i, i ¢ j .  

In fact, it can easily be shown that sign(/3ij)v/(/3igji) is the partial correlation 
coefficient between ui and uj for i ¢ j .  It is clear that any zero-mean Gaussian 
distribution can be formulated in the above manner, so the only novelty is that 
B and A are to be specified, rather than dealing immediately in terms of V itself. 
Various properties can be deduced, including the fact that the right-hand side of 
(R1) is the best linear predictor of ui, given u- i .  

Having once decided on the neighbourhood Oi of each site i, it remains to 
specify the non-zero parameters. It can be assumed that the graph induced by the 
Oi's is connected, else the system can be broken down into two or more indepen- 
dent subsystems. The simplest choice is for the conditional mean in (R1) to be 
proportional to the observed mean ~i of the n~ neighbour values. Thus, 

(R3) E(ui lu_i)  = ~/fti, 

(R4) Var(u  = 
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where a > 0 and y remain to be specified or est imated.  There  are two points to 
be noted here. The first is t ha t  this defines a valid auto-Normal  scheme for any 
" /E ( - 1 ,  1). The  second is tha t  the form of the conditional variance (R4) is forced 
by (R3). A more general formulation is 

(R5) E(u~lu_g) : "/~_~ w{juj/w{+, 
j EO~ 

(R6) Var(ui lu_i)  = t{/w{+, 

in which the wij ' s  are symmetr ic  weights and + denotes summat ion  over the 
corresponding subscript.  It does not seem possible to fix the marginal  variances 
of the ui 's  to be equal but  note  tha t  

where u* is the best linear unbiased predictor  of ui on the r ight-hand side of (R5). 
In Clayton and Kaldor  (1987) and Molli~ and Richardson (1991), fi~ in (R3) 

is replaced by the sum of the ni neighbour values. This  leads to  an invariant 
condit ional  variance, though the marginal  variances can be entirely disparate.  Not 
only does there seem no good reason to base the condit ional expecta t ion  in (R3) 
on a sum rather  than  a mean, when sites have differing numbers  of neighbours, but  
also the maximum value 0'm~x of ~/ is a function of the neighbourhood structure;  
thus, ~/max can be influenced by changes in the ne ighbourhood s t ructure  in a remote  
port ion of the graph. 

The  unat t ract iveness  of (R4) is especially acute when 0' is very small or zero. 
It  is par t ly  for this reason tha t  we in t roduced the two-component  u + v formu- 
lation in Section 4, where u corresponds to (R3) and (R4), with 0' = 1, and v 
represents independent  white noise with variance I .  A fur ther  reason is tha t  even 
modera te  spatial  dependence requires a value of 0' close to unity, as is demon- 
s t ra ted for regular arrays in Besag (1981). Thus,  the use of an (infinite variance) 
intrinsic autoregression in t andem with v provides a means of representing spatial  
and non-spatial  components  and, as a bonus, dispenses with the est imation of 0' 
itself. A perhaps  naive in terpreta t ion of (R4) is that ,  as an approximation,  the 
greater  the number  of nearby locations at which one knows the t rue  risk, the more 
precise is one's prediction at  a central site. Whe the r  one can devise some sort 
of connection between a cont inuum process, such as a Brownian sheet, and an 
intrinsic autoregression is an open question, so far as I am aware; any approxi- 
mations or al ternat ive formulations would be of considerable interest. Note tha t  
the basic intrinsic autoregression can be generalized to (R5) and (R6) with ~/-- 1 
and tha t  this can be used to take account of the features of contiguous zones, as 
is ment ioned in Section 4. In fact, this extended formulat ion is just  (4.1) with 
¢(z) = z2/2t¢, so there  is nothing new here. One special case tha t  might be of 
interest is wij  = rn imj ,  where mi  is a p roper ty  of site or zone i. Then  

= +, Var(  l -d = +, 
j COl 
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where 

jEOi 

In the mapping context, rni might be the population at risk in zone i, for example. 
As in earlier discussion of Potts priors, there is no attempt above to do any 

serious modelling, though the separation into extra Poisson (v) and spatial (u) 
components has some credibility. However, one might go a little further with the 
intrinsic component, though I shall only discuss this in the context of fitting a sur- 
face over a square array of sites at each of which a noise-degraded value is available. 
The neighbourhood criterion will be assumed to be translation invariant. In the 
simplest case, with equal weight ascribed to each neighbour, the predicted value 
at any site, given all other values, is that obtained by fitting a plane to the neigh- 
bout  values by ordinary least squares. Instead of this, one might choose to fit a 
6-parameter quadratic surface to these values. For example, with an 8-site second- 
order neighbourhood, directly and diagonally adjacent sites then receive respective 
weights 1//2 and - 1 / 4 .  In fact, this intrinsic autoregression can be shown to be 
degenerate, in that its generalized spectrum is the product of two one-dimensional 
spectra; that is, the process is separable. This is not the case for the correspond- 
ing 12-site third-order autoregression, which assigns weights 1/4, 1/8 and - 1 / 8  
to first-, second- and third-order neighbour values, respectively. The aim of using 
such a prior would be to encourage locally quadratic rather than locally planar 
behaviour in realizations from the posterior distribution. Incidentally, in repre- 
senting textures by auto-Normal schemes, the parameter values seem invariably to 
be extremely close to the boundary of stationarity and one wonders whether such 
models might profitably be replaced by intrinsic autoregressions. 

Archaeological data 

I am grateful to Adrian Raftery and Jeffrey Banfield for producing an alterna- 
tive analysis of the soil phosphate data and I am relieved that our classifications 
are very similar. As we stated in the paper, there are many different ways in which 
such classifications could be produced and I think it is fair to say that here the task 
is not particularly difficult. This is in complete contrast with the very much harder 
problem, concerning the identification of ice floes from synthetic aperture radar 
data, that is tackled with great success in Banfield and Raftery (1989). In a sense, 
it is almost detrimental to their work that they bother to tackle the archaeological 
example! 

As regards our analysis, the main aim was really to provide a probabilistic 
classification from the data. I am not sure as to the "precise status of this state- 
ment of uncertainty" but, in this instance, I think I would stand by Fig. 2 as 
a reasonable representation of posterior probability and, were I to provide the 
archaeologist with some results, I would certainly rather produce Fig. 2 than a 
unique classification. Although I don't wish to pin too much faith on a single ex- 
ample, particularly given its circumstances, I am optimistic that further research 
and modifications will lead to wider applications. As a postscript to the example, 
I have just noticed that the final panel of Fig. 1, which we copied manually from 
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APL character output ,  contains an extra blob tha t  I hope will be fixed in the final 
production. If not, it is not too serious; the associated posterior probability in 
Fig. 2 is 0.45! 

Epidemiology data 

The data  sets in Section 4 of the paper were intended to illustrate differ- 
ent aspects of Bayesian mapping. The French da ta  are based on large zones 
(dSpartements), tha t  are fairly regular in shape (I am indebted to Adrian Raftery 
for the reason!). Such da ta  should not present too many problems, though the 
assumption of constant  ~ and A across the country is perhaps a weakness. Two 
particular examples from a larger set were chosen: thyroid cancer to display ap- 
preciable spatial structure and multiple myeloma to display its absence. Thus, the 
inclusion of an example for which ~ is very small, as indeed is A, was deliberate. 
Several discussants comment on these small values and point out tha t  the choice 
of c is critical. No doubt  this is true numerically but  my conclusion was tha t  the 
values are sumciently small to indicate almost constant  risk; compare Figs. 9 and 
10. The reason for excluding the origin is not because one refuses to believe tha t  

= ~ = 0 is possible but  is purely computational.  I can assure Peter  Green tha t  
no experimentation was done before we adopted (4.6), though this would be a 
good idea in a more general context. However, I return to my earlier comment 
tha t  methods of est imating ~ and A, other than  the Gibbs sampler, may well pre- 
vail. In a sense, this would turn full circle. In Clayton and Kaldor (1987), the 
EM algorithm was adopted for estimating hyperparameters.  Subsequently, David 
Clayton suggested the Gibbs sampler for this purpose, so far as I can recall, and 
this was the method we adopted. Of course, the Gibbs sampler may survive, per- 
haps using a version of the suggestion by Adrian Raftery and Jeffrey Banfield. 
Scale invariance would certainly have an advantage. The third example, concern- 
ing the incidence of solid tumours in Greater Manchester, was included because it 
involved a rather small number of cases among the 216 zones (electoral wards) and 
produced an interesting result tha t  was not obvious at first sight in the raw da ta  
(Fig. 14). As we mentioned, the da ta  are part  of a larger da ta  set for 1218 wards 
in the North of England. I should emphasize tha t  the reason for concentrating 
on Manchester alone was not computat ional  but a mat ter  of presentation. Even 
with my somewhat pedestrian programming in APL, I am able to run the Gibbs 
sampler on all 1218 wards simultaneously. I agree entirely with Peter Green tha t  
such methods can already be implemented in image analysis, per se, at least for 
problems of modest size, though not routinely in the sense of real-time processing. 
In fact, I would go further in suggesting that ,  if one has a good solution to a class 
of real problems and if one can "sell" it (this is perhaps the hardest  part!), then 
appropriate hardware will be devised. I think the benefit of small problems, and 
this includes looking at interesting parts of larger images, is tha t  one can experi- 
ment more easily, though Brian Riptey questions the relevance of this; I think we 
shall have to agree to disagree here. 

Returning to the analysis of the Manchester data,  I am impressed by the 
endeavour of Yosihiko Ogata in illustrating his own approach, though I am not 
sure I agree with the results. In his original analysis, he worked from the relative 
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incidence rates in Fig. 14 but, of course, was not able to allow for the important 
fact that these were calculated using denominators that  differed by a factor of 
almost four and hence gave rise to considerable differences in precision. The use of 
a Gaussian distribution with unconstrained parameters provides an alternative to 
the inclusion of v. However, as we stated, the idea was to avoid a Gaussian model 
because of the low numbers. This admittedly becomes much more important in 
rural areas: 165 of the 1218 wards contain no case and 183 only one, whereas the 
minimum in Greater Manchester is two. For his later analysis, Yosihiko Ogata 
used a Poisson likelihood but still omitted v from the prior. I think one needs to 
be very careful here. For example, in running one of Jeremy York's programs on 
the remainder of the Manchester cancer data, that is for leukaemias, I apparently 
discovered a fairly strong pattern, which one would not expect. Eventually, I 
realized that  I had inadvertently used a version that excluded v and that  therefore 
any extra-Poisson variation was being forced on u. When the full version was 
run, the pattern disappeared. I doubt that  this phenomenon is rare. Incidentally, 
this suggests that  extra-Poisson variation can be teased out and I think this has 
been quite a common assumption in biostatistics since the pioneering work of 
Breslow (1984). Yosihiko Ogata's Fig. F2 (but surely not Fig. F47) is indeed 
very close to our Fig. 15, though his ~2 is somewhat larger than our k = 0.024. 
However, our main difference is that  I would certainly reject constant risk as a 
rival explanation. Incidentally, if constant, the overall relative risk is unity by 
design, rather than 1.07, which is the mean of the relative incidence rates and 
does not allow for differing numbers at risk. As was stated in the paper, the same 
residential/industrial effect occurs in the other major industrial conurbation, Tyne 
and Wear. An effect such as this is likely to be small, otherwise it would already be 
well known. My personal view is that  one should investigate whether such an effect 
has a reasonable explanation and whether it is repeated elsewhere, rather than rely 
on somewhat arbitrary statistical tests; see our comments on the example. 

Yosihiko Ogata is not alone in commenting on the scant attention we paid to 
model uncertainty; the point is raised by several discussants. Whilst I accept the 
criticisms in general, I find the idea of attaching prior probabilities to different 
models as too subjective a matter in the present context! I admit that  the use of 
L1 as well as L2 priors (equations (4.4) and (4.2)) in our examples was primarily to 
illustrate that other possibilities are open. Peter Green's discussion of "proposals" 
is very useful in this respect. We are already indebted to him for advice on carrying 
out the Gibbs sampler simulations in Section 4. Finally, I had thought that the 
simulation exercise based on the estimated risk surface for the thyroid cancer data 
provided a reasonably rigorous means of comparing different methods and models, 
though I admit that our only comparison was with the raw incidence rates in the 
simulated data, which can hardly be described as stringent. However, to put the 
ball back in Donald and Stuart Geman's court, what elementary methods would 
they suggest for dealing with such data? Recall that  zones are generally irregular 
in shape and that  the incidence rates are very low and/or the populations at risk 
are small. Judging from typical cancer atlases, satisfactory methods are not widely 
available. 



58 DISCUSSION OF THE PAPER BY BESAC, YORK AND MOLLIE 

Running the Gibbs sampler 

Adrian Raf tery  and Jeffrey Banfield have tackled the difficult problem of sam- 
pling s t ra tegy in running the Gibbs sampler. I agree tha t  discarding realizations 
is wasteful in principle. In the epidemiology examples, we did this merely to avoid 
storage problems, which become a little more acute  for all 1218 wards, though this 
is really a minor issue. No realizations were discarded in the archaeological exam- 
ple, incidentally. I think the ideas behind Adrian Raf tery  and Jeffrey Banfield's 
calculations have great  potent ia l  but  I quest ion whether  we could reliably have 
used far less simulation. The  problem is tha t  the Gibbs sampler can get stuck 

near ~ = 0 or A = 0 for long periods, despite the ~-f ix;  this gets worse as ~ is 
decreased, explaining my reluctance to use a value smaller t han  0.01, though valid 
in theory. Two possible remedies are (i) use some other  me thod  of est imating 
and A or (ii) amend the Gibbs sampler t ransi t ion probabilit ies in some allowable 
fashion, so as to exit from small values of n and A more easily. Note tha t  the 
problem exists even when the posterior means of n and A are relatively large. 

And finally ... 

There  are many issues tha t  have not been dealt  with satisfactorily in my 
response and others t ha t  have not even been touched on. For example, Adrian 
Raf tery  and Jeffrey Banfield raise the possibility of using condit ional probabilities 
in the prior tha t  do not generate a valid Markov random field because of their  
mutual  incompatibility. I have no object ion in principle to such devices which can 
be thought  of as approximat ing genuine distributions,  provided the condit ional 
probabilities are not too  bizarre. However, as Donald and Stuar t  Geman point 
out,  there  are already many  somewhat  a rb i t ra ry  decisions to  be made and it may  
be prudent  not to add more. 

Once again, I am very grateful to the discussants for their  insightful comments  
and hope tha t  the paper,  as a whole, will s t imulate future research in spatial  

statistics. 
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