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First of all, it is a pleasure to congratulate the authors for contributing this 
insightful study to the growing literature on the use of Markov random fields for 
analyzing spatial data. Indeed, this trend was largely inspired by the first author 
(Besag (1974)), who has always maintained that some of the most substantial 
applications of the methodology associated with "Bayesian Image Analysis" may 
in fact be outside image analysis per se, involving neither light intensities nor 
regular lattices. 

We should also like to point out that  this paper sustains a related trend: apply- 
ing that same methodology, particularly certain algorithmic tools (Gibbs Sampler, 
etc.), to problems in conventional statistics in which progress had been stalled by 
the inability actually to compute anything. Going further still, many researchers 
have advocated the importance of the posterior distribution itself, revealing the 
likely and unlikely states of the target attributes, rather than merely summary 
statistics, such as the (posterior) mode or mean. In practice, however, this has 
rarely been done. Thus, we endorse the emphasis here on interval estimates and 
related analyses. 

Turning to specifics, there are several points which require clarification. One is 
the dependence of the conditional variance of the ui component of the log relative 
risk on the size ~i of its neighborhood in the underlying graph. As it stands, the 
variance decreases as ~?i increases; see (4.3). Hence there is an implicit assumption 
that, by whatever method these adjacencies are determined, i.e., how one popu- 
lation center is "hard-wired" to another, more links means smaller variance, all 
other factors being the same. Is this designed? For example, does one expect more 
(conditional) variation in outlying regions and so arrange for it by assigning fewer 
neighbors? We were also somewhat confused by the remarks about the accuracy 
of the Bayesian estimates in comparison with those (presumably just the MLE's) 
calculated directly from the data yi. How exactly was this ascertained? 

Finally, the latter remark leads us to a larger point, really a cautionary note. 
These models are certainly complex in comparison to non-spatial ones or ad hoc 
smoothers of standard estimators. There are lots of choices to be made: the 
decomposition of the relative risk into spatial, "noise," and covariate terms; the 
marginal distribution of u (choice of ¢ and neighborhoods); and various associated 
(hyper)parameters. Consequently, there is plenty of room for imagination. Now 
all of these steps are quite well-reasoned and the resulting apparatus looks solid, 
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but in the absence of "ground truth" of the sort usually available in image analy- 
sis (i.e., the ability synthetically to degrade images, thus having the "original" for 
comparisons; or simply having the actual digits or road maps for checking algo- 
rithms for optical character recognition or automated cartography), how does one 
demons t ra te  that the Bayesian approach is truly more accurate than more elemen- 
tary methods? Evidently, the authors believe it is, and so do we, but it would be 
comforting to have that "smoking pistol" for applications of such evident social 
importance as the ones treated here. 

PETER J. GREEN 

Faculty of Science, University of Bristol, Bristol BS8 1TH, U.K. 

I welcome this paper, especially for the two-way exchange of ideas that it pro- 
motes between statistical approaches to image analysis and other areas of statistics. 
Both sides should benefit, and the authors should be congratulated. 

I want to make a few comments about the application to the mapping of 
risk from disease, treated in Section 4. This is a very appealing formulation, 
although one suspects that the Poisson variation and the unstructured variables 
vi are close to being "confounded". Had the model instead specified that Yi was  

Normal l y  distributed with mean xi  = u~ + vi, and (for correspondence with the 
Poisson assumption) prescribed variance ~r 2, then the distinction between vi and 
the Normal errors would be seen to be artificial; there might indeed be problems 
of estimation if the variance of v~ was rather smaller than a 2, and due to sampling 
fluctuations Yi were less variable than expected. 

An innovation here is to take the Bayesian formulation one layer higher than 
usual in image analysis, by imposing a prior on the parameters ~ and A, cor- 
responding to the reciprocals of the interaction parameters in the usual Gibbs 
distributions. Obviously, some experiments were needed before the prior specifi- 
cation (4.6) was adopted. The text rather suggests that the choice of a precise 
value for ~ is not too important, but I note that, in the examples, posterior means 
of n and )~ are often as small or even smaller than the selected value e = 0.01. 
Doesn't this imply that s has greater significance than simply as a convenient 
factor to make the algorithm work, since the prior is not locally uniform around 
values supported by the likelihood? 

In current work in image analysis at Bristol, we are making much use of 
Markov chain simulation methods to estimate functionals of the posterior distri- 
bution of the true scene (on a moderately large scale: current workstations can 
cope with the computations, contrary to the impression given in the abstract). Ex- 
cept in purely Gaussian models (where normalising constants are known) or when 
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using small pallettes of discrete "colours" (where they can be calculated quickly), 
we generally use the Metropolis method, rather than the Gibbs sampler. Possible 
disadvantages in terms of reduced rate of convergence, counting in sweeps, can eas- 
ily be offset by reduction in computing time per sweep when normalising constants 
are not needed. The form of Metropolis we use is the generalisation discussed by 
Hastings (1970) which allows a virtually arbitrary "proposal" distribution. In the 
context of Section 4, such an algorithm could take the following form. When vis- 
iting site i, draw a new value for ui not from the local characteristic given in the 
paper (the display following (4.6)), but from a Normal distribution with mean 
(1 + O)# - Ou~ and variance (1 - 92 )0  -2, where O, # and a are yet to be determined. 
This new value is not automatically adopted, but regarded as a "proposal" u~. It 
is only accepted with probability 

a = rain(l, exp(g(u~) - g(ui))) 

where the function g is defined by 

1 ni g(ui) = ~j~ (ui _ p)2 _ E ( u i  _ ~i)2 + ulyl _ ~eU~+V~. 

With probability 1 - a, the current value ui is left unchanged, and another site or 
variable addressed. It is quite easy to check that  detailed balance holds for any O, 
# and a, and these can legally depend on all variables except ui and u~. It is now 
straightforward to select values for p and a that  make g reasonably constant over 
a range of u values around the middle of the proposal distribution, so that  the 
acceptance probability a is close to 1 with high probability. A very similar method 
would be used to resample vi. Unlike the "carefully designed rejection methods" 
that  are needed in the presence of the Poisson likelihood when using the Gibbs 
sampler, there is no need here to ensure that  the true density is bounded above 
by a multiple of an approximating one, and so the awkward tail in the conditional 
density is no objection to the use of the Normal distribution for a proposal. My 
guess is that this simulation method would be much faster. 

In the Gaussian case, # and ~ can always be chosen to make g identically 
constant, so a = 1. With 0 = 0, this is exactly the Gibbs sampler, otherwise 
(note that g does not involve 0), this becomes the proposal of Barone and Frigessi 
(1990), which they show can give faster convergence for some 0 > 0 in cases of 
positive interaction. 

Finally, I would like to draw attention to the different possible requirements for 
speed of convergence when using these Markov chain methods. This usually seems 
to be considered in terms of the rate of weak convergence, given by max{l,~jl}, 
required to be small, where {Aj} are the non-unit eigenvalues of the transition 
matrix. But often in practice, the purpose of the simulation is to estimate some 
functional of the form 

= . /F ( u ) p ( u lda ta ) du"  Epost(F(u))  

When this is estimated by an empirical average 

t2 
Epost(F(~t)) : (t2 -- tl) -1 ~ F(u(t)), 

t=t lq -1  
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the relevant measure of convergence is the asymptotic variance, and better preci- 
sion is obtained by choosing the sampling method to make the ratios { (1 + A j ) / ( 1 -  
Aj)} small: Aj negative is better than zero. Details are given in Peskun (1973): 
the idea is roughly analogous to the use of antithetic variables in Monte Carlo, 
and seems to give additional support to using 0 > 0 above. 
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SHIGERU MASE 

Faculty of Integrated Arts and Sciences, Hiroshima University, 
Hiroshima 730, Japan 

Authors pointed us in this paper the applicability of the Bayesian image 
restoration method to several important problems in spatial statistics. I completely 
agree with them in that this method will be a very flexible and strong tool in future. 
There is a good possibility that  it leads to a whole branch of spatial statistics. If 
so, it is important to realize merits and demerits of the method. Authors discussed 
several merits of this method in the paper. I want to point out two problems in 
the following. 

After repeating Gibbs samplers sufficient times, we can get some restored 

images as shown in Fig. 1. How can we be certain that the method has worked 
good and we have a good image? In the original image restoration problem we 
can fairly easily judge whether the method works good or bad. Just "Seeing is 
believing". But, I think, this is not the case in the present pseudo-image restoration 
problem. 

One popular justification of the Bayesian approach in estimation problem is 
that resulting estimators are asymptotically independent on the choice of priors. 
But it seems that realizations which are results of Gibbs sampler are strongly 
dependent on the prior used. If this is true we should be very careful to se- 
lect a prior. We must take account of underlying spatial structures and relevant 
knowledges carefully and can not choose a prior because of its mere simplicity 
and tractability. Let us consider the prior used in the archaeological problem. As 
authors remarked, this prior encourages neighboring sites to have the same values. 
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As a result, resulting restored images tend to consist of isolated convex-like com- 
ponents as shown in Fig. 1. (Also it may cause the instability of boundary sites of 
each objects as well as sites near the frame boundary.) Do these components have 
proper meanings? Are there no possibilities that  they only appear because we 
used such a prior? The final criterion is, of course, archaeological evidences. But 
also we need to know to what extent this prior is consistent with archaeological 
knowledges. 

GOODNESS-OF-FIT OF BAYESIAN MODELS 
BY THE MONTE CARLO SIMULATION 

YOSIHIKO OGATA 

Institute of Statistical Mathematics, ~-6-7 Minami-Azabu, Minato-ku, 
Tokyo 106, Japan 

The main contribution of the paper, I feel, is the suggestion and implemen- 
tation of the posterior mean estimate for the regulation parameters n and A by 
the Gibbsian Monte Carlo simulation. This will be very useful for an objective 
Bayesian analysis based on the Monte Carlo method. In addition, the authors 
introduced the prior 

(1) prior(n, A) cx e-~/2~e -~/2)' 

which, referring to the authors, is "to avoid the absorbing state of the Markov chain 
invalidating the Gibbs sampler". According to the authors e is a small positive, 
and they choose e = 0.01 in an ad hoc manner. However, I am concerned in the 
fact that  the posterior mean estimates of either ~ or A are as small as e = 0.01. 
Then I must suspect that  the absorbing state itself has a statistical significance 
such that  the optimal estimate of either u = {u~} or v = {v~} is constant (i.e., 
independent of i), so that n or A tend to zero. If this is the case, the introduction 
of the prior for avoiding the absorbing state, such as the one in (1), should not 
be, or at least should be carefully posed. I consider that  the Jeffreys' ignorance 
prior or alternatively the uniform prior, as described by the authors, may still 
be preferable in their procedure. Also, I think that it may be helpful to discuss 
the goodness-of-fit of Bayesian models for the suitable prior selection. Indeed, the 
authors considered two priors, the Gaussian and double exponential types, as well 
as the terms t, u and v in the likelihood. Let me argue these issues by the use of 
related data sets and models to the authors'. 

Considering the last example analyzed by the authors, I have to start with 
the processed data z = {zi}i=l,2 ..... n, n = 216, given in Fig. 14 by the authors 
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(or Fig. F1 for the comparison with the patterns shown hereafter), showing the 
observed mortality rate of cancers in Great Manchester, since I do not know the 
original data for the observed number of deaths from cancer. Also, I have to assume 
the Gaussian model instead of the Poisson likelihood. Further, the prior function 
of the Gaussian intrinsic auto-regression is considered, so that  the posterior is 
given by 

(2) P(O I 0", r: z) = 1 - ~ a 2  i = l  0"n exp (Oi zi) 2 

{1 } C 2 
× r- exp  (ei - ej) 2 × prior(o" 2, z2), 

where C is the normalizing constant of the prior for 8: this can be arbitrarily a 
fixed one for the Monte Carlo simulation. At first, I simulated the above posterior 
distribution by the Gibbs sampler with the ignorance prior, i.e. prior(a 2, T 2) (2( 

0"--27 "-2, a~s well as the uniform prior, prior(o" 2, r 2) o~ 1. Then, the posterior mean 
estimate of (0", r)  for the former case converges to (0.410, 0.000), while the one for 
the latter case converges to (0.391, 0.188). The convergence of r to zero can be 
avoided by assuming the similar prior to the one in (1) for r in conjunction with 
the ignorance prior, but e needs to be large enough to obtain a similar posterior 
mean of 9 to that in Fig. 15 of the authors: this leads me to the difficulty in 
determining a suitable e. On the other hand, I had no problem of such singularity 
in the case of the uniform prior. Its posterior mean of O (Fig. F2) provides a 
rather similar pattern to the authors' estimate (Fig. 15), while the one for the 
ignorance prior provides the estimate of constant risk 1.07 throughout the region. 
Which one, then, gives a better fit to the data? 

- 

O.SO 
0 . 2 0  

O . l o  

- 0 ° 1  ° 

-0.2 + 

_ _ - o . 3 +  

Fig. F1. The  morta l i ty  ra te  da t a  O = {9i} identical to Fig. 14 of the  authors .  Size of 

signs shows the  deviat ions from the  average (~ = 1.07. 
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Fig.  F2. Pos ter ior  m e a n  e s t i m a t e  of  0 for the  u n i f o r m  pr ior  of  er and r .  

Consider no prior for a 2 and 72 in (2): i.e., formally, prior(a 2, T 2) = 1. Define 
the Bayesian likelihood 

where P* is the same P as in (2) except that the prior for 0 is a probability 
distribution with the normalized constant C* which is calculated somehow avoiding 
the improper prior, e.g., in a Gaussian case as the above, the degenerated Hessian 
matrix should be avoided somehow: see Akaike (1979), Ogata and Katsura (1988), 
Ogata (1990) and Ogata et al. (1991)• The type II maximum likelihood method 
is suggested by Good (1965) to find the optimal hyperparameters, such as ~ and 
T, which maximizes the Bayesian likelihood• To compare the goodness-of-fit of 
Bayesian models, Akaike (1979) defined 

ABIC = ( - 2 )  max{log Bayesian likelihood} + 2 .  {number of hyperparameters} 

which can be comparable with the AIC which is used in case of the ordinary 
maximum likelihood models (Akaike (1987))• A model with a smaller ABIC or 
AIC indicates a better fit. Akaike justified such selection procedure based on the 
entropy maximization principle (Akaike (1977, 1978)). 

A computation method for the log Bayesian likelihood by the Metropolis' 
Monte Carlo procedure is suggested by Ogata (1989, 1990), which assessed the 
high dimensional integrations for the normalizing constants of the posterior as 
well as the prior. Figure F3 summarizes the values for the log Bayesian likelihood 
of a number of pairs (a, r). This indicated a local maximum around (a, I-) = 
(0.375, 0.30)• The posterior mean of 8 in this case is shown in Fig. F4, which 
appears very similar to Fig. 15 by the authors• The standard deviations of the 
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Fig. F3. Contour  map of the  Bayesian log likelihood wi th  respect  to  (T, a).  The  

contours  of the  minus value are not  shown. Signs of closed diamond,  closed circle, and  

closed squares respectively indicate  the  location of the  local maximum,  poster ior  means 

wi th  respect  to  the  uniform and  ignorance priors• 
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Fig. F4. Posterior  mean  es t imate  of 0 for (T, a)  = (0.375, 0.30) which locally maxi- 

mizes the  log Bayesian likelihood• 

posterior  marginals,  with respect to 0i for each z, was about  0.15 ~ 0.19 so tha t  
its 95% confidence bands entirely includes the constant  risk 1.07, the mean  of 
the processed da ta  z = {zi}, th roughout  the region• It is found by the Monte  
Carlo computa t ion  tha t  the local maximum value of the log Bayesian likelihood 
with the s tandard  error  is log£(0.375,  0.30) = 82.32 4- 1.19. Incidentally, at  the 
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posterior mean estimate of (a, T), we have log£(0.391, 0.188) = 75.64 ± 1.75. 
Then, these are to be compared with the same quantity for the case of ~- = 0 and 
a -- 0.410. Unfortunately, the Monte Carlo integration of log £:(a, T) for a very 
small a or ~- is not so reliable due to the large estimation errors (see Ogata (1989, 
1990)). Nevertheless, we expect that the following relation between the Bayesian 
and ordinary likelihoods holds by assuming the exchange of signs between the limit 
and the integral: 

m axlog/~(a, 0) - maxo ~-~01im log£(a,  T) = m axlog / lim ° P*(Ola , T; z)dO 

= maxlog [ ±exp Z(O - 1-I eoo(O )eo 
Oo,c~ ' ]  o'n i=1 i=1 1{1  } 

= max log exp - (0o - zi) 2 
00~o" ~ " =  

n log 52 n 85.62, 
2 2 

where 500(0~) is the Dirac's delta function such that 56o(0~) = 1 for 0i = 00, 
otherwise 0. Eventually, the last term is nothing but  the maximum log likelihood 
assuming 00 -- 0i for all i, and the maximum likelihood estimate is given by 

= 1.07 with the standard error 5 -- 0.41. 
Now we compared the goodness-of-fit of the Bayesian and ordinary parametric 

models by the ABIC and AIC. In the present case, ABICt = -160.6 + 2.4 and 
ABIC2 -- -151.3 + 3.5 corresponding to the local maximum and posterior mean of 
the Bayesian likelihood, respectively, and ABIC0 = AIC = -169.2 to the ordinary 
maximum likelihood model. Thus, it is seen that the model with equal mortality 
rate throughout the whole region is superior to the other estimates, as far as the 
Gaussian likelihood is concerned. Next, for an alternative Bayesian model with 
the normalized prior 

of 0 for some D, a similar local maximum of the log Bayesian likelihood is attained 
around (a, T) = (.40, .40) with ABIC3 = -155.13= 2.6. Again, the simplest model 
of constant mortality rate shows the better fit. It was also suggested that the 
Bayesian log likelihood for these models is at least bimodal: another peak was 
seen on a-axis but  in a singular manner against the direction of T-axis, and the 
corresponding local maximum was attained at the point (5, 0), where 5 was the 
ordinary maximum likelihood estimate. 

Does the log Bayesian likelihood at such singular point (i.e., log maximum 
likelihood) always have a higher value than anywhere else? Let us consider artificial 
mortality rates (see Fig. Fh) with #i = 1.07 + 0.5(i - n /2) /n ,  i = 1, 2 , . . . ,  n; 
n = 2161 on the same contiguities as the electoral wards of Great Manchester in 
Fig. 15. The artificial data, shown in Fig. F6, is generated according to the 
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Fig.  F5.  P a t t e r n  of  ar t i f icial  m o r t a l i t y  r a t e s  w i t h  /x~ = 1.07 + 0.5( i  - n / 2 ) / n ,  i = 

1, 2 , . . . ,  n; n = 216. 
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Fig.  F6.  Ar t i f ic ia l ly  g e n e r a t e d  d a t a  a cco rd ing  to  N ' ( ~ i ,  a 2) w i t h  a = 0.3: see Fig. F5  

for t h e  p a t t e r n  o f  {~i},  

normal distribution hf(#i,  a 2) with a = 0.30• For this data, I implemented the 
Gibbs sampler of the posterior in (2) with both the ignorance and uniform priors 
of the hyperparameters. The respective posterior means of the hyperpara.meters 
were (a, T) = (0.259, 0•229) and (a, T) = (0•262, 0.206)• In the present data, 
I had no problem with the absorbing state, at least up to 100,000 cycles by the 
Gibbs sampler procedure, even when I started from the possible singular states of 
the Markov chain• The standard deviation of the posterior marginal of 8 = {0i} 
for each i ranged from 0.09 to 0.14. Then, I had the following values for the log 
Bayesian likelihood, log £(0.259, 0•229) = 151.40 + 2.24 and log £(0.262, 0•206) = 
148.97+2.29, while log £(0.311, 0.0) = 144.52 for the maximum likelihood estimate 
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Fig. FT. The mean estimate by the Gibbs sampler of the posterior distribution with 
the maximum Bayesian estimate. 

(} = 1.063 of the flat image model. This time, the posterior means for both priors 
were shown to have better fits than the flat image by comparing the corresponding 
AIC and ABIC's. Further, the maximum Bayesian likelihood was almost attained 
by log£(0.250, 0.250) = 156.95 ± 1.93. Thus, the posterior mean of 0 with the 
last value of hyperparameters is shown in Fig. F7, which is very similar to the 
true image in Fig. F5. Incidentally, the log likelihood value of the true image 
was 165.09 which provides, of course, the smallest AIC, compared to the above 
ABIC's. 

Addendum 

After having sent the above comments to the author, Professor Besag kindly 
sent me the original Manchester data of (y~, ci) (i = 1 , . . . ,  n; n = 216) so that I 
can analyze the Poisson model in comparison with the Gaussian model discussed 
above. Now, I have made a tentative Monte Carlo evaluation for the Bayesian 
likelihood of the same posterior as in equation (4.5) by the authors except assuming 
v = 0 and prior(n) = 1. The Monte Carlo evaluation was made for every n with 
0.05 unit, and n = 0.20 attained the maximum with log £(0.20) = -556.86 4- 0.90. 
On the other hand, the ordinary maximum log likelihood value with the constant 
risk t~ was - 556.46, showing about the same fit with the Bayesian model. The 
posterior mean estimate was similar to the one shown in Fig. F2. 

Further the Gaussian likelihood, to be compared with the Poisson model on 
the same original data (y~, ci) (i = 1 , . . . ,  n), should be rewritten by 

l'nI-v/2--~'zr°'Ge~- - l e x p {  } ~ c-~] j (4) 
i = 1  i = 1  

up to the normalizing constant of the joint probability density with respect to 
the data {Yi}. Comparing this with the likelihood function for the processed data 
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z~ = yi/c4e ~ in equat ion (2) of the present  contr ibut ion,  the difference of the 

constant term = 649.48 mus t  be  sub t rac ted  f rom the logar i thm of the  m a x i m u m  

Gauss ian  ord inary  and Bayesian likelihoods ob ta ined  above. Then,  AIC and ABIC  
of the Manchester  d a t a  shows tha t  the  Poisson models  pe r fo rm clearly be t t e r  fits 

than  any of the Gauss ian  models  by the difference abou t  15. 
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1. Introduction 

I t  is a pleasure to congra tu la te  Jul ian Besag, J e remy  York and  Annie Molli~ 
on a superb  paper  tha t  will surely take its place as yet another  of Jul ian Besag 's  
grea tes t  hits, and  as a first hit for the other  two authors!  

They  argue tha t  m a n y  spat ia l  s tat is t ics  problems can appropr ia te ly  be  viewed 

* This research was supported by the Office of Naval Research under contracts N-00014-88- 
K-0265 and N-00014-89-J-1114. 
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as problems in image restoration, and that image restoration problems are best 
solved by postulating a Markov random field model, and then calculating the 
posterior distribution of the quantities of interest using the Gibbs sampler. This is 
an appealing argument and the examples are encouraging. One possible difficulty 
arises from the fact that the models may not have the same large-scale properties 
as the data they are used to analyze, and this raises some questions about the 
status of the resulting inferences (see Section 3 below). 

For the practical implementation of the Bayesian image restoration approach 
it is important to know how many iterations of the Gibbs sampler are required, 
and we propose a method for determining this in Section 2. In Section 3 we con- 
sider an alternative to the Bayesian image restoration approach for the archeology 
example, based on mathematical morphology. In Section 4 we discuss several is- 
sues in the modeling that underlies the Bayesian image restoration approach: the 
modeling of spatial dependence, allowing for model uncertainty, the improper pos- 
terior distributions that arise in hierarchical Bayes modeling, and the modeling 
of local dependence between counts when it cannot be assumed that the Yi's are 
independent given x. 

2. How many iterations in the Gibbs sampler? 

The authors point out that the Bayesian image restoration approach is not 
yet feasible for typical images containing 105 or 106 pixels, although it can be 
implemented for the problems they consider, involving 100 300 "pixels". The main 
reason for this is the large number of iterations required by the Gibbs sampler. 
For instance, in the disease risk example, the authors ran the Gibbs sampler for 
11,000 iterations, discarding the first 1,000, and storing every 10th or 20th value 
thereafter; these numbers were fairly arbitrarily picked initially, although they 
appeared to give reasonable results. As a practical matter, it would seem desirable 
to run the Gibbs sampler for the smallest number of iterations necessary to attain a 
required level of accuracy, and we now outline an approximate way of determining 
what that is. 

The validity of the Gibbs sampler stems from the fact that each cycle of the 
algorithm corresponds to one step of a Markov chain with stationary transition 
probabilities and that an ergodic theorem applies for functions of x under certain 
regularity conditions (Geman, S. and Geman, D. (1984)). This suggests that 
one generate a single long realization of the Markov chain and base inference on 
it, which is what the authors have done. By contrast, several authors who have 
recently applied the Gibbs sampler to more standard statistical problems (Gelfand 
and Smith (1990), Gelfand et al. (1990)) have instead adopted the following 
algorithm: (i) choose a starting point; (ii) run the Gibbs sampler for T iterations 
and store only the last iterate; (iii) return to (i). The relationship of this latter 
algorithm to the underlying theory seems problematical, and here we consider only 
the case of a single long realization. 

We consider the specific problem of producing results such as those in the 
authors' Figs. 7 and 8, namely the calculation of particular quantiles of the poste- 
rior distribution of a function of x. We formulate the problem as follows. Suppose 
that we want to estimate P[U <_ u I Y] to within :t:r with probability s, where 
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U is a function of x. We will find the approximate number of iterations required 
to do this when the correct answer is q. For example, if q = .025, r = .005 and 
s = .95, this corresponds to requiring that the cumulative distribution function of 
the .025 quantile be estimated to within ±.005 with probability .95. This might 
be a reasonable requirement if, roughly speaking, we wanted reported 95% inter- 
vals to have actual posterior probability between .94 and .96. We run the Gibbs 
sampler for an initial M iterations that we discard, and then for a further N iter- 
ations of which we store every k-th (in their Section 4 the authors use M = 1,000, 
N = 10,000 and k = 10 or 20). Our problem is to determine M, N, and k. 

We first calculate Ut for each iteration t, and then form Zt -- 5(Ut > u), where 
5(.) is the indicator function. {Zt}  is a binary 0-1 process that is derived from 
a Markov chain by marginalization and truncation, but it is not itself a Markov 
chain. Nevertheless, it seems reasonable to suppose that  the dependence in {Zt} 

falls off fairly rapidly with lag, and hence that if we form the new process {Z~ k) }, 

where Z~ k) = Zl+(t-1)k, then {Z~ k) } will be approximately a Markov chain for 
k sufficiently large. In what follows, we draw on standard results for two-state 
Markov chains (see, for example, Cox and Miller (1965)). 

Assuming that {Z~ k) } is indeed a Marker chain, we now determine M = ink, 
the number of "burn-in" iterations, to be discarded. Let 

p = 1 - a  (~ ) 
3 1 - 3  

be the transition matrix for {Z[k)}. The equilibrium distribution is then 7: = 
(Tr0, ~1) = (a + 3)-1(3,  a), and the/-s tep transition matrix is 

( ) ;) p t =  fro 7r1 + 
71" 0 71" 1 ~ - - ~  -- /3 ' 

where A = (1 - a -  3). Suppose that we require that P[Z~  ) = i I Z~ k) = j] be 

withing ofTri for i ,  j = 0, 1. I feo = (1,0) a n d e l  = (0, 1), t h e n P [ Z ~  ) = i I 
Z (k) -- j] = e iP m, and so the requirement becomes 

+ Z) A m < 
- max(el, 3) '  

which holds when 
( + 

log \ m a x ( a , / 3 ) )  

log A 

Thus M = m*k. 
To determine N, we note that the estimate of P[U _~ u [ D] is 2 (k) = 

( l /n )  f i  Z} a). For n large, 2 (k) is approximately normally distributed with mean 
t = l  
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q and variance (1 /n)a13(2-  a -  13)/(a + 13) 3. Thus the requirement tha t  P [ q -  r <_ 

Zn (k) _< q + r] = s will be satisfied if 

- - 9 )  

n = n *  = ((~ ÷ ~ ) 3  

• ((1 ; s ) / 2 )  

where ~(.)  is the s tandard  normal cumulative distr ibution function. Thus we have 
N = kn*.  

To determine k, we form the series {Z/k)} for k = 1, 2 , . . . .  For each k, 
we compare the first-order Markov chain model with the second-order Markov 
chain model, and choose the smallest value of k for which the first-order model 
is preferred. We compare the models by first recasting them as (closed-form) 
log-linear models for a 23 table (Bishop et al. (1975)), and then using the BIC 
criterion, G 2 - 2 log n, where G 2 is the likelihood ratio test statistic. This was 
introduced by Schwarz (1978) in another context and generalized to log-linear 
models by Raftery (1986); it provides an approximation to twice the logarithm of 
the Bayes factor for the second-order model. One could also use a non-Bayesian 
test, but  the choice of significance level is problematic in the presence of large 
samples. 

We applied the suggested method to series of 11,000 iterations of the Gibbs 
sampler for u and v for each of 12 d~partements based on the da ta  of the authors '  
Fig. 4; the Gibbs sampler output  was kindly supplied to us by Jeremy York. We 
first give illustrative results with q = .025, r -- .005, s = .95, and ~ = .001. For 
all 24 parameters considered, k was either 1 or 2, M was never more than  6, and 
N was always 9,034 or less. However, for the spatial smoothness parameter  t~, 
the si tuation was quite different and the requirements of the Gibbs sampler were 
larger: k = 5, M -- 65 and N = 42,500. 

The authors '  Fig. 6 implicitly requires tha t  the .1 quantile of e x = e u+v be 
correct to one decimal place with high probability. This implies, approximately, 
tha t  for each u and v we specify q = .1, r = .012 and s -- .95, which yielded k < 3, 
M < 12 and N _< 8,300 for all 24 parameters considered. In practice, the method  
would be implemented by first running, say, 1,000 iterations and then deciding on 
k, M and N on the basis of those. In the present case, this appeared to work quite 
well. 

One conclusion is tha t  the number of iterations required can vary considerably 
depending on what  is being estimated. Here, far more iterations are required 
for the overall spatial smoothness parameter  n than  for the relative risk at an 
individual node. It does not seem necessary to use only every 10th or 20th iterate, 
and, indeed, doing so is probably quite wasteful. Indeed, it is not clear tha t  
discarding any iterates is advantageous, al though it does simplify the calculations 
here. Also, it does not seem necessary to discard the first 1,000 iterates, or anything 
like it; our calculations never indicated it to be necessary to discard more than  the 
first 65. 

We hope tha t  the suggestion made here will allow the Gibbs sampler to be used 
more efficiently, and hence to make Bayesian image restoration feasible for larger 
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problems. The computer code used to carry out these calculations is available 
from Adrian Raftery by electronic mail at raftery@stat.washington.edu. 

3. Using morphology to locate archeological sites: The EP algorithm 

The problems of locating archeological sites in Section 3 can be regarded as one 
of locating and finding the boundaries of objects in the image, in this case sites of 
previous activity. For comparative purposes, we apply a different technique based 
on mathematical morphology, known as the EP algorithm, that was originally 
developed for locating ice floes in satellite images (Banfield and Raftery (1989)). 

The EP algorithm consists of two parts: erosion and propagation. The erosion 
part of the algorithm, which identifies the potential edge elements, is a standard 
application of ideas in mathematical morphology (Serra (1982)). The algorithm is 
iterative and operates on a binary image consisting of objects (sites of activity) on 
a contrasting background. At the first iteration, if a pixel is classified as "active" 
and a specified subset of its neighbors is inactive, the pixel is "deactivated" and 
becomes inactive. At the second iteration, the same operation is performed on 
the image resulting from the first iteration, and so on. The edge elements consist 
of the pixels "deactivated" at the first iteration. The propagation part of the 
EP algorithm keeps track of the site to which an edge pixel belongs by locally 
propagating the information about edge elements into the interior of the object as 
it is eroded. 

We started the EP algorithm from the naive classification given in the authors' 
Fig. l(a), which is, in fact, simple thresholding. The results are shown in Fig. 
1. They are quite similar to those obtained from the Bayesian image restoration 
method, perhaps strikingly so given the noisy appearance of the naive classification 
in the authors' Fig. l(a). The pixels where the classifications disagree are pixels 
where the uncertainty is, in any event, considerable. For almost all these pixels, the 
posterior probabilities in the authors' Fig. 2 are well away from 0 or 1, and many 
of them are border pixels for which, as the authors observe, any spatial procedure 
is necessarily of doubtful value. Note that the EP algorithm uses only the naive 
classification, and does not, unlike the Bayesian image restoration method, use the 
full original data. 

The EP algorithm has advantages and disadvantages compared to the Bayesian 
image restoration method: it is much faster but yields less information. The EP 
algorithm involves only about 10 iterations here, each of which consists only of 
small integer additions, while the Bayesian image restoration method uses 15,000 
iterations each of which involves one exponentiation per pixel. Thus we estimate 
that the Gibbs iterations take at least 1,000 times, and perhaps 10,000 times as 
much CPU time as the EP iterations. On the other hand, the Bayesian image 
restoration method does have the important property of providing a statement of 
uncertainty in the form of posterior probabilities at each pixel. 

However, we do wonder about the precise status of this statement of uncer- 
tainty. Markov random field models such as that on which the analysis is based 
often have a substantial probability of producing infinite one-color patches, in 
which case typical realizations of {p(x)} will not resemble the true scene. This 



DISCUSSION OF THE PAPER BY BESAG, YORK AND MOLLIE 37 

Edge pixels from the EP algorithm EP algorithm classification 

• ° 

I d 

(a) 

• • ° 

• • • • , 

. . . .  • ° 

6 d 

(b) 

8esag et• al. and EP classif~ations compared 

0 0 0  

. ® ® ® ®  

® ® ® ® ® .  

i . e o G e . o  
" ® ® ~ ® ® 0  

" ' ® ® 0 ® ®  

0 ® ® ® ® ®  

® ® ® ® ® ®  

" ® ® O ®  

® ' ® 0  

®® 

®®® 

®® 

0®®®® 

0®®®® 
®®® 

0 ® 

Besag et• al• classification 

(c) (d) 

I • • 

• ° 

• ° ° 

Fig. 1. The EP algorithm applied to the archeology data: (a) The edge pixels iden- 
tified by the EP algorithm; (b) The classification by the EP algorithm; (c) The EP 
and Bayesian image restoration classifications superimposed; (d) The Bayesian image 
restoration classification. 

is known as the phase transit ion phenomenon and is discussed, for example, by 
Besag (1986)• One consequence is t ha t  the prior may  be heavily concentra ted  on 
uniform images, and one might expect  this to bias the posterior  towards too much 
uniformity. We would welcome the authors '  views on these points. 

4. Mode l i ng  issues 

4.1 Modeling the spatial dependence 
In the  disease mapping example, the authors  model  the spatial dependence 

using equation (4.1). This  seems sensible in the case of a spatial  array tha t  is not 
too dissimilar to a rectangular  array of pixels, such as the French d~partements.  
As a historical footnote,  the regulari ty of the adminis t ra t ive map of France is due 
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to Napol@on, who laid it out in the early nineteenth century in such a way that a 
man on horseback could reach any part of a d@partement in a day's ride. 

However, we wonder whether the specification (4.1) would be as satisfactory 
for much more irregularly spaced arrays. One example is the Standard Statistical 
Metropolitan Areas (SMSAs) of the United States, where the "neighbors" are close 
together in the North-East, but much further apart in the rest of the country. 

An alternative but related specification has been developed in geostatistics as 
the basis for the so-called "kriging" method (Journel and Huijbregts (1978)). This 
implements the idea that dependence decreases with distance. The form of the 
dependence is described by the semivariogram, 7(h)  = (1/2) Var[u(s) - u(s + h)], 
where u(s) denotes the value of u at a location s. If the covariance function, C(h), 
exists, then 7(h)  = C(0) - C(h). If V is the resulting covariance matrix of the 
ui's, and the ui's are assumed to be jointly Gaussian, then (ui I u_i) ~ N(fi~, a~), 

2 is its variance. where ui = ~ aijuj is the best linear predictor of ui and a~ 
J 

This may provide a more systematic basis for the choice of the quantities {aij }, 
which play a role similar to that of the {wij } in equation (4.1). Another feature is 
that when, as in the disease risk example, the data correspond to areas rather than 
to points, the spatial dependence can take account of this explicitly. This is done 
by postulating a semivariogram for points, as above, and then integrating over 
areas to provide the corresponding values for the areas (Journel and Huijbregts 
(1978)). One would then proceed as before. 

At first sight, it may seem that such an approach would be computationally 
prohibitive for even moderate data sets, since, in principle, it requires the inversion 
of n matrices, each of which is (n - 1) × (n - 1). However, if v(h)  is modeled by 
a function with "sill", such as the "Math@ron", or spherical, semivariogram, 

Ihl _< a 

Ihl > a ,  

then many of the entries in V will be zero, and this can be used to reduce the 
computation involved in calculating the {aij}. Also, most of the {a~j} will be 
close to zero, and they could be set to zero without bad consequences, leading 
to an effective set of neighbors for each pixel, not necessarily restricted to the 
contiguous zones. In addition, the {aij} have to be calculated only once for each 
value of (~,)~) considered, remaining the same for each iteration of the Gibbs 
sampler. This suggests advantage to the strategy adopted by the authors for the 
archeological example, where the parameters of the prior were updated much less 
frequently than the values at the individual nodes. 

these are tentative and untested ideas. However, the notion that the spatial 
modeling methods developed in geostatistics could be combined with the Bayesian 
image restoration methods proposed in the present paper may be a potentially 
fruitful one. 
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4.2 Model uncertainty 
Several modeling choices are made in the authors' examples. These include 

the form of ¢(z), namely whether it should be proportional to z 2 or to [zl, which 
covariates should be included in t = AO, the way the {wij} are defined, and 
whether u and v should both be present. The authors, in common with most 
statistical modelers, have chosen a single model for each data set, and drawn 
conclusions conditionally on the selected model. This ignores the uncertainty 
associated with the model selection exercise itself. Analyses conditional on a single 
selected model fail to take account fully of uncertainty about structure, and so 
may well underestimate the uncertainty associated with their conclusions, thus, 
for example, biasing policy choices in favor of policies that rely on more certain 
information (Hodges (1987)). 

Suppose that m + 1 models M0, M1, . . . ,  Mm are being considered. In the 
present context, these might correspond, for example, to different choices of ¢(.), 
{wij} and covariates. Then, if A is a quantity of interest in the analysis, we 
can take account of model uncertainty quite simply by basing inference on the 
unconditional posterior distribution of A, 

m 

(1) p(A ] y) = E p ( A l y ,  Mk)p(Mk l Y), 
k=O 

where p(Mk I Y) is the posterior probability of model Mk. This is a weighted 
average of the posterior densities of A under each of the models individually, 
weighted by their posterior probabilities. It will be well approximated by p(A I 
y, Mk.), i.e. by conditioning on a single selected model Mk., only if p(Mk. I 
y) ~ 1, or if the posterior distributions of A from the models with non-negligible 
posterior probability are similar. 

To calculate the posterior probabilities p(Mk I Y) we note that 

(2) P(Mk l Y) c~ p(y l Mk)p(Mk). 

In equation (2), p(Mk) is the prior probability of Mk and 

(3) p(y l Mk) =/p(ylOk,  Mk)p(Ok I Mk)dOk, 

where Ok is the possibly vector parameter of Mk and p(Ok I Mk) is its prior density. 
In the present context, this can be implemented by noting that x can also be 
included in equation (3), yielding 

(4) p(y l Mk) = f / p ( y  l x, Ok, Mk)p(Ok I Mk)dxdOk. 

This can be approximated by 

(5) 
T 

1 Ep(ylx( t ) ,  O(kt), Mk), 
t = l  
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where {x (t) A(t)~ , v k ~ is the result of running the Gibbs sampler to obtain a sample 
from the prior distribution of (x, ~k). A different approach to finding posterior 
probabilities using the Gibbs sampler is to include a model indicator as an addi- 
tional parameter (Carlin et al. (1990)). 

The implementation of the suggested approach to model uncertainty using 
equations (1), (2), (4) and (5) does not seem computationally prohibitive. At 
most, the computation is linear in the number of models that are fully analyzed, 
multiplying the required CPU time by about 2(m + 1). However, there are several 
possible ways of reducing this. For example, the Gibbs sampler could be run in 
parallel on all the models. Also, an initial short run of equation (5) could be used 
to identify those models with substantial posterior probability, and a longer run 
restricted to those models then done to evaluate p(A I Y) more precisely. 

4.3 Improper posteriors in hierarchical Bayes modeling 
In the authors' equation (4.5), the use of the obvious "non-informative" or 

scale-invariant prior for n and A, p(~, A) e< n- lA -1, leads to an improper posterior 
distribution. As the authors point out, this is a common feature of Bayesian 
hierarchical models in general. It arises, for example, even in the simplest normal 
empirical Bayes model (Morris (1983)) where 

(6) l v)  ~ N(e , V) 

(7) (0j l# ,  A) ~ N(#,  A) (j = 1 , . . . ,  N). 

Then with the standard vague prior, p(#, V, A) o( V - '  A - l  , the posterior p(Oj I Y) 
is improper. The authors mention the available remedy, in their case, of banning 
a neighborhood of n = ~ -- 0, but instead use the improper prior (4.6), which is 
intended to approximate an improper uniform prior, but modified to be equal to 
zero at n = A = 0. The use of a uniform prior for a variance-like parameter seems 
somewhat unsatisfactory intuitively, as it has the disadvantages of an improper 
prior, without the advantages of scale invariance. Of course, it is not clear that 
this is really a serious problem in the present application. 

Kahn (1990) analyzed this problem in the context of the normal empirical 
Bayes model specified by equations (6) and (7). He reparameterized the model, 
setting S = V + A  and T = V / ( V + A ) .  Then S - -  Var(yj I # , S , T ) ,  and the 
prior p(#, S, T) o( S -1 leads to a proper posterior while retaining the desirable 
scale-invariant property of the standard prior. 

By analogy, this suggests that in the present context we consider Var(yi I 
u_i, ~, ~), which is approximately equal to (1/ci + ~/n~ + A) when n and ~ are 
small and c~ is large, as here. This suggests specifying the prior in terms of 
a = 1/~ + n/fi + ,~ and ~- = A/(r, where an overbar denotes the average over all 
pixels. The natural choice is p(a, 7-) o< o - - 1 ,  corresponding to p(g, A) o¢ (1/~ + 
n/~ + A) -2. This is an improper prior which retains, at least roughly, the desired 
scale-invariance properties, but does not exhibit the behavior near the origin that 
leads to impropriety. This prior may still lead to the Markov chain defined by 
the Gibbs sampler having an absorbing state, and one could multiply it by the 
expression in the authors' equation (4.6) to avoid this. 
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4.4 Local dependence between counts 
The authors' model for the disease risk example assumes that, conditionally 

on the true relative risks xi, the observed numbers of cases yi are independent 
Poisson random variables, arguing that this is usually reasonable when the disease 
is non-contagious and rare. If the disease is contagious, however, it seems likely 
that the yi's will be dependent, even conditionally on x. Even if the disease is 
non-contagious, it seems possible that the yi's may be dependent. For example, if 
a disease is genetically transmitted, this could lead to spatial clustering even when 
the true risk is constant over space. If such dependence is present, then failing 
to take account of it seems likely to bias the estimated xi's away from uniformity 
and hence, for example, to overstate the size and significance of the effects of 
covariates. 

In the spirit of the authors' paper, the way to take account of such dependence 
is to model it explicitly. However, how to do this is not immediately obvious. The 
first possibility that springs to mind is the auto-Poisson model of Besag (1974). 
The problem with this is that it can represent only negative dependence between 
neighboring pixels, producing a chessboard-like pattern, which seems unsatisfac- 
tory. 

We would like to suggest another possible way of representing such spatial 
dependence between Poisson random variables that draws on ideas first developed 
in the time series context. The mixture transition distribution (MTD) model for 
a stationary time series {Zt} taking values in an arbitrary space Z is defined 
as follows (Raftery (1985a, 1985b), Martin and Raftery (1987)). Suppose that 
(V/, Wi) (i = 1 , . . . ,  p) is a set of bivariate random vectors taking values in Z x Z,  
with conditional densities fi(v ] w) with respect to some measure, where the 
marginal distribution of V/is the same as that of Wi for each i = 1 , . . . ,  p. Then 
the conditional density of Zt given Zt-1, . . . ,  Zt-p is given by 

p 

(8) p(z~ I zn_l , . . . ,  z~_p) = E )~ifi(zt I zt-i), 
i=1 

where ~ hi = 1. This can represent time series with arbitrary marginal distri- 
butions taking values in arbitrary spaces; in the discrete-valued case it fits data 
well, is physically motivated and is analogous in several ways to the standard au- 
toregressive model. To specify a Poisson time series model, all that is needed is 
a bivariate Poisson distribution such as that of Holgate (1964) with mean # and 
dependence parameter 3, which yields 

(9) 

( w )  ¢)v+w-2h min{v,w} ~h (/.t - 

fi(v I w) = f(v I w) = e-(•-¢)# -w E h 
h=0 - h) 

When the Poisson means are constant (i.e. the c~ and the xi are constant) the 
obvious spatial generalization is just to replace the summation over past values 
in equation (8) by a summation over the neighbors of pixel n. Then the model 
is specified in terms of conditional distributions, and the Gibbs sampler machine 
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can be set in motion as before. One way of generalizing this to the non-stationary 
situation that we have actually got, where the ci and the x~ are not constant, 
is as follows. First postulate the existence of a spatial process {z*} defined by 
equations (8) and (9), corresponding to constant ci and xi, and let F(.) be the 
corresponding Poisson cumulative distribution function. Let F~(.) be the Poisson 
cumulative distribution function corresponding to ci and xi. Then we model zi 
as z~ = F ~ - I ( F ( z * ) ) .  If the expected counts are very small, then this will not be 
quite accurate due to the discreteness, and an exact solution may be obtained by 
allowing the dependence of z~ on z* to be stochastic. 

One difficulty with this suggestion is that the conditional distributions defined 
in this way do not define a valid joint distribution for the y~'s~ by the Hammersley- 
Clifford theorem (Besag (1974)). However, it seems likely that any joint distri- 
bution for Poisson random variables that does satisfy the Hammersley-Clifford 
theorem will not allow a sufficiently broad range of positive dependence. The 
MTD model suggested here may well have the right local conditional dependence 
structure, while distributions that do satisfy the Hammersley-Clifford theorem 
will often have undesirable large-scale properties as well as unsatisfactory local 
properties. 

Thus one may ask whether conditional distributions such as that  specified by 
the MTD model that do n o t  satisfy the Hammersley-Clifford theorem might not, 
nevertheless, provide useful operational procedures. Besag (1986) refers to this 
possibility, and we would appreciate the authors' current views on it. 
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B. D. RIPLEY 

Department of Statistics, University of Oxford, 1 South Parks Road, 
Oxford OX1 3TG, U.K. 

It is very pleasing to see the technology of Bayesian priors development in 
image analysis being applied by Julian Besag and colleagues for spatial smoothing. 
I am not sure how widespread such spatial problems are--most of the work I 
have seen has been interested in explicit spatial covariates rather than a smooth 
picture. In the one study we did in detail (Mohamed (1988)) when the right 
covariates were used the spatial effects disappeared. If they had not, Bayesian 
spatial methods would have provided more believable parameter estimates in the 
explanatory (Poisson) regression model. 

Julian Besag claims that  these smaller examples enable computer-intensive 
methods to be more completely explored. I am not totally convinced. The priors 
being used often have long-range dependence and, in some cases and to some 
extent, so do the posteriors. (This is the real message of the examples in Greig 
et al. (1989).) This raises two questions: do we need sizeable examples to reveal 
all the problems, and how does computation scale with the problem size? The 
computation per  sweep of the Gibbs sampler is proportional to the number of 
sites, but does the rate of convergence depend on the size of the problem? (In a 
few known cases in statistical physics, the answer is yes.) 

We have recently been experimenting with more efficient simulation methods 
to classify 256 × 256 images of nematodes into two or three classes (background, 
nematode, internal organ). The images are noisy and the grey levels of the classes 
are rather close together. Whereas the site-by-site Gibbs sampler as used here 
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needs thousands of sweeps to produce (nearly) independent samples, other sim- 
ulation methods converge much faster without needing much more cpu time per 
sweep. It is too early to give full details, but some of the methods used are in 
Ripley (1991). The message is that there is still much to be done both theoretically 
and in new ideas for simulation methods. 

Finally, I would like to endorse the comment in Section 2 on Bayesian methods 
providing more than point estimates. In my view one of the major attractions 
of the statistical approach to image analysis/computer vision is the ability to 
propagate uncertainties to a final decision stage. 
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D. STOYAN 

Section Mathematik, Bergakademie Freiberg, D-9200 Freiberg, Germany 

I find the paper quite interesting and stimulating. I agree with the authors that 
many practical problems can be interpreted as image restoration problems. The 
idea of the Gibbs sampler seems to have a great practical value. The examples are 
interesting and convincing; the epidemiological examples demonstrate applications 
to the practically important case of a non-regular network. I want to ask the 
authors two questions. 

1. You and other statisticians use Markov fields as a helpful tool in image 
analysis. However, are they really acceptable as stochastic models for random 
interactions or degradations? In particular, can you report on statistical tests of 
the goodness-of-fit of the Markov field model in image analysis applications? 

2. I was informed by colleagues (S~irkkg (1990) and Diggle et al. (1990)) 
that the maximum pseudo-likelihood method (applied to continuous Gibbs point 
processes) does not give good estimates if the interaction is strong. Probably, the 
same is true for pixel fields. What can you suggest then? Perhaps a modification 
of the original pseudo-likelihood method including an improved approximation of 
spatial dependence? 
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REJOINDER 

JULIAN BESAG* 

Department of Statistics GN-22, University of Washington, 
Seattle, WA 98195, U.S.A. 

I begin by thanking all the discussants for their  very valuable comments.  Many 
issues have been raised and I cannot  hope to answer them all. I part icularly thank  
those discussants who have provided new analyses of one or bo th  types of example 
presented in the paper.  I must also explain immediate ly  tha t  this reply represents 
my own views and not necessarily those of my co-authors,  bo th  of whom made 
impor tan t  contr ibut ions to the paper, as par t  of their  graduate  studies. I hope 
this does not  appear  discourteous but  there are a number  of logistical constraints,  
par t ly  brought  about  by the fact tha t  the three of us are in separate  countries 
and have not  met  nor worked together  for some considerable t ime now, and par t ly  
because of an imminent  deadline. 

Background 

In order to set the paper  in context ,  it may  be helpful to acquaint general 
readers with its background. In the first instance, a version was wri t ten fol the 
"Symposium on the Analysis of Statistical Informat ion" ,  held in Tokyo in Decem- 
ber 1989, and appears  in the proceedings of tha t  meeting. Subsequently, Professor 
Kitagawa very kindly invited us to submit  a modified account,  as a discussion pa- 
per, to Ann.  Inst. Statist.  Math. The  main modification was to be the inclusion of 
at least one example relating to the mapping of disease. The  version tha t  appears  
in the conference proceedings omits examples from Section 4, though the spoken 
presentat ion did include all three. The reason for the omission was tha t  it was not 
yet  clear t ha t  Bayesian mapping was at a stage to be put  forward as a tool for 

* Now at Department of Mathematics and Statistics, University of Newcastle upon Tyne, 
Newcastle upon Tyne, NE1 7RU, U.K. 
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