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Abstract. A multivariate errors-in-variables model in the matrix form
can be written as X= U+ E, Y=UA"+ WB+ F, where X (nxp)and Y
(n x q) are observed matrices, E and F are error matrices whose rows are
normally distributed, W (n x k) is a known matrix of rank &, and U, A4
and B are unknown matrices. We consider the problems of testing linear
hypotheses: (i) Ho: AR = K and (ii) Ho: $’A = L, where R, K, S and L
are known matrices, and we derive the likelihood ratio tests for testing
these hypotheses.

Key words and phrases: Eigenvalues and eigenvectors, likelihood func-
tion, likelihood ratio test, Jacobian of a transformation, Poincaré separa-
tion theorem.

1. Introduction
An errors-in-variables model for the multivariate case is written as
(L.1) xi=u+te, yi=b+ Aui+fi; i=1,2,....,n,

where x; (px 1) and y; (¢x 1), i=1,2,...,n are observed variables, u;
(px1), i=1,..,n are unobserved variables, 4 (g x p) and b (g x 1) are
unknown, and e; (p x 1), fi (g x 1), i=1,...,n are 1.i.d. error vectors. We

assume that
, 21 0
0,0 ,
0 2

where ¢’ is unknown, and X (pxp) and 2, (g x gq) are known p.d.
matrices.
In the geophysical surveying problem mentioned in Gleser and Watson

(1.2) (el, f1Y ~ N
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(1973), there is some justification for this assumption. First, prior experi-
ence with the error involved in measuring the longitude, latitude and
altitude of a stake placed on a glacier can yield the matrix of correlations
P=2%1=2, among the three kinds of measurement error. By symmetry,
one can argue that the error variances in measuring the three dimensions
are approximately equal to ¢°. Further, since the first and second surveys
of any stake are widely separated in time, the errors made in these two
surveys should be independent of one another. Putting these arguments

together, we get
(P 0
(e/,f)) ~N| 0,0 :
0 P

In the matrix form (1.1) can be written as
X=U+E Y=UA+1b+F,
where

.

X=[x,x3,....,x1], Y=[yi,y5....,yl;
E=lel,ei,....en, F=[/1 . f];

U=[uf,us,...,us]

and 1 (nx 1) is a vector of 1’s. Here

(21 0
(E:F)~N|0,IQ g .
0 2
In a more general form we write an errors-in-variables model as

(1.3) X=U+E Y=UA+WB+F,

where X, Y, U and A are as defined before, W (n x k) is a known matrix of
rank k, B (k X g) is an unknown matrix, and

0
(1.4) (E:F)~N[O,G®az( )]
0 %

where G (n x n) is a known p.d. matrix.
In this paper, we consider the problem of testing the linear hypotheses:
(1) Ho: AR= K and (ii)) $’4 = L, where R (p xr) and S (g X s) are known
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matrices of ranks r and s, respectively, and K (g x r) and L (s X p) are some
known matrices.

It should be noted that the assumption (1.4) can be generalized to the
following assumption: (¢/, ')’ ~ N[O, o°2], where

(211 212)
Z:
2a 2

is a known matrix. Then the model (1.3) can be transformed to
X=U+E, Y*=UA*+ WB+ F*,
where Y* = Y*XZ1_1IZ|2,A*: —221Ef11 + A and

2 0
(E:F*)~N[O,G®az( )]
0 Z22~l

where 25 = 2 — 2212{11212.

Thus the hypothesis Ho: AR = K is equivalent to Ho: A¥*R = K*,
where K* = — 2, X1'R + K, and Ho: S’A = L is equivalent to Ho: S’A* =
L*, where L* = — 5’22121_11 + L.

2. Some preliminary results

For our subsequent analysis we need the following two lemmas which
we shall prove in this section. We denote 4;(:27) = A2(-#) = --- as the
eigenvalues of the matrix 07

LEMMA 2.1. Let % (mx1), % (mxc) and H (Ix1) be given
matrices (m > 1+ ¢), where S is nonsingular and let Q) (I x 1) and £
(¢ X ¢) be given p.d. matrices. Then, for any © (m x 1) and @ (I x c),

tr QU(X — ORY (X — O ) + tr QoW — OC Y (¥ — OF)

l+c

> izlEﬂ A diag (@i, QX Y Y (X %))
with equality achieved when
O=PPAKH" and G=(PAH "V(P'Y),

where P is an m x | matrix whose columns are the eigenvectors corre-
sponding to the first | eigenvalues of the matrix XX’ + Y% .
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LEMMA 2.2. Let %, (m x Iy), K72 (mx b), .@(m x ¢) and -%(11 X ¢)
be given matrices, and Q, (I, x I), 22 (L x L) and Q3 (¢ X ¢) be known p.d.
matrices. Then, for any @, (m x I\), @2 (m x L) and @ (I, x ¢),

tr Qi(Z, — O (%) — 0) + tr Q:( % — ) (%> — 0,)
+tr Q3(% — 0. K — 0,6 V(% - 0, — 0,$&)
htc
> ¥ Z{diag Q'+ FQHY!, Q)
X (.@— NG (%2)'(@— NFH ./Olz)]

with equality achieved when

O, = PrPIU + - f&@z’)(gﬁm + .@ngff')(,QI + -%93.%')71 R
Or = P PLT, @ = (PLA) Pi(Y — 0,.FK)

where P, is an m x b, matrix whose columns are the eigenvectors corre-
sponding to the first I, eigenvalues of the matrix

(W — TN+ FQ T (W~ T + D94

Lemma 2.1 was proved before by Gleser and Watson (1973), when
H = I. Here we shall give a different proof.

PROOF OF LEMMA 2.1. Let © =252 be a decomposition of O,
where P (m x k) is a matrix such that 2 P =1 and & (kx1]) is a
matrix of rank k (k< /). Then

Q.1) tr QUE - OHY (X~ OH) + tr (¥ — OB ) (¥ — 0@ )
=tr QU — PYDHY (X — PYDH)
+ tr QY — PY @Y (Y — PUB)
2 tr QX' — PPNV + tr QLAY (I— PPYY

with the equality achieved when
G =PAH", GDE=DP%
1.e., when

(2.2) O=PPRXAKH ', @=(PAXAH"YDPUY.
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Now let I — PP’ = RBAB’, where I8 is an m x (m — k) matrix such that
RB'RB = In-r. Then, by the Poincaré separation theorem (see Rao (1973)),
and since k < |,

2.3) tr QU — PPVU+ tr LW (I~ PPYY
=tr B(X1I + UQY' VB
> 3 A2 + HuY]

= lil /1,-[9291.92’ + QY]
l+¢

= X Ji[diag (2, QUL V(XY

with equality achieved when k& =/ and 9B is an m x (m — [) matrix whose
columns are the eigenvectors corresponding to the last m — / eigenvalues of
NG + Y%’ and thus P is an m x [ matrix whose columns are the
eigenvectors corresponding to the first / eigenvalues of ZQ1. %" + X%
Thus the lemma is proved from (2.1)—-(2.3).

PROOF OF LEMMA 2.2. Let 0, = 99,4, be a decomposition of 6,
where 2%, is an m X k, matrix such that 7.9, =1, and @, is a ko x I
matrix of rank k> (k, < L). Then

(2.4)  tr QP — 0 (F1 — O) + tr Qu(Fr — P D) (Fr — PPy Dr)
+ tr Q3(%Y — 6K — P, U@ Y (W — 0H — P, D, @)
>tr QU — 0 (Z1 — 1) + tr Q3] — Pr P35
F+tr Q3(¥ — K Y — PrPINY — OFK)

with the equality achieved when
(2.5) 0y = Pr P3G, @ = (P19 PIY - 0,.FH) .

Now let [ — PP = 9B %%, where B, is an m x (m — kz) matrix such
that B3, = I, and let

4 :._@2'@1, D = R0, .

Then, since P, P5 + BB =1,
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(2.6)  tr QU — O () — O) + tr QAT T
+tr Q(Y — K Y B BHY — 0,FK)

=tr QUPLI — DY (P — Ph)
+tr QUPBLY — L) (B — L)
+tr Q(BIYY — DI (B — DHFH)
+ tr QX3P PBL

>tr [(BLX1: B ) — (I FK)]
x diag (21, Q)( BT BV ) — P(l: K )]
+ tr QL XIRB B S

> tr (BLA: B YO (BN B )
+ tr QXIRB B

where

¥ = diag (2, 23)
— diag (2, Q1) ( g; ) (Q1 + FFK) (I F) diag (@, Qs)

Q) — :1(£21 + '%93.%')-191 —Q(0Q + '%93!%,)—1%93
~[ — QTN+ FRTY QL Qs — F(O + ROTY ' FHQ, |

Note that (see Rao (1973), p. 33),
Q'+ T = Qs — QH(Q) + R G,
(@ + FXFY =1~ QI'F(Q "+ FQIFY T
Thus,
2w FQ "+ QT K T+ FQT Fy!
& | @ sl kY w5 Gl HY !
=(-FIY Q'+ FKQFYN(-F"T) .

It can be seen that the equality in (2.6) is achieved when

U = P10, = P1U ,
P = B0\ = (BLXAQ\ + BLYXF Q) + FRF ) !
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1.e., when
(2.8) 0= P PLU\ + BrBHXNR: + HUTF )N+ FF) .
Now, from (2.7), and by the Poincaré separation theorem, and since k2 <
(29)  tr (BLYE\: BIYW )V (BLYE: B ) + tr QA3 2 RB 5%
= tr BI(Y — KN+ T FHY!
X (Y — K Y + AT R
> kﬁﬂ (Y — RN+ T T )
X (Y — GNHKY + G X

L+c

> 3 Afdiag (25" + HQTHY !, )
XY — UK XY (Y — HF D))

with the equality achieved when k, =, and %, is an m x (m — ) matrix
whose columns are the eigenvectors corresponding to the last m— 1L
eigenvalues of the matrix

(Y — DTN+ FQ TN Y~ Ky + D04

i.e., when 27, is an m x [, matrix whose columns are eigenvectors corre-
sponding to the first /; eigenvalues of the above matrix.

Thus the lemma is proved from (2.4)-(2.6), (2.8) and (2.9).

3. Likelihood ratio test for testing AR =K

We first make the following one-to-one onto transformation

X, = XZ'R(R'ZT'RY !, X )zXZ{‘ZR(Z;eEf‘ZR)",
nxr nx(p-r

3.1
U= XET'R(R'E{'RY !, Uy =UZr 'ZR(ZRE ' ZR)
nXr nx{(p-r

where Zz (p x (p — r)) is such that ZzX, 'R = 0 and ZzZz = I,-,. Then

(RZ7'R)! 0 )]

(X1:X2)~N[(U1:U2),G®oz( o
0 (ZkZ7 ' Zr) ™!
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Now, since X1 'R(R'Z{'RY 'R’ + X7 ' Zr(ZkE1 ' Zr) ' Zk = I (see Rao (1973),
p- 77),

R'A’

Y= U[zl”R(R'zl‘lR)":zflzR(z,sz;‘zR)1]( o
ZhA

)-I— WB+ F

Le.
Y=UAi+ U:A5+ WB+ F,

where A, = AR and A, = AZp.
Under the null hypothesis Ho, A1 = K. Thus, under Ho, the likelihood
function based on observed matrices X;, Xz and Y is given by

P, IR/ZI‘IRln/ZIZ;?EI—IZRIn/Z
|GI(P+q)/2|ZZ|n/2

(3.2) L= Q2no*)™

1 _ .
X €xp { ~ 5 LT (RZ) 'R)(Xi - UG (X1 — Uh)
+tr (ZRET ' Zr)( X2 — UD)' G (X2 — Un)
+tr 2, (Y~ UK’ — U,A — WBY

x G (Y~ UK’ — U,A3 — WB)] ]

Let

13 O =G'-G'wWwe'wy'we'=mMum,
3. . . .
O,=G'WWG'W)Y'WG'=NN,

where M ((n — k) x n) is of rank n — k and N (k x n) is of rank k. Also note
that (M": N’) is nonsingular. We denote

(3.4) Vi=MU, and Vo= MU,.
Then, using Lemma 2.2, and from (3.3) and (3.4), we get
(3.5) tr (RZ/'RY( X1 — UG (X, — U)

+tr (ZiZ1 ' ZR)( X2 — V) G (X2 — U)

+tr 27 (Y — UK’ — U,A} — WBY
x G (Y- UK’ — U,A5 — WB)
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>tr (R'Z'RYMX:— Vi)Y (MX, — V1)
+tr (ZRZ1 ' ZR)Y(MX, — Vo) (M X2 — V)
+tr X, (MY — ViK' — VL A5 (MY — ViK' — VaA%)

prq-r

> 3 Aldiag (22 + K(R'Z{'RY 'K Y, ZkE1 ' Zy)
port

X (MY — MX:K": MX2) (MY — MX,K": MX)]

prg-r

= 2 Al diag (22 + K(R'ZY 'RY K'Y, ZkE1 ' ZR)
X (Y — X1 K" X2y Qi(Y — X1 K" X2)]
with equality achieved when

B=(W'G''W)Y'WG (Y- UK — U,45),
= (PIMX>) PAM(Y — UIK"),
NU = NX,, NU=NX,,
Vi= P,PIMX,
+ (- PPYMXiR'ET'R+ Y5 ' K)YR'EZ'R+ K'Z 'K) ',
Vo= P,PIMX,,

(3.6)

where P; is (n — k) x (p — r) matrix whose columns are the eigenvectors
corresponding to the first (p — r) eigenvalues of the matrix

M[(Y - XiK')(Z + K(R'ZT'RY 'K Y = XK' + XoZkZ1 ' ZrX31M .
Note that, from (3.4) and (3.6), and since M'M + N'N =G ',
U =G[MVi+NNX], U=G[MV,+NNX].

Now from (3.2) and (3.5), and by maximizing the likelihood function with
respect to az, we get

wra |R'ZC R Z4E) ' Ze|™
IGl(p+q)/2|22|n/2

x[ l P“’ ’ Ai(Ho) ]""“’*‘7/ -n(p+q)/2
n(p+q)»- %, ’

3.7 sup L= (2n)

where
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(3.8) Ho = diag (Z: + K(R'ZT'R)'K’) ", Zk21 ' Zy)
X (Y— X1K” Xz)'Q1(Y— X\ K" Xz) .

Now to maximize the likelihood function under full parameter space, note
that K is also unknown in (3.2). We denote

3.9 V=MU:U), A;=(K:A).
Then

ntprge | REC R ZiE T Zg|™?
|G|(P+Q)/2|22|n/2

L= (2nc?)

1 . - -
X exp { =557 [tr diag (R'Z1 'R, Z&Z1 ' Zo)[(X1: X2) — (Ui UD)Y
X G '[(X1: X2) — (Ur: Un)]

+tr 25 '[Y — (Ur: Up) A5 — WBTG™\[Y — (Us: Up) A5 — WB]]}.

From (3.3), (3.9), and using Lemma 2.1, we get

tr diag (R'Z1 'R, ZkZ1 ' ZR)[(X1: X2) — (Ur: UG ' [(Xi: Xa) — (Ur: Un)]
+tr 25 '[Y = (Ui: Un) A5 — WBYG 'Y — (Us: Un) A5 — WB]
> tr diag (R'Z7 'R, Zk27 ' ZR[M(X1: Xo) — VI[M(X:: X2) — V]
+tr [ MY — VASI[MY — VA3

pPtq

= % Mldiag (R'EU' R, ZkET ' Zr, 25 )(X0: Xa: Y)Y Qi(X: Xo: Y))

with the equality achieved when

B=(W'G'W)Y'WG'[Y— (U: U))A4Y],
A =[P’M(Xi: X)) PPMY ,

NWUi: Uy)) = N(Xi: X)),
V=PPMX:X,),

where P is an (n— k) X p matrix whose columns are the eigenvectors
corresponding to the first p eigenvalues of the matrix
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M[X\R'Z7'RX{ + XoZkZ\ ' Zr X5 + Y2, 'Y IM .
Thus, after maximizing the likelihood with respect to o’, we get

n(p+q)/2 |R’21_1R|n/2|ZI’QZI_IZR|n/2
|G|(P+q)/2|22|n/2

[ 1 ptq ]An(p+q)/2

(3.10) sup L= (2n)

e—n(p+q)/2

n(p +q) 2 Al

where
H, = diag (R'Z7 'R, ZkZ7 ' Zr, Z5 W X1: X2 YY Q1(X1: X2 ) .
It can be seen, since R(R'Z1'R) 'R'EZ7 " + Zr(ZkE1'Zr) ' ZkE( ' = I, that
Ai(Hy) = Li(H)
where

(3.11) H = diag (Z; ', 27 '(Y: XYQu(Y: X).

Thus, from (3.7) and (3.10), the likelihood ratio test is given by
ptg-r

p) 1 Ai(Ho)

) Unpra) por+

= Tptq >

> L(H)
ptl

where Ho and H are given by (3.8) and (3.11).

Remark 1. 1f X, and X, are unknown, they can be estimated under
repeated measurements. The model, under repeated measurements, is

x;_‘jzui*l‘é‘ij,

yvi=b+Aui+ny, j=12,....m;, i=1,...n.
Let

X:[flaf%“‘afn],) Y:[.}_)la_}_)27"'a)_)”],a
W=(,1,.,1y and G=diag(mi',m:',....m.").

Denote
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L3 % - oy —5y

Xmi—n i=1j=1

1 n m _ _
S 2 2 Gi= )=,
Tzzm,-(’i"“f)({"‘f)',
Yi—y N\ yi—y
" = =_ reIpylpro-ly= =
= $m [P0 KRSR) RS )]
(ZI’QS1 ZR) ZrS) (x,-—x)

y [ yi—y— K(R'ST'R)'R'S{ (X — X) ]

(Z&S1'Zr) ' ZRST' (% — %) ’

S1=

Sy =

n n
where X = (Zmy) ! Zl:mi)?i and y = (Zm,)"" 21: miy;. Then a test can be pro-
pose based on

p-rtgq

~2Ini= ,,_ZH Adiag ((S2 + K(R'ST'R)Y'K") "', ZkST ' Zr) To]

ptq

- p;l Aldiag (ST, S HT].

4. Likelihood ratio test for testing S'A = L
We, first, make the following one-to-one onto transformation
4.1 Yu=MY, Yy=NY, Xu=MX, Xy=NX,

where M and N are as defined in (3.3). Let V* = MU and V5* = NU. Then,
since MW = 0 (note that M"MW = 0),

Yu=Vi*4"+ Fu,
4.2) Yv=V*A"+ NWB+ Fx,
Xy = V1*+EM, Xy = Vz*-l‘EN;

where

FM_
Fv]

=5

o

2o (Yoo

) GM"N)R ¢, ] ,

=

4.3)
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Note that NW is nonsingular. From (3.3), and since MW =0, we get
MGM = (MGM'YMGM’), (MGN'YNGM")=0,
thus, since MGM’ is nonsingular, we get
(4.4) MGM' =1, MGN =0.

Now, since G' = M’M + N’N, from (4.4),

NGN'=1.
From (4.3),
F E,
(4.5) ( M ) ~ N[0,I® %3], ( M ) ~N[0,]® ¢°Z1] .
Fxn Ey
Now let
Zi= YuS — Xul’,
(4.6) Zo= YuS(S'2:S) 'L+ XuZi',

Zy= YulZs,

where Zs (g X (g —s)) is such that Z{2,S =0 and Z{Zs= I,-;. Note that
(Xum, Yu) = (21, Z2, Z5) is a one-to-one and onto transformation with the
Jacobian

S’ — L |-k
(4.7) J=| (S’ Z.8)'s It
Z4 0

From (4.2) and (4.6)

Zi=V*A'S— L)+ FuS — EulL’,
Zy=VHA'SS'ZS) 'L+ 27" + FuS(S'Z,S) 'L+ En2i ',
Zs = Vl*A'Zs + FuZs .

Thus under Ho: A’S = L’, from (4.5), we get
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Z~ N[0, R (S'Z:S + LX L],
(4.8) Z,~ N[V IQTI],
Zy~ N[V AL, I Q Z55:Z4]
where
F=[L(S’28) 'L+ 27", A= ZiA.

It can be seen from (4.7), since (S”: — L) diag (X2, Z)(L'(S'2,8)'S":
X'y =0and Z{2,S = 0 that

I [ |8 228 + LEL| | L'(S"Z28) 'L+ X' | 242, Zs| 1 *2
[ Z1] | 22] '

Thus, from (4.2), (4.5), (4.6) and (4.8), the likelihood function based on
(Xum, Xn, Yu, Yn), under Ho, is given by

L= (Q2ro®) "0 2| 5|72 5y
1 -
X exp | =57 [tr (S22 + LIL) (YuuS = XuaL'Y (YuuS — XueL')

+tr I (YuS(S'Z2S) 'L+ Xu2i ' = V*Ty

X (YiuS(S'2:8) 'L + XuZi' = Vi*I)
1 (Z522Zs) ' (YuZs — ViFALY (YuZs — ViEAL)
+tr Xy (Yn— VF#A' — NWBY(Yn— V¥ A’ — NWB)
+tr I (X — V&Y (Xn — V] |

Now, using Lemma 2.1 and since NW is nonsingular, it can be seen, after
maximizing the likelihood function with respect to ¢, that

(4.9)  sup L= (2n) "2 3| A x|
Ho

X [—— (tr (8228 + LX) (YS — XLy
n(p+q)

3

ptg-s —n(p+q)/2
x Qu(YS — XL') + p);l /L-(.//o))]

where



TESTING IN ERRORS IN VARIABLES MODEL 595
(4.10) Mo =diag (I, (Z32:Zs) ' WYS(S'Z28) 'L+ XX\ - YZs)
X QW (YS(S'Z8) 'L+ X2 YZs) .
The supremum above is attained when
V¥ =Xy, B=(NW)'(Yn— XnA"),

Vi* = PePL(YuS(S'Z2S) 'L+ XpZi I,
Ay = [Pi(YuS(S'22S) 'L+ X2t YT ' [Pi YiuZs] ,

where Py ((n— k) X p) is a matrix whose columns are the eigenvectors
corresponding to the first p eigenvalues of the matrix

M[(YS(S'2:8) 'L+ XX )Y (YS(S'2:8) 'L+ xZi'y
+ YZS(Z422Zs) ' ZiY' 1M .
Note that $’A =L, A, = ZiA implies that 4= Z,[S(S’2,8) 'L +
Zs(Z42:Z5) ' Ay
Now to maximize the likelihood over the full parameter space, note
that the likelihood function based on (Y, Yn, Xas, Xn) is given by
L — (2n02)*n(p+q)/2|21|*n/2|22|*n/2
1 B}
Xexpy — F (tr 2y 1(‘XM - Vl*)'(XM - V1*)

+tr 20 (X — VY (X — V)

+tr Z; (Yn— VA’ — NWBY(Yy— V*A’— NWB)

Ftr 25 (Y — VFEAY (Y — Vi*A)) { .

Thus using Lemma 2.1, and by maximizing the likelihood function with
respect to o, we get

4.11) sup L= (2m) "Pr 2| 5| "2 2,
p

1 ptq -n{p+q)/2

- Z A —n(p+q)/2
n(p + q) it ( ¢

>

where

(4.12) M= diag (27,2 WX YYQi(X:Y)
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with the supremum attained when

B=(NW) (Yn— XnA'), Vi=2Xn,
Vi = 0uQiXu, A =(QiXu) (Qi¥ar) ,

where Qi 1s an (n — k) X p matrix whose columns are the eigenvectors
corresponding to the first p eigenvalues of the matrix M[XZ'X’ +
YZ 'Y M

From (4.9) and (4.11), the likelihood ratio test statistics is given by

/1—2/"(1”(1)

+tg-s

p
tr (S"2:8 + LI\ L) (YS — XL'YQi(YS — XL') + 2 A(A)
_ Pt

prq >

X (A )
ptl

where .# and .#, are defined by (4.10) and (4.12).

Remark 2. Some exact test can be constructed based on YuS and
Xu. Note that, from (4.2),

YuS=V¥A'S+ FuS, Xu=V¥+Euy.

If the covariance matrix of (YumS: Ey) has an arbitrary structure, then
A’S = L’ can be tested exactly (see Basu (1969), Villegas (1964) and Bansal
(1987)).
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