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Abstract. Inference procedures for interclass and intraclass correlations
are given in the multivariate context of familial data for which measure-
ments are taken on more than one characteristic. Unified estimators are
proposed based on a certain class of unbiased estimators of covariance
matrices. Asymptotic distributions of the proposed estimators are derived
under the assumption of multivariate normality. The results can be used
to construct approximate confidence intervals and test procedures.
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1. Introduction

In the biological research on genetics, the interclass and intraclass
correlations play an important role in estimating the degree of resemblance
among family members with respect to some characteristics, such as blood
pressure, cholesterol or lung capacity. Inference procedures have been
constructed based on a sample of families, each of which consists of the
parent’s score and several siblings’ scores on a single characteristic (see, for
example, Donner (1986) and Srivastava and Keen (1988)).

Very little work has been done on statistical inferences concerning
interclass and intraclass correlations in the multivariate context of familial
data, for which measurements are taken on several characteristics. This
occurs in the analysis of multivariate familial data where one may be
interested in assessing the interrelationships among different characteristics.
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The multivariate generalization of intraclass correlation has been done by
Rao (1945, 1953), when families have the same number of siblings. In the
case where the number of siblings varies among families, Srivastava et al.
(1988) first considered the problem of estimating the familial correlations
in the multivariate situation, and obtained the asymptotic variances of the
proposed estimators.

In this paper, inference procedures for interclass and intraclass corre-
lations are discussed in the multivariate situation of more than one
characteristic. Unified estimators are proposed based on a certain class of
unbiased estimators of covariance matrices. The resultant estimators include
the multivariate extension of previous estimators—the pairwise, ensemble
(Rosner et al. (1977)) and Srivastava’s (1984) estimators of the interclass
correlation, the analysis of variance (Fisher (1958)), pairwise and a weighted
pairwise (Karlin ez al. (1981)) estimators of the intraclass correlation, etc.
Unified formulae to asymptotic distributions of the proposed estimators
are derived under the assumption of multivariate normality. The asymptotic
results can be used to construct approximate confidence intervals and test
procedures for interclass and intraclass correlations.

In the univariate situation of a single characteristic, various kinds of
estimators of the interclass and intraclass correlations have been proposed
as alternatives to the maximum likelihood estimator which can be evaluated
only numerically. Several comparisons have been made of the large-sample
and finite-sample properties of these estimators. A survey of work for
inferences concerning the intraclass correlation was given by Donner
(1986). It has been shown through theoretical and simulation studies that
inferences based on the pairwise, ensemble and Srivastava’s estimators are
comparable or compare favourably with those based on the maximum
likelihood estimator (Rosner (1979), Konishi (1982, 1985), Donner and
Bull (1984), Srivastava (1984), Srivastava and Katapa (1986), Donner and
Eliasziw (1988), Srivastava et al. (1988), Srivastava and Keen (1988)). It is
therefore of interest to extend these estimators to the multivariate situation
of several characteristics.

2. The model for multivariate familial data

Suppose we have a random sample of N families, each of which has a
different number of offspring. Let

Z(a) = (y;tax’la,xia,---,xl,cﬂ,a)’; a= 1,2,...,N
denote measurements on the a-th family, where y. = (y1a, V20,..-, Vpa)’ 18 the

parent’s score on p characteristics, and Xjo = (X1j,a, X2j,a5-- -, Xgj,)” the score of
the j-th child of the k. ( = 1) siblings on g characteristics. Let
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Elyd = pm, Elxid=us for j=1,.. ke
and

on cov (yo) = Zm = (a¥), cov (xja) = 2 = (6)) ,
' coV (Yo, Xjo) = Zms = (JL'ZS)), COV (Xig, Xjo) = Zss = (affbs))

fori#j=1,2,... k.

This implies that each family may have different numbers of siblings,
and that there is no difference among siblings with regard to the character-
istics under consideration. It is assumed that z, (a=1,..., N) follows a
(p + gk.)-variate normal distribution with mean vector yw = (i, U5, ..., 1s)
and covariance matrix X, having the structure

Z‘m el’c‘, ® st

(2.2) 2=
€k, ® Zoms Iku ® 25+ (ek,,el'((, - Ik,,) ® Zs
where ex, = (1, 1,..., 1) is the k,~dimensional vector, I, is the identity matrix
of order k, and A & B denotes the Kronecker product of the matrices A
and B.
For the diagonal elements of X, and Z; in (2.1), let

Dy = diag [6'7,..., a0, ot.....a%,..., 6., o,

a (p + gka) X (p + gka) diagonal matrix. Then the population correlation
matrix is defined by

Pm eI’(“®Pms

2.3) Dw’ZwDw” = :

e, @ Prns Ik, @ Ps+ (exek, — Ik) @ Pss
Srivastava et al. (1988) called P the interclass correlation matrix and Pss
the intraclass correlation matrix. Rao (1945) called the eigenvalues of Py P; '
the multivariate intraclass correlations and this will be considered in a later
communication.

3. Estimation of interclass and intraclass correlation matrices

Certain classes of estimators for P.s and P are introduced to assess
the interrelationships among different characteristics. It is convenient to
deal with the problem in the canonical form, so we consider the nonsingular
transformation suggested by Srivastava (1984). For the a-th family, let
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0 = Vo 1 r Va
y _
P Xla Xa

1 ’

7 €k, ® Iq X2a | = Wie

ka
0 4®1

- Xky,o * = Wk,—1,a .

where A, is a (k.— 1) X k, matrix such that A.ex, =0, A.As= Ix-1 and
ks

Xo= Zl Xja/ ko. Then it can be seen that
I=

Ya
[_ ] and Wja, j:1,...,ka—'l,
Xa

are all uncorrelated, and their mean vectors and covariance matrices are,
respectively, given by

Eﬁj{wy Elwd =0,
Xa s

and

Ya Zm Zms

COV = 1 Py COV (qu) = Zs - Zss
Ea Et;ls Zss + k— (Zs - Zss)

a

forj=1,....kae— 1.
Let

Y:[y13y2,“'syN]> X-z[fl,fl,...,fN]

and

k=1 ka
Su= & W= I (i~ %o)a— %o
p: -

We first construct a class of unbiased estimators of the covariance matrices
(2.1) based on Y, X and S, @ =1,..., N. Let B, and B, be N x N positive
semidefinite matrices such that B.ex=0 and Bsen =0 with ey being the
N-dimensional vector of unit elements, and further let B., be an N X N
matrix such that Bnseny =0 and exBns = 0. It is assumed that the diagonal



CORRELATIONS IN MULTIVARIATE FAMILIAL DATA 565

elements of B., Bs; and By are of order O(1), and that their off-diagonal
elements O(1/N) for the asymptotic distributions of estimators. It may be
observed at this stage that Srivastava and Keen (1988) proposed a unified
approach for the estimation of univariate interclass correlation coefficient,
but the calculation of the order of the asymptotic variances as a function of
the weights is left to the reader.

It is easy to verify that

E[YBnY']=(tr Bn)2m, E[YBnsX']= (tr Bus)Zns,
_ _ N
E[ XB.X'+ X wuSa ]

N
- { 2 wulka— 1)+ tr BDY/ } Z

3.1) y
- { 2 @alka— 1) = tr Bs(In— Dx') } L,

_ _ N
E[ XBX'+ X vuS,,]
3 -1
= (tr Bs)ZSS + [ gl Va(ka - 1) + tI‘ BsDN ] (Zs - Zss) 5

where i, w,,..., @y are non-negative constants, vi, v,,..., vy are constants
and Dy = dxag [k1, kz,..., kN]
We choose {w,; a=1,..., N} and {v,; a=1,..., N} such that

N N
(32) X walka—1)—tr Bu(ly - Dy =0, Z Valka— 1) +tr B.Dyx'=0.

Then, a class of unbiased estimators of X,,, Xms, 25 and X are, respectively,
given by

~

1 .
2om=——YBn, Y’, 2ms =

YBus X',

1
tr B;

_ N
(3.3) L= [ XBX'+ X waSe } :

_ _ N
L= { XBX'+ X vaSa } .

tr Bs

It may be noted that the conditions (3.2) are required to obtain unbiased
estimators for 2 and Zi,.
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For the diagonal elements of £, = (61") and L, = (6¥"), let

Dy = diag [617,..., 650 6%)....,65)....,6%),....69]

a(p + gks) X (p + gk.) diagonal matrix. The population correlation matrix
defined by (2.3) may be estimated by

. L. pm e;c,, ® pms
D" LwbDw” = 5/ 5 , .
ex, Q Pms I, @ Ps + (exeh, — Ir,) Q Pis

where 2, is given by replacing L, X5, Zs and Zi, in (2.2) by their sample
estimates (3.3). Hence we have;

(3.4) P = diag [617,..., 6501 /2 s diag [6%),..., 65T 12
and

(3.5) Py, = diag [61,..., 659] /* L diag [6%],..., 6512,
where diag [a1,...,a,]"* = diag [ai"%,..., a)*].

Remark. Suppose we have observations on the concomitant variables
for each family. Then, we can eliminate the linear effects due to these
variables using the linear model

Vo= pm+ P1oa+ 1. and Xjo=ps+ fzie+ au+ o, j=1,2,..., ka
and a=1,2,..., N, where #,, a, and &, are random variables such that

E[7]=0, E[a]=0, E[&]=0,
cov (aa, 1) =0, cov(aun s =0, cOV (Ha&e) = Zms ,
cov (g =2s— 2, cov(a)=2s and cov(gy) =2
Further, v, and zj, are observations on concomitant variables on the parent
and on the siblings, respectively. Then, we define
Y =[y1,e0r ol Xa=[X1ase s Xtnady X =[X1,000, Xn]
1

1.1 _ 1.1 ey 1
Zy= s VA _ . V=
Zlaye ey Zkya El,...,ZN Ui,...,ON



CORRELATIONS IN MULTIVARIATE FAMILIAL DATA 567
_ ka _ ko .
where X, = El Xja/ ke and z, = 21 Zjo/ ko. Further, define
. J= J=

Sa = XaQZaXII’ Wlth QZu = Ika - Za’(ZaZa’)_Za s

where rank Z, = r, and rank Qz, = ks —r. (>0) for a=1,..., N. Then we
propose the estimates of X, X5, X.s and X, similar to those of (3.3),
namely,

. . 1

2om = YB.Y’, Doms = YB.s X',
tr By tr Bns

R 1 N ) 1 N

2= XB X'+ X wuSs and J= XBX' + 2 V.S }
tr Bs a=1 tr Bs a=1

where B, and B; are nonnegative definite matrices satisfying the conditions
BV’ =0 (or VB, =0) and B;Z’ =0 (or ZB;=0), and Bns is a matrix such
that BnsZ’ =0 and VB,s = 0. For unbiasedness, in place of (3.2), we have

N
% Walke—ra) —tr B(Iv— Dy')=0  and

a

N
;1 Va(ka = ra) +tr B.DN' =0 .

Here w,’s are nonnegative and v,’s are real numbers. For the asymptotic
results, we require the similar assumptions as stated for Theorems 4.1 and
4.2. We can define interclass and intraclass correlation matrices as men-
tioned earlier.

3.1 Estimates of interclass correlation matrix

The problem is how to choose the matrices B, Bs, Bns and a set of
constants {w.}, {v.}; a=1,..., N in (3.3). In the univariate situation where
p =q =1, various kinds of estimators of the interclass correlation coeffi-
cient have been proposed in the literature. Among them, the pairwise,
ensemble estimators (Rosner et al. (1977)) and Srivastava’s (1984) estimator
are recommended as stated in the Introduction. These estimators can be
generalized quite naturally to the multivariate situation of more than one
characteristic, by taking appropriate values for the weights in (3.3).
(1) Multivariate generalization of the pairwise estimator

In the univariate situation, the pairwise estimator is obtained by
pairing each mother’s score with k, siblings’ scores and calculating the
ordinary product-moment correlation. This estimator is extended to the
one in the multivariate situation of several characteristics.

In (3.3), take
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N

(36) Bm = Bs = Bms = DN - k(N)k’(N) a2=:1 ka and a)a = 1 Py

where Dy = diag [ki,...,k~] and k(N) = [ki,...,kn]" is the N-dimensional
vector. Then we have

R X N
Zmp = (055) =5 Z, ka(ya= )y =,
p
) 1 N k
(3.7 Zop=(6) = L 2 (o= )%~ %),
Np a=1j=1
- 1 N k
Zmsp=(67p) = —— X 2 (Vu= $)(xa— X)’,

1j

N, ¢

N

where N, = 2 Zkk/g Zka,y—Zkaya/ Zk and ¥= lexja
a=1 a=1j

21 kq. The 1nterclass correlation matrix Pps is estlmated by

5 . A A 172 ¢ . A 56) 112
(3.8) Prsp = diag [0'(1'?,)1:, 0'%)17 ! 2msp diag [U(lsl)m O{ISq 7] !

We note that the weights (3.6) do not satisfy the condition in (3.2), so
2 p is not an unbiased estimator for 2. In fact it can be shown that

N N N N
E[3,)=2+ { a; ko(ko — 1) / agl ,;Ea kakg ] (Zs— ) .

An unbiased estimator for 2 may be obtained by adjusting the bias term in

N
the above expected value. It can be realized by taking w.=1 - k, §1 ko
in (3.3), and then we have an unbiased estimator for 2; in the form

A N N
spc (OA'IJSLC) Zs,p - 2:1'1 kaSa / ( Np 2 ka) .

a=1

An estimator of P is given by

A 12 A -1/2
(39)  Prspc = diag [6{Th,.... Gipp] " Zins,p diag [611 pes-, Ganc]

(2) Multivariate generalization of the ensemble estimator
A multivariate analogue of the ensemble estimator is obtained by
taking

1 N-1
Bm - Bs Bms IN - _]\—7 eNeN and a)a = Nka
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in (3.3). It can be readily checked that these weights satisfy the condition in
(3.2), so that unbiased estimators for 2., 2 and X, are, respectively, given
by

. I &
Eme— Alné):_ a__ a——,s
G Nﬁla; (Ya=¥)ya—Y)
~ N_l S 1
Ay xMx.,— XY -
(310) Zse‘( ye) Z (xa X)(Xa X) + N agl k. Sq >

N
Vo1& e XY,

Z“ms e — ( Al(J":?S])
N ko N
where y = Zl Yo/ N, Xo= 21 Xja/ ko and X = 21 X/ N. Then an estimator of
a= j= a=
P,; based on (3.10) is of the form

D) . A 1/2 A 1/2
(3.11)  Puse = diag [617,..., 6] 2 Ems.e diag [611.,..., 6] 2.

(3) Multivariate generalization of Srivastava’s estimator
To obtain the estimator given by Srivastava et al. (1988), set

1
Bm: Bs:Bms:IN_—N‘eNe;V and

(3.12)
1

ka

N
We=—"—2X

N
2 k=D Z (k- D=0, say,

which satisfy the condition in (3.2). Unbiased estimators for X, 25 and 2
are, respectively, given by

1 N
_gplmy 1 Sy TV
Ins=(6i5) =17 2 (a= V=),

(B.13) L. =(6) = )15 (Xa— X)(Xa— XY + s ﬁl Sa

a=1

1 N
alms)y _ . SYWY _ TV
sts (O'ys)—N_lagl (ya y)(xa x) s

where y, X, and x are given in (3.10). Hence an estimator of Pns based on
3.13) is

P A 1/2 ¢ . A A -1/2
(3.14)  Poss = diag[6'7s,..., 8] V2 S s s diag [6V)s,..., 651 % .
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The asymptotic variance of each element of this estimator was given by
Srivastava et al. (1988).

(4) In the univariate case where p = g = 1, Srivastava and Keen’s (1988)
general estimator can be obtained by taking

’ ’

)] uu vt tu vu
B.=D,~——, B=D,——, Bn=D——— + ,
14 U 7

’ ’

N
@« = tr B(Iv — Di") X (ka=1) for a=1,.,N,

where ¢ = (t1,...,tn), 4" = (u1,...,un), V' = (v1,...,0n), D, =diag[t,..., ],
N N

D, = diag [wi,...,un], D,=diag[vi,...,on], T= 21 te, U= Zl u, and V=

N a= a=

21 v.. For the asymptotic distribution, we shall require conditions similar

e

to those in Theorem 4.1. The corrected pairwise estimator proposed by
Srivastava and Keen ((1988), p. 733) can be generalized to the multivariate
situation of several characteristics, using the above relations. In (3.3),
taking (3.6) for By, Bs, Bns and

N N 5 N N
coaz( X ki— X ka/ ;ka—NJrl)/ gl(ku—l):a}ps, say ,

we have the unbiased estimators X, 5, s, in (3.7) and

1

ZA‘S,IIS = (AﬁstS) = N,

N N
[ 3 ka(¥u— £)(Xo— £) + 0ps 2 S

Then an estimate of Py is given by
5 . P ~ -1/2 & . A A -1/2
(3.15) P ps = diag [6110,..., Gl "/ Sons p diag [6) ps,..., 65 ] V2 .

3.2 Estimates of intraclass correlation matrix
(1) Multivariate generalization of the analysis of variance estimator

A multivariate analogue of the analysis of variance estimator (Donner
and Koval (1980)) can be obtained by taking, in (3.3),

Bs;= Dy — k(N)K(NY / él ko,
(3.16) coaz(Np—NJrl)/ﬂg:1 (ka— 1) = w,, say,

vaz—(N—l)/lﬁll(ka—l)zva, say ,
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for a=1,..., N, where Dy, k(N) and N, are defined in (1) of Subsection
3.1. The unbiased estimators of Xy and X are, respectively, given by

=(65)) = € » ka(Xa— X)X — %) + o %S
sa ya Np P o a o aa:1 o >
N

fssa (O-ljsfl)) = { 2 ke (Xa f)(k_a - f)/ + Va agl Sa ] P

where X is defined in (3.7). These estimators were originally introduced by
Rao (1953). Then we have an estimator of the intraclass correlation matrix
P in the form

(3.17) Py, = diag [6¥].,..., 65 ] " Esa diag [61).a,..., 65 1 .
(2) Multivariate generalization of a weighted pairwise estimator
A weighted pairwise intraclass correlation estimator proposed by

Karlin ez al. (1981) is extended by setting, in (3.3),

B, = diag [u1, uz,...,un] —uu’| U,

Wo = Ua)kay Vo=—ts/{koelka— 1)}, a=1,....N

(3.18)

N
where v’ = (ui,..., un) and Zl u, = U. 1t is assumed that wu,’s are of order

O(1) as N tends to infinity. Then it can be seen that

B I T ) N

Zox= (000 = = X, 7= T (e~ A5 =AY,

E‘ s 1 N Uy ko ke

k= O =5 i B B e D

N ko N

where 4= (1/U) Zl (o) ko) Zl X« and N, = U — 21 uz/ U. 1t follows from
o ~ =

(3.1) that

1 N1 ,
E[S] =%+ D 2 e (ke DS - 5

E[Zss k] 2ss 2 _— ua(Z' Zss)

- NuU

Since (1/U?) X ui(ka — 1)/ ko and (1) U?) T uZ/ka converge to 0 as N tends

to infinity, Z;x and L are consistent estimators for Xs and X, respec-
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tively. Then we have

H : A A 1/2 1 2
(3.19) Py =diag[61k,..., 65T " Zscx diag [611 k..., Gopul

It might be noted that a multivariate extension of the pairwise intraclass
correlation estimator is obtained by putting u, = kq(k, — 1).

Srivastava et al. (1988) proposed an estimator of the intraclass corre-
lation matrix Py, which can be obtained by (3.12) and setting

N

Y (ka—1)

a=1

Ls
i )

in (3.3). They also derived the asymptotic variance of the element of their
proposed estimator Pg . It can be easily seen that the weights satisfy the
condition (3.2).

4. Inference procedures for the interclass and intraclass correlations

4.1 Asymptotic results

Under the assumption of multivariate normality we first derive asymp-
totic distributions of the estimators P, and Py defined by (3.4) and (3.5),
respectively. The results are used to obtain asymptotic distributions of
several estimators introduced in the last section.

Suppose that z, a=1,..., N, are independently and normally distrib-
uted with covariance matrix (2. 2) Let B, = (b)), B;= (b)) and Bns=
(b%)). It is assumed that fora=1,..., N

b L pm o ) b and BT — pm)

as N tends to infinity. If the weights w, and v, (a = 1,..., N) depend on the
sample size N, w, and v, are regarded as their limiting values ( < o). It is
further assumed that the off-diagonal elements of B, Bs and B.s are of
order O(1/ N). Then, the asymptotic results are summarized in the following
Theorems 4.1 and 4.2.

THEOREM 4.1. Let P, = (p™) be the estimator, defined by (3.4), of
the interclass correlation matrix Pus=(p\™). Then, \/N(Pns— Pns) is
asymptotically normally distributed with mean 0 and covariance matrix
having elements

4.1y var NGB - pi™h)

1
=N 5. blmplpi"
NmNs a=1
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2 2 1 X 2
(m) (m) g (ms) (ms)
+ 2Nm a; ba NyiNons E: ba"ba™" + ’3’5 az:ll ba
1 & (s 72 2 (5) 1, (ms) (ms)?
toNz AP ATy E bebedye | Py

1 N msz 1 ms
N2, az::l b djo + 2N2 9’11/711 ’ a21 (ka — l)a)z] )

cov {\/—'(ﬁgij) ms)) \/—(p ms) pylns))}

_ 1 m) (ms)? ms)*
_N[ > {N,,,Nsazlb BT + piry

+

Ny a=1

1 N m m. A} m. ms
i S BB + )

1 s ms ms ms mS ms
NN aglb )b( ]la(p( ) 5( )+p( }d ))

+_ Z b(m)z (m)? + Z b(S li a] (ms)p}(ms)

N El B (ol + dnapli)

1 ms ms N
2N2 9711171] )psd ) a§1 (ka - l)wﬁ ] N

N N
where N = % b, N, = 21 bY), Nms= X b, P = (pi™), Ps= (piy’) and

a=1

dja= {1+ (ka = Dp§"} kay  g=1-pj",
dija= ={pil’ + (ka — I)less)}/kaa 9’11—/’11 _PJ(SS)

4.2)

The bias of p\"* is asymptotically given by

Alms) __ (ms) (ms) 1 N (m)1.(s) (ms)
E[p! 1~ pl [— X bMbEp

2NmN; o=

Z b(m)2 l g‘: b(m)b(ms)
4N2 d=1 as1 & 7

1 ($) 1.(ms)
NN Elb by 'djq

+

m ms

s)? 3 N
4NS Z B d} . + o o Z (ka— 1)w§].
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By analogy with the univariate approach, we proposed several esti-
mators of the interclass correlation matrix P.;. We recall that these
estimators were obtained by taking equal weights for the matrices Bn, B;
and Bns in (3.3) except Srivastava and Keen’s general estimator given in (4)
of Subsection 3.1. The following corollary gives asymptotic results for the
case of By = Bs = Bus.

COROLLARY 4.1. Suppose B, = B; = Bns = B, say. It is assumed that
Jor a=1,..., N the a-th diagonal element of B converges to b, as N tends to
infinity. Then the asymptotic distribution of \/ N3\ — p\™) is normal

with mean 0 and variance

N 1
43) o=N|Z b.| Z beayj o+ ) o » (ke — Dl },
a=1 2 a=1
where
1 :
(4.4) @0 = p"" + — (dju— ddya — D™ + diia

with dj. = {1 + (ke — 1)p{* }/k
The asymptotic bias of pY"

-2
@s) A -~ & ) iy
Y 3 (ss)\2 y 2
P> bacia + 7 =p) X (ke — Dooa ¢,
where
L ogms | L 1
(4.6) Cia =~ — pir’ alry dj.a(3dja—4) ——.

THEOREM 4.2. Let Py = (p§") be the estimator, defined by (3.5), of
the intraclass correlation matrix Py = (p§®). Then \/N(Pss — Ps) is asym-
ptotically normally distributed with mean 0 and covariance matrix having
elements

@7 var (VN - pif))

N 2
P} bc(xsj { dii,adj]',a + dijz,a (SS)dtj a(du a + dy a)
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1
YA P (dia+ dfu+ 2d] ) }

N
+ Z (k= 1) { va( @i + 93) — 20avap 9i(9is + 9i)

I SS
+ 7wap‘ "(9%+ g} + 20) ” ,

cov {N/N (B — p§™), /N () — pl?

N
=7 [ 2 by {dik,adjl,a+ dit, ok«

s e=1

— PN ik adita + dik.adite) — pX7 (koG + dit.adi.a)

1
2 py pﬁcS)(dzka+dxla+djka+d]la)=

N
+ 2 (ka— 1) { va( @it + Pugii)
— 0o (i + P @it) — WaVapki (P Pic + Pagi)

1 SSs SS
-y wap$pi 9k + i + Pk + 97 }] ,

N
where N, = Z bY and djj . and p; are defined in (4.2).

(SS)

The asymptotlc bias of pj;

~lSS Ss N Sz 3
B — 571~ <z [z 7| 3 (e + o

1
o diva = p§* dya(dia + dj.0) }

3 5, I 5, & 5
+) (i + 9i) + = 9i { 2 (ko — Do

4 2 a=1

o gu(gu+ 91) E (K —1)wav,,].

The asymptotic results in Theorems 4.1 and 4.2 can be obtained, using
an approach discussed in Konishi ((1982), p. 513). Theorems 4.1 and 4.2
present unified formulae to asymptotic distributions of estimators of P
and Pg, constructed by the unbiased estimators (3.3). It might be, however,
noted that these theorems can also be used to derive asymptotic distri-
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butions of estimators based on consistent estimators of the covariance
matrices instead of the unbiased estimators (3.3), but slight modification is
required for deriving asymptotic biases. This will be discussed through the
case of the multivariate extension of the pairwise estimator in the following
example.

Example 1. The estimators Pps, in (3.8), Puspe in (3.9) and P ps in
(3.15) may be regarded as a multivariate generalization of the pairwise
estimator. The P, and Pnsps were constructed based on the unbiased
estimators (3.3) for which the weights satisfy the condition in (3.2), so
Corollary 4.1 can be directly applied to derive their asymptotic distribu-
tions. On the other hand, the weights for .., do not satisfy the condition
in (3.2), since X, is not unbiased for X;. It should be, however, noted that
the Taylor series expansion of Py, around P agrees with that of P . to
order n~'?. This indicates that Pns, and Pns,. have the same limiting
distribution, although the asymptotic bias of P, differs from that of

Pms ,DC+
We recall that P, was obtained by taking b\ = bl = b = ko —

k2 / Ykeand we=1-k, / 2 ko for = 1,..., N in (3.3). Hence, put b, = k
and w, =1 (¢ = 1,..., N) in Corollary 4.1. Then, for Pns,c = (34S)), /N (5

(ms)

— pii ') is asymptotically normally distributed with mean 0 and variance

2 o -2 (ms)? (ss) ) ¥
Tijpc = N( agl ka) Z kaaya + — p (1 i ) agl (ka - 1)

where a; . is given by (4.4). For Pus, = (A7) or Prsps = (BY), the asymp-
A(ms) A(ms) - A(ms)

totic distribution of gy, or iy is the same as that of jip..

The asymptotic biases of fim and i’ are, respectively, given by

N

ms Y -2 ms 3 SS
ab(ﬁf,pc))—(a; ka) Py >{azl kacya+ - (1= pf”y z (ka —1)}

N N 2
ab(p") = ab(pIs)) — 5 py’"“’(l ) 2 kalka = 1) / (GZ] ka)

where c; 4 is given by (4.6).

Example 2. Let Pns.=(py%) and Pns;= (') be the estimators
defined by (3.11) and (3.14), respectively. These estimators were constructed
based on the unbiased estimators (3.3) with the same weights B, = B; = By
= I, — exex/ N. Hence asymptotic results can be represented in a common

formula for both estimators. Let ™ denote 5% or gy Then it follows
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from Corollary 4.1 that \/N(p™ — p{™) is asymptotically normally distrib-
uted with mean 0 and variance

7_—2. :L ga, ("13)(1 (SS))(D
i =yl & j,at+ ptj

A(ms) A(ms)

where aj;, is given by (4.4) and corresponding to each of gje or piis’, . is
represented by

N
0e= 2, (ke = /ka for A,
(4.8) y
Y (ka—1) for p5.

a=1

N 2
:[agl (ku_ 1)/ku} /
The asymptotic bias of ™" is

3 =1 - p¥N .

A(ms) 1 (ms) 5
ab(pi.") = —7 pi ; Cij,a 4

N

where ¢; . and w. are, respectively, given by (4.6) and (4.8).
Srivastava ef al. (1988) obtained the asymptotic variance of pis. It
can be seen from Example 2 that the difference between the asymptotic

(ms) A{ms)

variances of pie’ and pjs depends upon only the values of w.— ws for

{(ms)

given p{™ and pY. Srivastava and Keen (1988) showed that the asymptotic
variance of g is smaller than that of g% .

In the univariate case where p = g = 1, Pps, in (3.8) and P, in (3.11)
reduce to the pairwise and ensemble estimators, respectively. Konishi
(1982) derived the asymptotic bias and variances of these estimators. The
results have asymptotically the same form as those given in Examples 1

and 2.

Example 3. The estimator P, defined by (3.17) was constructed
based on the unbiased estimators, in which the weights (3.16) can be
rewritten as

wa=1+(1—§k§/§ka)/§(ka—1) and
va=—N/§(ka—1)+1/§(ka-1).

Hence the asymptotic distribution of \/ N(Pss.« — Pss) is obtained by taking
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bY = ke, wa=1and va=— N | X (ke — 1) for a = 1,..., N in Theorem 4.2.
a

Example 4. The estimator Py defined by (3.19) was obtained based
on consistent estimators of X; and 2. By an argument similar to that used
for P,s, in Example 1, we can also apply Theorem 4.2 to derive the
asymptotic distribution, in which the asymptotic variances and covariances
are given by putting N; = U, b¥ = u, and taking w. and v, in (3.18). For
the cases ko = k; a=1,..., N and p = g =1, the pairwise intraclass corre-
lation estimator reduces to the maximum likelihood estimator. Putting
koe=k, Ny= Nk(k—1), b9 =k(k - 1), wa=k -1, va=—1 for a=1,...,N
and i=j in (4.7), we have 2(1 — p§™){1 + (k — 1)p‘“’} /{k(k — 1)}, which
coincides with the asymptotic variance of the maximum likelihood esti-
mator of the intraclass correlation coefficient (see Fisher (1958)).

4.2 Interval estimation and hypothesis testing

In order to assess the interrelationships among the different character-
istics, we proposed the estimators P,s = (™) and Py = (4¥"") defined by
(3.4) and (3.5), respectively. The distributional results in Theorems 4.1 and
4.2 can be used to construct approximate confidence intervals and test
p(ro)cedures for the interclass correlations p{™ and the intraclass correlations

S5

Py -

It follows from Theorem 4.1 that the standardized quantity

(4.9) VNG = prh

is approximated by a standard normal distribution, where 7* is given by
(4.1). To construct a confidence interval for pJ™, we replace the unknown
parameters pi™ and p§* included in 7 by their sample estimates. Then a
confidence interval for p§™ with confidence coefficient 1 — o is approxi-
mately given by

A

ms 1 alms l A
(ﬁfj ) — \/NZ] -0/27, ng '+ ﬁzl—a/2f),

where 7 1s a consistent estimate of 7 and z;-4 is the 100(1 — a/2) percentile
point of the standard normal distribution. As special cases of this result, we
can construct approximate confidence intervals for p{™ based on each of
the estimators given in Subsection 3.1.

The asymptotic result (4.9) can also be used for constructing tests of
hypotheses. On the basis of multivariate observations from N families, we
wish to test the hypothesis Ho: p™ = po against Hi: p{™ # po. Substituting
a certain consistent estimate for pj’” and replacing p{™ by the specified
value po in 7, we obtain the consistent estimator, fop, of 7 under the null
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hypothesis. Then a test statistic /N(p§" — po)/fo has approximately a
standard normal distribution, so that H, would be rejected, at significance
level a, if

IV N = po)] Fol = z1-ap2 .

A particular case of importance in the analysis of multivariate familial

(ms) __ (ms)

data is po = 0. It is then required to test Ho: pii~ = 0 against Hi: pi ' > 0.
An asymptotic test of size a is to reject Ho if

\/Nﬁff"s’/[N(a )

N -2 N 2 1 1/2
z bi,"”’) )y bL’"s)k—{1+(ka—l)ﬁ}j“’} > Z1-q

where i is a consistent estimate of p{.

The asymptotic distribution of p§* given in Theorem 4.2 can be used

to construct approximate confidence intervals and test procedures for the

intraclass correlations. The intervals and test statistics are obtained in a

similar manner to those for py™
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