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Abstract. In this article, several approaches are advanced towards the
construction of bivariate Weibull models from the consideration of
failure behaviors of the components of a two-component system. First, a
general method of construction of bivariate life models is developed in
the setting of random environmental effects. Some new bivariate Weibull
models are derived as special cases and added insights are provided for
some of the existing ones. In the course of model formulation in terms of
the dependence structure, a new bivariate family of life distributions is
constructed so as to incorporate both positive and negative quadrant
dependence in the same parametric setting, and a bivariate Weibull model
is obtained as a special case. Finally, some distributional properties are
presented for a bivariate Weibull model derived from the consideration of
random hazards.
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1. Introduction

The Weibull distribution is a versatile family of life distributions in
view of its physical interpretation and its flexibility for empirical fit, and
has been extensively applied to analysis of life data concerning many types
of manufactured items. In practical applications, common handling or a
similar environment may lead to induced dependence for the components
of a system (cf. Esary and Proschan (1970)). At present, the study of the
univariate Weibull model is well documented, however, the investigation of
bivariate/ multivariate Weibull distribution is rather limited. The usefulness
of a bivariate Weibull model can be visualized in many contexts, such as
the times to first and second failures of a repairable device, the breakdown
times of dual generators in a power plant, or the survival times of the
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organs in a two-organ system, such as lungs or kidneys, in the human
body.

There is extensive literature on the construction of bivariate exponen-
tial models, for instance, Gumbel (1960), Freund (1961), Marshall and
Olkin (1967), Block and Basu (1974), Clayton (1978) and Sarkar (1987) (see
Basu (1988) for a review). Other references on the general construction of
bivariate/ multivariate lifetime distributions are Marshall and Olkin (1988)
and Oakes (1989). One obvious way of generating a bivariate Weibull
model is to make a power transformation of the marginals of a bivariate
exponential, for instances, Marshall and Olkin (1967) and Lee (1979).
Since power transformation is only a mathematical artifact, it would be
desirable to motivate a model from physical considerations. The object of
this article is to present some physically meaningful approaches for con-
struction of bivariate extensions of the Weibull distribution. These deriva-
tions also serve to indicate the conditions under which the distributions are
appropriate.

In the context of modeling dependent lifetimes, the bivariate exponen-
tial models proposed by Freund (1961) and Marshall and Olkin (1967) are
very popular and well-grounded on physical bases. For a two-component
system, Freund’s model draws from the idea that the failure rate of one
component changes upon the failure of the other component. In Marshall
and Olkin’s fatal shock model, the dependence of the component lifetimes
arises from simultaneous failures of both components. Lu and Bhattacharyya
(1988a) pursue their ideas to construct bivariate extensions of the Weibull
model. However, because of a singular part, the Weibull generalization of
the exponential shock model is not appropriate for situations where the
components are unlikely to fail simultaneously. Although the Weibull
generalization of Freund’s exponential model is absolutely continuous, its
marginals are not Weibull.

In Section 2, stemming from the idea of Hougaard (1986), a general
method of construction of bivariate life models is provided on the basis of
the idea that random environmental hazards affect both components in a
system. This leads to the bivariate Weibull models derived by Hougaard
(1986), Clayton (1978) and Oakes (1982) as special cases. One of these
models, called BVW, is a transformation of Gumbel’s type B bivariate
extreme-value distribution proposed by Gumbel (1960). It was extensively
studied by Lee (1979) and was used in cancer research (cf. Hougaard (1984,
1986)) and, in analysis of the annual maximum sea levels (cf. Tawn (1988)).
Section 2 includes another construction of a bivariate Weibull which shares
the basic properties of the BVW, namely, absolute continuity and Weibull
marginals and minimum, but not stemming from a random hazards setting.
Modeling a bivariate life distribution from the consideration of its depen-
dence structure is approached in Section 3. We construct a new family of
bivariate survival functions which not only has a simple form but also can
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incorporate both positive and negative dependence according to the values
of the dependence parameter. It is different from the Farlie-Gumbel-
Morgenstern family and is also distinct from several constructions provided
by Kimeldorf and Sampson (1975). The choice of Weibull marginals leads
to a bivariate Weibull model which incorporates both positive and negative
dependence, while most other familiar models are either only positively
quadrant dependent or negatively quadrant dependent. Finally, Section 4
explores some distributional properties of the BVW model via a represen-
tation in terms of independent random variables.

2. A class of models based on random hazards

Consider a two-component system for which the association between
the component lifetimes X and Y arises from the effect of some common
environmental factor (stress). Let A:(x) and h2(y) be two arbitrary failure
rate functions on [0, =), and H,(x) and H-(y) their corresponding cumula-
tive failure rate (CFR) functions. We assume that conditionally, given the
stress S'= s> 0, the failure rates of X and Y are A;(x)s and h2(y)s respec-
tively, so their survival functions are exp [ — Hi(x)s] and exp [ — H2(p)s].
Furthermore, conditionally given s, we consider the following joint survival
function (SF) of the components

2.1 F(x,y]s) = exp { — [Hi(x) + H:(»)]'s},

where the parameter y, which measures the conditional association of X
and Y, is assumed to be a constant free of s. In particular, when y =1, X
and Y are conditionally independent. This is the case that Salvia and
Bollinger (1984) and Cantor and Knapp (1985) considered in testing
equality of the survival distributions based on paired observations. Inciden-
tally, note that if we take H;(x) to be the Weibull CFR function Aix’,
i=1,2 and 0 <y<1 then (2.1) reduces to Lee’s (1979) bivariate Weibull
survival function exp { — [A¥x” + A3y} with AF = 4™, i=1,2.

Before proceeding further, we must ensure that with the arbitrary
CFR functions Hi(x), (2.1) is a proper bivariate survival model. Evidently,
the boundary conditions

F(oo,p|s) = F(x,0|s)=0, F(0,0|s)=1,

2.2) _ _ _ _
F(x,0]s) = Fx(x|s), F(0,y|s) = Fr(yls),

all hold. Differentiating (2.1) with respect to x and y, we obtain

S(x,pls) = exp { — [Hi(x) + Ha()Vsh[H1(x) + H2(0)] " 'shi(x)h2()
x {ys[Hi(x) + Ha(»)] ™' + (1 = Hi(x) + H:(»)]'},
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which is non-negative for all x, y > 0 provided 0 < y < 1. Therefore, when y
is restricted to the interval (0, 1], (2.1) is a valid (conditional) model with
arbitrary CFR functions H; and H,.

We now view the stress S to be a positive random variable and let ¢(s)
and ¥(¢) = E[exp ( — ¢5)] denote its probability density function (pdf) and
Laplace transform, respectively. In view of (2.1), the unconditional joint
distribution of (X, Y) is determined by the distribution assumed for S, and
for ease of reference, we call such a joint distribution a “random hazards”
(RH) model generated by (2.1). We first address the general question: if X
and Y are to have the specified marginal survival functions Fx(x) and
Fy(y) on [0, 0), is it possible to choose the CFR functions H; and H: in
(2.1) and a distribution of S so that the joint distribution of (X, Y) is an
RH model? The following theorem provides the answer and serves as a
general method of constructing bivariate life models with specified margi-
nals.

THEOREM 2.1. Suppose (2.1) represents the conditional survival func-
tion of (X, Y) given S=35 (>0), and assume that the Laplace transform
Y(1) of S exists on [0,), is strictly decreasing, ¥(t) — 0 as t — o, and
¥~ !(u) is absolutely continuous on (0, 1]. Let

H¥(x) = {¥ [Fx(0}", H¥ () ={¥ ' [Fr(»W"”,

(2.3) _
q(x,y) = [H*(x) + H*()T, F(x,y) = Plg(x,»)].

Then F(x,y) is a bivariate survival function with the marginals Fx and Fy.

PROOF. The proof hinges on the simple fact that any absolutely
continuous and nondecreasing function H(x) on [0,) such that H(0) =0
and H(x) — o as x — oo, is a valid CFR function for a univariate life
distribution. Letting y =0 in (2.1) and taking expectation over §, we get
the relation

Fx(v) = F(x,0) =] exp [~ HI(x)skp()ds = PLHI(0)] .

Solving for H, we get H*(x)={¥ '[Fx(x)]}'” which is a valid CFR
function on [0, ) in the light of the assumptions made on ¥(¢). Similarly,
H¥(y) is also a valid CFR function so (2.1) with H;, replaced by H/*,
i=1,2is a valid conditional model. The joint distribution of (X, Y) is then

F(x,) = E[exp{ — [H"(x) + H*(»)I'S}] = P[q(x, )] .

The X-marginal of this joint survival function is P[{H*(x)}']= Fx(x)
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which was initially targeted and likewise for the Y-marginal. [J

Besides p, additional parameters can be brought into the RH model
(2.3) via parametric assumptions for the marginal distributions as well as
the function ¢. For instance, scale parameters can be incorporated by
specifying the marginals to be Fx(x/6:) and Fy(y/6.). Some interesting
special constructs are illustrated in the following examples.

Example 1. Consider the Weibull marginals Fx(x) = exp [ — (x/6:)"],
Fr(y)=exp[— (/6:)"], 0< x,y <o and let ¥(f)=exp (— ), 0<a< 1.
It is the Laplace transform of a positive stable distribution (cf. Hougaard
(1984, 1986)) and it satisfies the conditions of our theorem. Since ¥ '(u)
= (— log u)"*, we have from (2.3)

Hl*(x) = (x/gl)/fl/ay, Hz*(y) _ (y/ Bz)ﬂz/ay ’
F(x,y) =exp { — [(x/ 0P + () 02“]"), 0<yp<l, 0<a=l.

Obviously, in this end result, the parameters a an y are not individually
identifiable. Combining them into a single parameter d = ay, 0 <J < 1, we
arrive at the bivariate Weibull model

(2.4) F(x,y)=exp { — [(x/0)"° + (»/ 01}, 0<d=<1.

Hougaard (1986) constructed this model in essentially the same way as
above except that he assumed y =1 in the conditional distribution (2.1).
This assumption entails that conditionally given s, x and y are independent
Weibull. Our derivation shows that the same bivariate Weibull model can
also arise in the context where, conditionally given s, X and Y are still
dependent, perhaps due to the common effect of some other influencing
factor. Thus, the assumption of conditional independence is more of a
convenience than a necessity in deriving the bivariate model.

The model (2.4) can also be derived by assuming a simpler distribution
of S. Assume that 1/§ has the gamma distribution with the scale and shape
parameters equal to 1 and 1/2, respectively. Then ¢(s) = s > exp (1/s) and
(1) = exp [ — 2¢"*]. Using the Weibull marginals and applying this Laplace
transformation to (2.3), we obtain Hi¥*(x) = {(1/2)(x/6)"'}”" and H;*(y)
={(1/2)(»/6)"}" which lead to the bivariate Weibull model (2.4) with
0=7y/2.

Example 2. Let Fx and Fy be arbitrary survival functions which are
desired to be the marginals, and take

PO =[1+@E- DT, 0<i<oo, 1<<m,
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so § has the gamma distribution with the scale and shape parameters equal
to 1 and (6 — 1), respectively. Here also, the conditions of the theorem
hold. We have ¥ '(#) = (6 — 1) '(u' ™° — 1) s0 (2.3) yields

H*(x)= (6 — 1) "[(Fx(x))' - 11",

2 F(x,y) = {1 + [{(Fx(x))" " = Y + {(Fy(y))! ° = 1}y om0

If we take the marginals to be Weibull, (2.5) would readily provide a
bivariate Weibull model. Incidentally, a special case of (2.5) namely y = I,
is considered by Oakes (1982) for analysis of bivariate survival data where
o is identified as the parameter that governs the association between X and
Y. He gives a random hazards interpretation assuming that X and Y are
conditionally independent and also relates the model to one due to Clayton
(1978). Allowing for the possibility of conditional dependence, we have the
more general model (2.5).

Example 3. Take the Weibull marginals as in Example 1, the Laplace
transform ¥(¢) as in Example 2, and further take ¢ = 2, leaving y as a free
parameter. We then obtain

Hi¥(x) = {exp [(x/0:1Y'] - 137,

2.6

20 F(x,y)=[1+[{exp [(x/0:1)'] = 13" + {exp [(y/ 6] - 1}/7T" .
The expression (2.6) yields a bivariate Weibull model which is quite
different from (2.4) but also has a random hazards interpretation. Here, the
dependence parameter y has its source in the conditional dependence of X
and Y rather than in the distribution assumed for S. Despite an interesting
structural interpretation, this model has the undesirable feature that no
value of y yields independence of X and Y. To see this, we first note from
(2.6) that

LFC ] = 37 = {[Fx(0] — 37 + {{Fr()] ' = 13"
Due to convexity of the function x"” on [0, e0), it follows that

S U B
F(x,y) = Fx(x)  Fx(y) ’

and a simple algebraic manipulation then yields

Fx(x)Fy(y)] F(x,y) <1 — Fx(x)Fr(y) < 1.
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Here the last equality is not possible for all (x, y), thus ruling out indepen-
dence.

The bivariate Weibull model (2.4) can be related to Gumbel’s type B
bivariate extreme-value distribution (cf. Johnson and Kotz (1972), p. 251)

F(u,v) = exp { — [(— log Fu(u))" + (—log Fy(v))"1""},

1<m, —oo<u v<oo,
Specifically, if we take the type I extreme-value marginals

Fy(u)=exp{—exp[— (u—wm)/ml},
Fy(v)=exp{—exp[—(v—w)/n1},

transform to X/6: =exp (u1 — u), Y/6, =exp (42 — v), and take f;=1/n;,
i=1,2, 0= 1/m, we obtain the distribution (2.4). Lee (1979) examines the
model (2.4) and its Weibull minimum property; namely, if the shape
parameters are equal, the minimum of X and Y is a Weibull. Furthermore,
he represents (X, Y) in terms of independent random variables U and V,
which is quite useful to derive distributional results for the model (2.4). We
designate the model BVW for ease of reference.

Example 4. We conclude this section by providing another bivariate
Weibull model which shares all the aforementioned properties of BVW
except that its construction is not based on the random hazards model. We
begin with requiring the bivariate survival function to be of the form

2.7 F(x,y)=exp { — (x/01)" = (»/6:)" — Sh(x, )} ,

where h may also depend on the parameters. We note that the Marshall
and Olkin (1967) bivariate Weibull model is of the above form with
h(x,y) = max (x”, »*); it has Weibull marginals as well as a Weibull
minimum, but 8°4/(dxdy) does not exist. To avoid this last difficulty while
retaining the other properties, one simple construction is

h(x, ) =[x/ 00" + (v 0" T"
where m > 0 is a constant. With this choice (2.7) takes the form
(2.8)  F(x,»)=exp {~ (x/0)" — (y/ )" = 8(x/ )™ + (y/62)"™]"} .

To determine the allowable range of the parameter values ¢ and m, it is
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convenient to work with the transformed variables U= (X/6)"" and
V = (Y] 6,)" whose joint SF is

This evidently satisfies the boundary conditions and it can be shown that in
order to have 8*F(u, v)/(dudv) = f(u,v) = 0 for u,v €[0, 1] we require that
0=0 and 0<m<1. Taking B =p, =1, in particular, we have a new
bivariate exponential distribution

(29)  F(x,y)=exp {— (x/601) — (»/0) — 5[(x/ )" + (y/62)""1"} ,
O<m=<l1, 0<6,,6,, 0<6,

which is absolutely continuous, has exponential marginals and minimum.

3. A model motivated from specified dependence structure

Random variables X and Y are said to be positively quadrant depen-
dent (PQD) (Lehmann (1966)) if, for all (x, y),

PX>x,Y>p)=2 PX>x)P(Y>y).

Negative quadrant dependence (NQD) is correspondingly defined by revers-
ing the inequality in the middle. For PQD random variables, large values
of one variable tend to accompany large values of the other, and likewise
for small values. Marshall and Olkin’s bivariate Weibull model and the
BVW model are both PQD. Specific work environments may justify
negative dependence of the component lives. This happens, for instance,
with a two-component system if, upon failure of one component, the other
has to function in a reduced load condition or under a lesser demand of the
output. One example of a bivariate model having the NQD property is
Gumbel’s (1960) bivariate exponential distribution

3. F(x,y)=exp(—x—y—0xy), >0, x,y>0.

All aforementioned models are either only PDQ or only NQD. None
of them incorporate both PQD and NQD properties within the same
functional form. Moreover, all survival functions of these models have the
functional form

(3.2) F(x,y)=exp [ — h(x,»)],

for positive A(x, y) which involves the model parameters and has a cumula-
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tive failure rate interpretation A(x,0) = — log Fx(x) in the univariate case.
Our object here is to construct a bivariate Weibull model which has a
survival function of the form (3.2) and contains a dependence parameter 0
such that the model is PQD for an interval of J-values and is NQD for
another interval. To this end, we first examine why some of the preceding
models, such as model (2.8) and Gumbel’s model (3.1), cannot be both
PQD and NQD. We observe that both of these models are of the form

(3.3) F(x,y) = Fx(x)Fy(y) exp [0k(x, )], k(x,y)=0.

Note that k(x, y) satisfies k(x, 0) = k(0, y) = 0. The form (3.3) is convenient
for determining PQD and NQD properties. Specifically, (3.3) would include
PQD as well as NQD properties if, for all (x, y), exp [0k(x,y)] > (<) 1 for
0> (<) 0, and if both positive and negative d-values could be allowed.

For a further simplification, we consider the probability integral
transformation (U, V) = [ Fx(X), Fy(Y)] of the general model (3.3), and get
the uniform representation of F(x, y) as

(3.4) G(u,v) = (1 — u)(1 —v) exp [6k*(w,v)], O0<u,v<1,

where k*(u,v) = k[Fx'(u), Fr'(v)], and F'(¢t) = inf {x: F(x) = 1}. Note that
a distribution is PQD (NQD) whenever its uniform representation is PQD
(NQD) (cf. Kimeldorf and Sampson (1975)). Therefore, to construct a
bivariate distribution with a specified dependence structure, it suffices to
focus attention on its uniform representation.

As we will see below, the reason why Gumbel’s model (3.1) is only
NQD and model (2.8) is only PQD is the violation of the positivity of the
pdf for a certain range of 6 which is needed to have the opposite
dependence property. Instead of writing the pdf’s of the uniform represen-
tation of (3.1) and (2.8) individually, we write them in a general form and
then specify it to the particular model later. Assuming the existence of the
second cross partial derivative 9*k™*(u, v)/ (dudv), we have from (3.4),

g(u,v) = 8°G(u, v)/ (udv)
= 3{(1 — v) exp [0k*(u, v)][ — 1 + 5(1 — w)dk™*(u, v)/du]}/dv
= exp [0k™(u, v)]C(u,v) ,

where

ok* JIk*

(3.5 C,v)=1+3Dw,v)+ &1 — w)(l - v)
du Jdv




552 JYE-CHYI LU AND GOURI K. BHATTACHARYYA
and

*k* ok* ok*
8u8u_(l —u du —(1=0v) dv

3.6) Duv)y=(>1-wl —-v)

Since exp [0k*(u,v)] is always positive, let us examine the C(u,v) corre-
sponding to each of the models (3.1) and (2.8).

Example 5. The uniform representation of Gumbel’s model (3.1)
leads to the following C(u, v) and D(u, v):

Ci(u,v) = 1 + 6D (u,v) + 6log (1 — u) log (1 — v)],
Di(u,v)=1+1log(1 —uw)+log(l—-v).

Note that the third term of C, is always positive. But, as u — 1 or v — 1,
the D; function tends to — oo so that 0 must be negative to guarantee
C1 =0 or g(u,v) =0 for (3.1). Positive values of J being precluded, model
(3.1) can only be NQD.

Example 6. For the model (2.8), let us denote r = — log (1 — «) and
s =—log (1 — v). Then, the corresponding k*(u, v) function becomes

K¥u,v)=r+s— """ +s"™",

and we obtain C(u, v) and D(u,v) as follows:

Co(u,0) = 1 + 6Dy (u,v) + 8 Z(r, $)Z(s, 1)
and

Da(u,0) = [(1/m) — 1AV UmTAm 4 gmym2 — 7(r,5) — Z(s, 1)
where Z(r,s)=1— /7Y + s™""! Since r,s =0, we have (r'™ +
syt = 2L so Z(r, s) and Z(s, r) are both positive. Hence, we conclude
that the third term of C; is positive. Taking u=v — 0", i.e.,, r =5 — 0", we
have

Dy(u,u) =2"[(1/m) = 1 '+ (2" —2) - o,

which restricts the dependence parameter J to be positive to insure
Ca2(u,v) = 0. Consequently, the model (2.8) can only be PQD.

To construct a bivariate model with both PQD and NQD properties,
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we look for a k™(u, v) function such that C(u, v) is positive for negative and
positive values of J. In order to allow negative values of J, we shall look
for positive [0k™/du][dk™*/dv], and this implies bounded D(u,v). With this
in mind, we now proceed to construct a k*(u, v) function such that (3.4) is a
bivariate distribution with uniform marginals. The simplest construction of
a k*(u,v) is to require that 9°k*/(udv) = 1, which implies 9k*/du = v and
dk*dv = u. For this choice, we not only get positive [dk*/du][dk™/Iv] = wv
but also have bounded D(u, v) of the form

Duv)y=(1-w(l-v)—v(l-w)—u(l-v)=1-uvel0,1].
Since 1 + dD(u,v) is never negative if — 1 < J, the density g(u, v) is positive

on the unit square. The resulting bivariate uniform distribution has the
survival function

3.7 G v)y=1—-u)(l-v)exp (bw), O0=<uv=<l, —-1<6,

which satisfies all boundary conditions (2.2) (without conditioning on s),
and is PQD if 6 >0 and NQD if 6 <0. Finally, the bivariate Weibull
distribution, whose uniform representation is (3.7), is given by

(3.8)  F(x,y)=exp{—(x/0)" — (y/6:)"
+0{1 —exp [ — (x/0)'B{1 — exp [~ (y/0)"1}} ,
-1<4d, 0<6,6, i=12.

The special case, 1 = f2 = 1, leads to a new bivariate exponential model

F(x,y) = exp { = (x/61) = (y/0)
+ {1l —exp [ — (x/0)IHl —exp[ - (¥/6)]}} .
Remarks. (1) Instead of Weibull, if we specify arbitrary marginals,

(Fx, Fy), and require (3.7) to be the uniform representation of F(x, y), then
we arrive at

(3.9) F(x,y) = Fx(x)Fr(y) exp [0Fx(x)Fr(y), —1<9.

This provides a new family of bivariate distributions with specified margi-
nals. It is different from the Farlie-Gumbel-Morgenstern (FGM) family

(3.10) F(x,y) = Fx(x)Fr(y)[1 + 0Fx(x)Fr(»)], 16| <1.

(2) Let us denote the product-moment correlations (p) of the bivariate
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distribution obtained from the families (3.9) and FGM (3.10) as p; and p»,
respectively. Using the expansion

exp(2)=1+z+ 222 +22/31 + -,

we observe that E(XY) = fom fo ) F(x, y)dxdy obtained from the new family

(3.9) is larger than the one obtained from the FGM family (3.10) for all J.
Since p is a monotonic function of E(XY), we conclude that, for the same
marginal distributions, p; is always greater than p, except in the indepen-
dent case.

(3) In the case of exponential marginals, we can obtain closed form
expressions of the product-moment correlation for the families (3.9) and
(3.10). We have

=N, pa=di4, —1=d=1.

Evaluating the summation in p; to five terms (j = 6), we thus obtain the
approximated range of p; as ( — 0.20342,0.31787) (the next omitted term is
of size 1/35280). This compares with the range — 0.25 < p, < 0.25 obtained
from the FGM family (2.9).

4. Properties of the bivariate Weibull distribution BVW

As remarked earlier, the BVW has several basic features: its derivation
from random hazards lends a physical basis; it is absolutely continuous and
has Weibull marginals and minimum. Some additional properties of this
model are discussed in this section.

The BVW (2.4) has a pdf of the form

S(x,3) = 0005 BiBa(x) 00 (] 02007 [(x ) 000 + (p] B2)Y 2
X AL/ 0" + (9] 6P + 1/6 — 1)

xexp { = [(x/ 00" + (»/6:)"°T'} .
An interesting feature of the BVW is that the random variable (X, Y) can
be represented (cf. Lee (1979)) in terms of the independent random variable
(U, V), where (U, V) =[Z1(Z1 + Zo) ', (Z1 + Z2)"] and (Z4, Z2) = [(X] 0",
(Y/6,)"°]. Specifically, we have
(4.1) X=U""y'"e, y=(1-Uy"v""e,,

where U has a uniform distribution on the unit interval and V has a
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mixture of exponential and gamma distributions with density h(v) =
[(1=06)+ dv]exp (—v),v>0.

The representation (4.1) can be an aid in evaluating the moments of
(X, Y), generating BVW samples for simulation study, and deriving distri-
butional results. For examples, we apply (4.1) to obtain the general
moment of (X, Y),
E(Xiyj) = O{O{E[me(l _ U)jt;/ﬁ’Z]E[ Vi//h*j//?z] .
The first expectation is readily evaluated from the Beta function,

E[UP(1 — UY*""] = IS/ 1 + VIS B2 + 1)/ T[] B+ B2)d + 2] .
The second expectation can be evaluated in terms of Gamma functions,
E[VPEib = (1 - 5)[: v exp (— v)dv + 5f0°° v T exp (— v)dv
= +d)(c+1),
where ¢ =i/ 1 + j/f>. We then have

TGS/ By + DIjS| B + DITi/ By + B2 + 110163
I/ B +j/B2)d + 1 ’

42 EX'Y)=

where i and j are positive integers. The mean, variance, and the covariance
are as follows:

EX)=600(1/pi+1), Var(X)=0XIQ2/p +1)- [/ + DI},

IO+ DIG/ B+ DI+ 12+ 1)
I'io(1/pr+1/62) + 1]

Cov (X, Y) = 6.0,

I/ + DI+ 1) ;.
For the equal shape parameters case, f = i = S, the correlation of X and
Yis
Corr (X, Y) = {I(2/+ 1)~ [I(1/B + DI}’

[I(6/8+ DITQ/B+ 1)
2s8/p+ 1)

B+ P }

Figure 1 gives various plots of the correlation coefficient p against the
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Bivariate Weibull Distribution BYW
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Fig. 1. Correlation versus dependence plot (equal shape parameters) for the BVW.

dependence parameter 6. As the shape parameters approach 1.0, the
relationship between p and J is closer to linear. In the bivariate exponential
case (f1 = 2= 1), we have

Corr (X, Y)=2[I(6+ DF/TQs+1)— 1,

which is free of the parameters in the marginal distribution of X and Y.
This is convenient for simulation (cf. Raftery (1984)) and estimating the
dependence parameter by using the sample correlation. In contrast, the
correlation of the Marshall-Olkin bivariate exponential model is p = /(4
+ A2 + &), which involves the parameters of marginal distributions. This is
the case of other bivariate exponential models such as those of Freund
(1961), Downton (1970), Hawkes (1972), Paulson (1973) and Block and
Basu (1974).

The conditional expectation of Y given X = x is of the form
90 (x/ 0"V exp {(x/61)"}
x { I wiow + 0% 2 exp { - (w + 0}aw
18D f wow 07 exp (= (0 + il |

where ¢ = J/f, and ¢ = (x/6,)""°. The integrationfom ww + ) exp {—(w+

£)’}dw (where ¢ >0 and — 2 < d<0) can be obtained by using numerical
methods. We note that the conditional expectation Y given X = x is not a
linear function of x.
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To the remainder of this section, we consider the case of equal shape
parameters. Based on the representation (4.1), we have

log (X/Y) = (6/B) log [U/(1 — U)] + log (8:/62) ,

and log [U/(1 — U)] has the standard logistic distribution. We conclude
that log (X/ Y) has a logistic distribution with location and scale parameters
log (61/6,) and &/f, respectively. This remarkable property leads to the
construction of a simple estimator of the dependence parameter J and a
nearly exact test of equality of marginals in the equal shape parameter
case. In the exponential case, the simple estimator turns out to be quite
efficient (cf. Lu and Bhattacharyya (1988b)), especially for 6 < 0.6.

Utilizing (4.1), we obtain the probability of X < Y in a simple expres-
sion

(4.3) P(X < Y)=077967%° + 6,719
Let us denote I[-] as the indicator function. We show that the minimum

(T) and the failure-indicator (D = I[X < Y]) are independent. The condi-
tional density of T given D = 1 is written as:

< = < mi <
lim Pi<T<t+4|D 1): mP(t_mln(X,Y)_t+A|X<Y)

o A him A
g PUSXS1+4<Y) 1
S 4-0 4 PX<Y)’

The first term is evaluated as — dF(x, y)/dx at x =y =t where F(x,) is
the survival function (2.4). The second term P(X < Y) is given in (4.3).
Hence, the conditional density becomes

co AGIGIETT
X eXp {[[ 3 ]’”‘5 [ ; ]ﬁ/é] } 915/24;3/?‘&

= P07 + 677

x exp { — /[6:7° + 6:7°1} .
On the other hand, differentiating the survival function of T,

PT>0=PX>t,Y>1)=exp{—/[6:%° + 6;"°1},
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with respect to ¢, we obtain the pdf of 7T as (4.4). Therefore, T and D are
independent.

Instead of using the non-linear relationship of p and J, one can use the
distributional results of 77and D to construct closed form simple (moment
type) estimators of J. The expectations of the products between X, Y, T
and D are essential to establish the joint asymptotic distribution of the
simple estimators of the parameters of BVW distribution. Here, we provide
the evaluation of the expectation F(7X) as an example. Let us define

gl-ﬁ/rf
gl‘ﬁ/é + 02—/3/5 >

w=0d/f+1, c= Be(a,b)=f u* (1 — )" du .

Splitting the range of (X, Y) into [X< Y], [X> Y], and using (4.1), we
have

B(TX)= 02 w?duf v™[(1 - 6) + 6v] exp (- v)dv
+ 6,0, f l 1 — w)'Pdu f:’ v[(1 = 8) + dv] exp (- v)dv .

The integration with respect to v and u can be evaluated in terms of
Gamma functions and an incomplete Beta function, respectively. We have

E(TX)= [(1-&IQ/f+1)+T2/B +2)] |
X LN 28/ B + 1) + 010, Bi(w, w) — B:(w, w)]} .
In the exponential case, the result can be further simplified. We have
E(TX)=20{0:c""" + 6,26 + D[Bi(S+ 1,6 + 1) — B.(6+ 1,6 + 1]} .
Similar calculation leads to the following results:
EXI[X< YD =6, EYIX<Y])=0[l-(1-0"",

in the exponential case.
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