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Abstract. The asymptotic expansions of the distribution of a sum of
independent random vectors with Langevin distribution are given. The
power functions of the likelihood ratio criterion, Watson statistic, Rao
statistic and the modified Wald statistic for testing the hypothesis of the
mean direction are obtained asymptotically and a numerical comparison
is made.
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1. Introduction

A p-dimensional random vector x is said to have the Langevin (or von
Mises-Fisher) distribution if its density function on the sphere S, =
{x|x € R”, x'x = ||x||* = 1} is given by

(1.1) exp (kp'x)/ ap(x)
where ¢’y = 1 and k¥ >0, and
ap(k) = (21)" Ipa-1(x) [ 7

with 7.(x) denoting the modified Bessel function of the first kind and order
v.

Watson (1983) proposed some test statistics for testing parameters x
and u# and considered the limiting behaviors of these under the null
hypothesis and Pitman’s alternatives, respectively. Chou (1986) studied the
asymptotic expansions of the distribution of the Watson statistic for testing
the mean vector and its power function.

In this paper we consider the asymptotic expansions of the distribu-
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tions of the likelihood ratio criterion, Watson statistic, Rao statistic and a
modified Wald statistic for testing the mean direction vector, and some
numerical comparisons for the powers of these statistics are obtained.

2. Central limit theorem

Let x be a random vector with the probability density function (1.1),
then the characteristic function of x is given by

y (1) = Elexp (ir'x)] = ap(w)/ ap (k) ,

o= (" - 't + 2itux)"* .

This implies that the mean vector and the covariance matrix are given as

E[x] = A,(®)u ,
’ ’ ’ ’ AP(K) ’
Q= E[xx’] — E[x]E[x'] = A ()’ + — U,
where

A9 =S logad) and A5 == A,00).

For simplicity we denote A,(k) as A.

Now let xi, x3,..., x, be a random sample from a population with the
Langevin distribution. Then the characteristic function of y = \/r;()? — Ap),
X = X x;/n, is expressed as

&y(1) = exp (— in'? At p)ay(B)/ ap()]"

where

1/2 V2

@ =" —n'tt+ 2in rrp)

Expanding ¢,(¢) and inverting the characteristic function with lengthy
algebra, we have the asymptotic expansion of the joint density function of
y formally as

-pl2) 1~ 172 1 -
1 F0)=@u e Pexp (- 3 vy )

Al+n PR+ R + o(n )},
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where

Fi() = buop'y + bso(Wy) + bup'y-y'y,
F>(1) = boo + bao('y) + bao('y)* + beo(1'y)* + boi (y'y)
+ b2 (V'y)’ + ba (W) Yy + ba(Wy)'y'y + ba(uy) (y'y)

2

and
1 1 1 4"
b= (p_l)( Ak _Z)_T Ay’
bye L 1k 1 A
T2 44 2 4T 6 (A
11 1 x
bu= - it T A
1 A" 5 (47 ( 1 1 )
boo = — - —(p- - -—
00 8 (Ar)2 24 (A/)3 8 (p 1)(p 3) A;K. AK
+L( l) ”n
4PV
1 A7 5 A 1 1
by =—— = — —
20 4(A)3+8 (A)4+ (p— 1)(P+3)A2
A” 1 1 1 A”
Ly -1 —=—(p-1)—
+?(P D(p— )(A)2 7 s
1 A" 1 1
b= Ay " a (p_l)m_ g e
1 A% 1 K 5 (47)°
t——t+ = ——
4 (A’)2A2 s P 5oy
A” l AII
—_ —_— + —e
(p )(A) 2(1) 5)(A,)3A,
1 A")2 1 A4 1 1 1 Ak
60 = o5 ;6+_—4_—+* 2 2 T 1A 7 a3 42
72 (4) 12 (4)'A 8 (4)4 12 (4)A4
k1K

1
— — +_
4 44> 8 4%’
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1 A" 1 1
bon=-~ (,4')2,4+ 4(p_l)(A’AK Az)’
1 K 1
=57
1 1 A” 1 1
=—(2p+1 + = —-—(p-1
b 4 2p ) A A 2 (A')SA 4 (p )(A')ZAK
1 A’k
4 (Ar)2A2 s
b _ L All _ —1_ 1 + L A”K
41 — 12 (AI)4A 4 (A;)2A2 12 (A,)3A2

PRI

2 A4 4 A
S SO W S S B
T8 (AYAT 4 A4 8 At

b22

Chou (1986) considered a similar problem and gave an asymptotic expres-
sion for the normalized vector as z=Q *y=u+on > +wn '+ 0,(n’ "),
where u is a p-dimensional normal random vector with mean 0 and
covariance matrix I,, and v and w are functions of u, respectively. For the
case = (o +n 28)/ || o + n S]], wbd = 0, (2.1) is expressed as follows.

(2.2) 1) = @ 1l exp -5 vy
1+ 17 Ey (o) + 7 Fauo) + o))
where
Q0= Auos + 2 (1~ o)
and

- K 1 .
Fl(ﬂo)=(;— - )u&y-a'ymwo),
1

2
) (1) (8'y)
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1 K l 2 7.2 7 \2
-5 |5 ey - @

K 1
+|——— | uby-0'yF
( 1 7 )ﬂoy yFi (o)

+6'p{b1o + 3bso(uby) + buy'y} + F>(uo) .
3. Asymptotic expansions of some test statistics

Here we consider testing hypothesis H: u = uo (a given vector, ||uol| =
1) against K: u # uo. Let xi, x3,..., x» be a random sample from a Langevin
distribution with parameters u and k. When k is unknown, the likelihood
ratio criterion is given by

A ={ap(R)| ap(R)}" exp {n(Rusx — k1| x[1)}

where K is the maximum likelihood estimator of ¥ under H and it satisfies
Ap(K) = uix, and K is the maximum likelihood estimator of x under K and

it satisfies A,(K) = ||x||. Then L1 = — 2 log A is expressed asymptotically as
L1 =5y — i+ = (g - 5 by — (i)
4 Yy — oy \/; 44 A moyyy — (foy
1 {1 1 K )
__+__ - — e —— 4
n { 4 ( A'A2 A3 )(yy)

J(L_Lﬁi
2\ 44> A 44

4 A4 4 A2y )Ty )

) (uby)'y'y

Calculating a characteristic function of L1 by use of (2.1) for u = uo and
inverting it, we have the asymptotic expansion of the distribution of L1
under H as follows.

(3.1) Pr(Ll1<x)=Pr(y-1<x)
+n ' d{Pr (31 < x)— Pr(yp-1 < x)} +o(n’)
where

1 1 1 1 A”
d=5 =D gm0 )= 3 0D e
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and y; is a chi-squared random variable with / degrees of freedom. This
implies that the Bartlett correction factor for L1 is given by

ST P [ S
P nla? A Ax) 2 Ak )
When « is known as x = ko, the likelihood ratio criterion for testing
hypothesis H: 4 = po, against the alternative K: u # uo is given as
Ao = exp {kon(ubx — |Ix11)} .

The distribution of L2 = — 2 log Ao is expressed asymptotically as

(3.2) Pr(L2<x)=Pr(y-1<x)

1
AoKo n

1
—5 (==

APr (fp+1 < X) = Pr (-1 < x)}

+0(n7'),

where Ao stands for 4, (ko).
Watson (1983) proposed other test statistics for testing this hypothesis:

Wl= An(';) ||(I—/to,u6)f||2 : K is unknown ,
W2="2 (- R = rois known.
0

Chou (1986) gave the asymptotic expansions of the distributions of W'l
and W2 up to the order n ' under the null hypothesis.

Rao (1948) proposed a test statistic under a more general set up, which
is known as the Rao statistic or score statistic. Hayakawa and Puri (1985)
also proposed a modified Wald statistic. For a Langevin population, a Rao
statistic R and a modified Wald statistic M W for unknown x are expressed
as follows:

— _i — " =12
(3.3) “A®) (I = o) x|1”
(3.4 MW = nA,(R)R(fz — pa20) (Ip-1 — praoptso) (2 — pao) ,

where 46 = (0, th0), X = (X1, x7) and "= (fh, fi3) = X'/ || x|, respectively.
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These have the following asymptotic expansions of distributions.

2
(3.5 Pr(R<x)=Pr(gp-1=x)+n" 2 RaPr(fp-1+20= %) +o(n''),

| L1y A
ngwp—mp—»(;;—;p)+zfp*nzﬂ§"

R SN Y (L IR N NS S 4
Ri=- 300 o= )5 0D o

_1 LS O
R2—8(p 1)(AK A’KZ)’

2
(3.6) Pr(MW<x)=Pr(p-1<x)+n "' X MWaPr(yi-1+2a< %)
a=0

+o(m"),
1 1 1 1 A”
1. HLENE SO
MW= (p=D(p+3) -+ 7 (0= ' 5

1 A”
—T(P—l)m,

r 13
MW, =——(p* - = .
W= (p MA#+M)

Using these expansions we can find the percentile points of these statistics.

4. Power comparison

To compare the powers of these statistics, we give the asymptotic
expansions of their power functions under a sequence of Pitman’s alterna-
tives Kn: = (o +n 28/ |\ po + n *6)|, ubd = 0. The power functions are
obtained in a similar way as in the case of the null hypothesis by the use of
the probability density function (2.2).

@.1) Pr(Ll=x|K,)
= Pri @)= x5} +n7 L LO0) Pr i 1eaud) = x)

+o(nhy,
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where

1 1 1 1
(DN — 12 2, - _ _ —_
Ly'(v) P (A'x” + 34k)v" + 2 (p—D(p 3)(AK A’x2)

(P =D
LS')(V)=——‘11—(A’K2+AK)V2+{% A/‘}K *‘i“"% 2414”,;42 ]v

5 =035 g ) e
P X R PR N
W) =+ (4 ax)

and y/(4) is a non-central chi-squared random variable with /' degrees of
freedom and the non-centrality parameter 4 = Axv/2, and v = ||8||>. The
power function of L2 for known ko is given by

4.2) Pr(lL2=x|K))
=Pr{y-1do)=x}+n’" io L) Pr {)3-1424(40) = x}
+om"),

where
@) L , 1
L5’ (v) :§(A()KO+ 3Aoko)V —T(p -1y
(o D(p— ) ——
8 P P AoKo ’
(2) — 1 7,2 2 l
Li (v)——Z(AoKo+2AgKO)v +7(p— v
1 1
PP

1
L) = n (Abxs + 2Aoko) v — —1— (p—1yv,
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(3) 1 2
L; (V) = - ? AokoV

and 4o = Aokov/2. The power function of the Watson statistic is given as
follows.

4.3) Pr(Wl=x|Ky,
=Pr{p-(DH=x}+n' ‘éo W) Pr {y3-1+24(4) = x}
+o(n’),

where

1 1 1 1
wil(v) = T (A'K* + 34K)V* + 3 (p—D(p-73) (Z T )

1 A”
+—(p—1)—75
4 (p ) (A,)ZK b
1 1 A4 1 1 A"A
My — , 2 2, _ + ]
Wi'(v) 1 (A'k" + Ax)v { 2 ax 2 T4y v

1 1 1 1 "
5 (=D - )= 7 =D e

(1) L( ., 2 AN,
/%) (v)=? AK—2AK+A, y

1 A 1 A"A 1
ey o8 RIS

s (p 1)(A,K2—AK),

1 ( A° 1 A
(1) 2
=— — - — —~1
W3 (v) 4(A’ AK)v+4(p+l)(A,K )v,
1 ( A
W4(”(V):_8 ( DT ‘A")vz'

(4.4)  Pr(W2=x|Ky)
4
=Pr{fp-1(do)zx}+n " X WiP(0) Pr{fp-1+24(40) = x}

+on"y,
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where

1 1 Al
WE(v) = 5 (Abxes + 3doko)v + = (p = 1) ( oo _ ) v

Ao
1, Ab |
+8(P l)(A%_AOK())’
1 1 ’
Wity = - > AokoV’ — 2@ ( A;KO -1 ) v
0

| Ab 1
4 (p _1)( Aé AOK_O),

] 1 A;
WZ(Z)(V) — _T(A()K% _ A()Ko)vz _ I(p + 1)( 0Ko 1 ) .

Ao

| Ab 1
+8(P—1)(A%“A0KO),
1 Al
W':'(z)(v):T(p‘Fl)( /(;KO«I)V’
0

1
W) = = (Asxs — Aoko)” .

Chou (1986) considered the asymptotic expansion of Watson statistic
under a sequence of alternatives K;: o= (u +n 28/ |\u + n"?8||, w'd = 0.
Her expression is slightly different from ours, because of the difference in
the alternatives. Rao statistic has a similar expression of the power
function.

(4.5 Pr(R=x|K,)
=Pr{g- (M) =x}+n"' io R.(v) Pr {)p-1+24(4) = x}
+om )

where

1 . 1 1
Ru(v) = ¢~ (A" + 341y +§(p_1)(p_3)(z_ )

1
+“4'(p—l)m,
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__ 1 z{LA 144 1
Ri(v) = 4(AK + AK)V + > A’K+4 Ay 2 v

1 1 1 1 A”
10 (e ) oD G
1 2
Rz(v)zy(A’KZ—ZAK—F j, )v2
1 A4 1 A4"4 1
+1=—(p— -— ~—(p-1

RO)V== (0[S 1]v,

2
R4(v):%(Ax—%)v2.

The power function of the modified Wald statistic is expressed as follows
(4.6) Pr(MW=x|Ky)

3
=Priyp- () =x}+n " z M Pr{y3-112a(4) = x}

6
+n! ZO M Pri{gp-102(d) = x} +o(n’"),

a=

where
1
M = 7(1) + Dy,
Mé”ziAKw[ —i(p+ D
2 2 ’
1
M3(1)=—7AKVV1 ,

1 1 1
Méz):§(A’K2+3AK)v2+I(p—I)(Z—l)v

1 1 1
R TR e E NI Rt
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|
M =— T (A'K” — K + 24KV

1 A 1 474 1 11
+{— +— ——(p-D—+—(p-
2 ax Ta @y aWw byt 3)}v

1 1 1 1
+ > (p+l);V2+Z(p—l)(p+3)AK

1 , 1 A7
f—(p-1 ——(p—1) -
4 (p ) A'K2 4 (p—1 (A’)ZK,' s
1 A?
Mzm:——8 (A'K2—2K+ 7 )v2
1 1 A 1 A74 1
=t —(p—1 = F—
{2””4(*’) ) " a ay T eIy

1 1 1
—;(p+l)(p+7);m+§(p+3)(p+5)v?

1, 1 3
Rl bt
1 1 1
M3‘2’:7Axv2+{I(p+5)Axv%—I(p+5)vz

A
A'x

1 3
—7(p+1) —7(p+1)]v
1 2, 1 s
—4(p+3)(p+5)vl+8 (p+l)(p+3)AKV2,

M =

AZ
( AV — Axv, — 34Kk — oL ) v

1
8
1 , 1
+ ——2—(p+5)AKV1+7(p+3)V2 1
1 2
+?(p+3)(p+5)w,

1 1
MP = N QA — Arv)V + 7 (p + 5)Axviv,

|
M = ? Ak ,
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and vi = 309/ o, V2 = tholtao] Uio and 8’ = (31, 5%).

Let T be one of statistics L1, L2, W1, W2, R and MW. Table 1 gives
the upper five percentile points of these for p =3 and n = 20. I in Table 1
gives the numerical solution of x of 0.05 = Pr {7'= x}, where the right-hand
side is expressed as the formal asymptotic expansion in the preceding
section. Using the method of Fisher ez al. (1981), we generated one million
values for each statistic and obtained the upper five percentile point. We
repeated this procedure one hundred times. II in Table 1 shows the mean
of these and the standard derivation in the parentheses. Cornish and
Fisher’s generalized inversion formula for the percentile point does not give
enough approximation compared with the results of simulations.

It should be noted that the percentile points of L2 are the same for all
k in I, because the asymptotic expansion (3.2) of the distribution is the
same up to the order 1/n as the chi-squared distribution with 2 degrees of
freedom for p = 3.

By use of a similar argument of Watson (1984), L1, W1 and R are
approximated for large x as

1
L1=n(p—1)log(l+ F),
n—1

_ F 1 Huox
Wl=n(p 1)—n—l 2(1+ — ),

Rentp- {2 (e ) 5 (14 L),

Table 1. Upper five percentile points for p = 3 and n = 20.

K Ll L2 Wi w?2 R MW

11 6.182 5991 6376 5936 5992  3.134
i 6203 5980 6429 5934 5992  3.259
0.025)  (0.023) (0.027) (0.022) (0.023) (0.012)

51 6273 5991  6.613 5963 5948 5541
I 6.307 5993 6712 5964 5939 5522
0.027)  (0.025) (0.031) (0.027) (0.024)  (0.021)

10 1 6281 5991  6.684 5976 5897  5.713
i 6.309 5991 6799 5977 5885  5.697
0.027)  (0.026) (0.032) (0.026) (0.024) (0.022)

15 1 6.282 5991 6704 5981 5881  5.763
1l 6310 5991 6799 5981 5867  5.746
(0.025)  (0.024)  (0.030) (0.025) (0.022)  (0.021)

20 I 6283 5991 6712 5984 5873  5.785
1 6.310 5991 6808 5984 5860  5.770
0.025)  (0.024)  (0.030) (0.025) (0.022)  (0.021)
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where Fis an F-random variable with p — [ and (n — 1)(p — 1) degrees of
freedom. Since X converges in probability as xk goes to infinitive, W1 and
R are approximated as n(p — 1)F/(n—1) and n(p — 1)(F/(n— 1))/{l +
F/(n — 1)}, respectively. We have the following inequality.

Wl=LI=R.

Table 1 shows this relation for large .
L2 and W2 are also approximated for large x as

L2 =2nx(||x|| — ubx) ,

W2 = 2nk(||%|| — @%)

1 o
7o IFI %)

By a similar argument these are distributed approximately as a chi-squared
distribution with p — 1 degrees of freedom. The approximation of MW to a
chi-squared distribution is poor. Table 2 shows the powers of these
statistics for p=3, n=20, a=7n/2, f=0 and §=rn/2. By use of the
method of Fisher et al. (1981), we generated one million values of these
statistics under Pitman’s alternatives

= (o + y8//n)/ o + y8/\/n||

where
sin a cos f8 cos ¢ cos f cos 8 — sin f sin
Mo=| sin asin 8 and 0=/ cos asinf cosf + cos fsin b
cos a — sin « cos 0

I in Table 2 shows the theoretical value calculated by the asymptotic
expansion of its power function in the preceding section and II shows the
power due to the simulation.

From Table 2 we note following points.

(i) The agreements between I and II are satisfactory for small y.

(ii) Simulation shows that the powers of L1, W1, R and MW are
almost the same, and L2 and W2 are more powerful than the others; that
is, the knowledge of x increases the power, as is to be expected.
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Table 2. Powers ( x 1000) for p=3,n=20,a=7/2,=0and § = n/2.

y K L1 L2 w1 w2 R Mw
0.15 1 I 51 51 51 51 51 51
11 50 50 50 50 50 50
5 I 57 57 57 57 56 57
11 55 56 55 56 54 54
10 1 64 66 65 66 64 64
It 63 65 63 65 63 64
15 1 72 74 72 74 71 71
I 72 74 72 74 72 72
20 L 80 84 82 84 79 79
II 81 83 81 83 81 80
0.35 I 1 53 53 53 53 53 52
II 53 52 53 53 53 53
5 I 86 88 87 88 86 86
11 87 89 87 89 87 86

10 1 135 141 137 141 135 135
II 136 142 136 142 136 135
15 1 187 198 189 198 186 186
11 186 198 186 198 186 186
20 1 240 256 243 255 240 240
11 240 256 240 256 240 239
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