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Abstract. Let X,, t=..., - 1,0,1,... be a strictly stationary sequence of
random variables (r.v.’s) defined on a probability space (2,4, P) and
taking values in RY Let Xi,..., X» be n consecutive observations of X,.
Let f be the density of Xi. As an estimator of f(x), we shall consider
fux)=n"" _21 b ‘K((x — X))/ b)). Here K is a kernel function and b, is a
I
sequence of bandwidths tending to zero as n —oo. The asymptotic
distribution and uniform convergence of f, are obtained under general
conditions. Appropriate bandwidths are given explicitly. The process X,
is assumed to satisfy a weak dependence condition defined in terms of

joint densities. The results are applicable to a large class of time series
models.

Key words and phrases: Asymptotic normality, uniform convergence,
absolute regularity, density estimation, kernel, bandwidth.

1. Introduction

The nonparametric estimation of a probability density fis an interest-
ing problem in statistical inference and plays an important role in communi-
cation theory and pattern recognition. An account of this information can
be found in Fukunaga (1972) and Fukunaga and Hostetler (1975). The
purpose of this paper is to investigate recursive density estimators when the
observations are dependent. Let X,, = ..., — 1,0, 1,... be a strictly station-
ary sequence of random variables (r.v.’s) defined on a probability space
(2, F, P) and taking values in R® Let X1,..., X» be n consecutive observa-
tions of X.. Let f be the density of X;. As an estimator of f(x) we shall
consider

(1.1 folx) =" b K (= X)),
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which was introduced by Wolverton and Wagner (1969a, 1969b) and
Yamato (1971). Note that f, can be computed recursively by

(1.2) ﬁm:%;JﬂnﬂM%w—an

This property is particularly useful in large sample sizes since fn can be
easily updated with each additional observation. Here K is a kernel
function and b, is a sequence of bandwidths tending to zero as n — oo,

Assume the joint densities of (Xi,..., Xi) exist for all £ > 1 and that X,
satisfies the dependence condition defined below:

DEFINITION 1.1. Let m, k and / be arbitrary positive integers. Let
X=(X,...,Xx) and Y = (Xk+1+1,..., Xk+1+m). Let fxy, fx, fr be the densities
of (X,Y), X and Y, respectively. The process X, is said to satisfy the
absolute regularity condition in the locally transitive sense (ARLT) if for
some function A

(1.3) IJ o oo (. 9) = fx(O) () dxdy < h(k, m)g (D)

where @(/) | 0 as [ — . Here x, y denote values of X, Y.

The letter C will be used to denote constants whose values are
unimportant and may vary. We assume throughout the paper that

hk,m)= C(k + m)’
for some 6 = 0. Let
(1.9) p(k,1,m)= Efsup | P(B|.Z (X;: 1 =t=<k))— P(B)|},
where the supremum is taken over all sets Be F(Xi:k+[+1<t<k+
I+ m); and where F(X,;: 1<t<k) and F( X k+tIl+t1<t<k+!l+m)
are the o-fields generated, respectively, by {X;: 1 <r<k} and {X;: k+ [+

1 <1<k + [+ m}. Employing Lemma 2 of Ibragimov and Rozanov ((1978),
p. 118),

(1.5) IT o o frev (e, ) = () Sy () | dxdy = 2Bk, 1, m) .

It is now easy to see that the ARLT condition is weaker than the absolute
regularity condition defined below when the joint densities of (X,..., Xi)
exist for all £ > 1.
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DEFINITION 1.2. Let &% and %, be the o-fields generated by
{X:: t =0} and {X;: t = n} respectively. Then X(¢) is absolutely regular if

(1.6) B(n) = E{sup | P(A|M’) — P(A)|: A€ Z;7} 10
as n — co,

From Definitions 1.1 and 1.2, it is clear that B(k, ., m)< f(l). For
relevant literature on absolutely regular processes, the reader is referred to
Yoshihara (1976, 1978 and 1984). Pham and Tran (1985) and Pham (1986)
have shown that a large class of time series is absolutely regular. In
particular, autoregressive moving average time series models and bilinear
time series models are absolutely regular with f(n) decaying to zero
exponentially fast under weak conditions. Thus, autoregressive processes
and bilinear time series models satisfy the ARLT condition with A(k, m) = 1.

The absolute regularity condition is weaker than the ¢-mixing condi-
tion but is stronger than the strong mixing condition. The definitions of
these dependence conditions can be found in Ibragimov and Rozanov
(1978).

In the independent case, £, has been thoroughly examined in Wegman
and Davies (1979). In the dependent case, quadratic mean convergence and
asymptotic normality of f, have been obtained by Masry (1986) under
various assumptions on the dependence of X,. Strong pointwise consistency
of f, has been proved by Gyorfi (1981). Takahata (1980) and Masry and
Gyorfi (1987) obtained sharp a.s. rates of f, to f for the class of asymp-
totically uncorrelated processes, the definition of which can be found in
Takahata (1977a). Masry (1987) established sharp rates of almost sure
convergence of f; to S for vector-valued stationary strong mixing processes
under weak assumptions on the strong mixing condition. These rates were
recently improved by Tran (1989aq).

The role of the smoothing parameter b, is crucial in kernel density
estimation. The book of Devroye and Gyorfi (1985) points out the promi-
nent role of b, in the behaviour of kernel type estimators. Our main effort
is devoted to finding the appropriate bandwidths and determining the
trade-off between the rates at which b, and @(n) tend to zero. The paper is
organized as follows: in Section 2, weak and explicit conditions under
which f; is asymptotically normal are found. Section 3 deals with the
almost sure convergence of £, to f.

The methods of proof are closely related to those of Yoshihara (1976,
1978 and 1984), Takahata (1980), Masry (1986) and Tran (1989a). The
conditions under which £, converges to f uniformly on compacts are weaker
than those assumed by Tran (1989a) and the rates of convergence obtained
are sharp. As an example, choose b, = C(n ' log n)"** where C > 0; then
under the conditions of Theorem 3.1, the uniform rate of convergence of f,
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to f on compact sets is of order (n” " log n)""**?. This is the optimal
uniform rate of convergence for nonparametric estimators of a density
function (see Stone (1983)). An interesting open problem is to find the best
constant C to minimize the L. distance. In the independent case, Silverman
(1978) has developed a practical method to determine b, to give the best
possible rate of uniform consistency for nonrecursive kernel density esti-
mators. The reader is referred to Silverman (1978) for further statistical
motivation.

Let J, = f | /u(x) — f(x)| dx be the L, distance, where integration is over
the entire space. Assume that K € L, and X, is stationary and ergodic, and
that there is an integer m > 0 such that the conditional distribution of X»
given .Z% is absolutely continuous a.s. Under some additional conditions
requiring no information on the dependence structure of X,, Gyorfi and
Masry (1988) have shown that J, converges to zero a.s. This result is also
presented in Gyorfi er al. ((1988), Theorem 4.3.1). The conditions on the
dependence structure of X; in Gyorfi and Masry (1988) are quite weak in
comparison with those of the present paper. Here, appropriate rates
convergence of ¢(n) to zero are assumed; also, the assumption made earlier
that the joint densities of (Xi,..., Xx) exist for all k> 1 is itself a dependence
condition. Recently, for ARLT processes, Tran (19895) has shown that J,
tends to zero completely under the assumption that Ke L; with ¢(n)
tending to zero sufficiently fast.

The literature on density estimation under dependence is extensive.
The book of Gyorfi et al. (1988) gives an in-depth treatment of the subject.
For a bibliography and additional background material, the reader is
referred to Roussas (1969, 1988), Rosenblatt (1970), Takahata (19774,
1977b, 1979 and 1980), Robinson (1983), Yoshihara (1984), Masry (1986),
Masry and Gyorfi (1987), Yakowitz (1987), loannides and Roussas (1987),
Hart and Vieu (1988).

2. Asymptotic normality of £,

Let K.(x) be the averaging kernel defined by K.(x) = (l/bf)K(x/bn).
Then fu(x) = (1/n) 2, Kj(x = X)). Let 45 = E[Kj(x = X)]. By (1.2)

” ” 1 &
@ fix) = B0 = = 2 [Kx— X) — a.
Let 4;(x) = Kj(x — Xj) — ;. Then

“ ~ 1 =&
Jol) = Bfu() = —  4(x) .
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LEMMA 2.1. Let U and V be random variables measurable with
respect to F (X 1<t<k)and F(X;:k+1+1<t<k+ 1+ m), respec-
tively. Let r, s be positive numbers. Assume that ||U||, <o and ||V ||s < oo
where ||U |, ={E|U|"}". fr'+s '+ h ' =1, then

|EUV — EUEV| < C[U ||, ||V |:{ Bk, 1, m)}"" .

Lemma 2.1 can be found in Yoshihara (1984). Let J > 0. Assume
E|U|*"’< o0 and E|V|**° < . Then by Lemma 2.1,

|EUV — EUEV | < CE{|U*°E|V|*"°}/** 9 f(k, 1, m)}*** .
LEMMA 2.2. Let N=1 be a positive integer. Assume n=(p+ q)r
Jor some positive integers p, q and r. Let {n;, 1 <j<r} be a family of

N-dimensional random vectors such that for each j (1<j<r), n; is
measurable with respect to the o-field generated by

X(k), G-Np+@+1<k=(G-D(p+q) +p.

Let g(xu,...,x;) be a Borel function such that |g(x,...,x,)| < M for some
constant M, where x.,...,x, are N-dimensional vectors. Let F"" and F® be

distribution functions of random vectors (qi,...,n;) and (;+1,..., 1), with
1<j<r. Then
2.2) ‘Eg(m,..., 1) —fmfg(xl,...,xj,xj+1,...,x,)dF“)

RNI

(X1, ) dF (x40, x0)
< 2Mp(n,q,n) < Cr'p(q) .

PROOF. By assumption, |g(xi,...,x,;)| < M. Using Lemma 1 in
Yoshihara (1978), the left-hand side of (2.2) is bounded by

2ME{sup| P(B|F (m: 1 <k <j))— P(B)|},

where the supremum is taken over all sets Be F(q:j+ 1<k <r); and
where F(mi: 1 <k <j)and & (m:j+ 1 < k < r) are the o-fields generated,
respectively, by {m: 1<k <jland {m:j+ 1<k <r}.

Note that (m,..., ,) is measurable with respect to the o-field generated
by X1, Xa,..., X(j-1)p+q)+p and 1;+1,..., 1), is measurable with respect to the
o-field generated by Xj(p+g)+1,..., Xir-1)(p+q)+p. Each group contains no more
than n r.v.’s variables and the indexes of the r.v.’s in the two groups are far
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apart by a distance of at least g. Thus clearly,
E{sup| P(B|F (m: 1 <k <)) — P(B)|} < B(n,q,n),
from which the lemma follows.
LEMMA 2.3. Assume n=(p+ q)r for some positive integers p, q

and r. Let {n;: 1 < j<r} be a family of real valued r.v.’s such that for each j
(1 <j <r), n; is measurable with respect to the o-field generated by

X(k), G-Dp+g+l=k=(-Dlp+tq+p.

Let ¢ > 0. Then
2.3) P[izr‘.ln;<e]SP[l_§rlZi<a]+2r,5’(n,q,n),
(2.4) P[élm<s]2P[igrlli<£]—2rﬁ(n,q,n)

where {Z:: 1 <i<r} are independent r.v.’s such that for each i (1 <i<r),
Z: has the same distribution function as that of the random vector 1.

PROOF. We will prove (2.3) since the proof of (2.4) is similar. Let
A={(x1,..,x):x1+ - +x.<e}.
Set

1 if (xi,...,x)€eA
g(x1,.0, %) =

0 otherwise .

Then g(x1,..., x,) is bounded by M = 1. Let F'",..., F" be, respectively, the
distribution functions of the random vectors #4,...,#.. Using Lemma 2.2, we
get

2.5 P [ éll m<e ] = Eg(n,....nr)
Sf---fg(xl,...,x,)dF“’(xl) - dF(x) + 2rf(n, g, n)

= P[é Z,»<s}+ 2rB(n, q,n) .
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ASSUMPTION 1. The kernel function K € L;, with fK(x)dx =1 and
K has an integrable radial majorant Q(x), that is, Q(x)=sup {|K(»)|:
[l¥ll = || x]||} is integrable, where ||x|| denotes the Euclidean norm of x and
the integration is over the entire space. Assume in addition that K satisfies
the following Lipschitz condition:

| K(x) = K(»)| = Cllx =yl .

Remark 2.1. Note that Assumption | implies that |K| is bounded
since K is Lipschitz and absolutely integrable.

ASSUMPTION 2. The bandwidth parameter {b,} satisfies
(1/n) X (baf b)" — O

asn—ooforl<r<2.

ASSUMPTION 3. (i) The joint probability density f(x,y, k) of the
r.v. Xi and X+« exists and satisfies | f(x, y, k) — f(x) f ()| < M < o for all
x,yand k= 1. '

(i) Assume X, satisfies the ARLT condition with ¢(n) = O(n"") for
some v > 2.
The following is an immediate consequence of the Lebesgue Density
Theorem (see Devroye and Gyorfi (1985)).

LEMMA 2.4. Assume that Assumption 1 holds. Then

lim [ Ko(x — ) f@)du = () [ Kwydu=1.

LEMMA 2.5. Assume X, is a strictly stationary ARLT process satisfy-
ing Assumptions 1-3. Let x be a point of continuity of f. Suppose that
bn — 0 and nb} — o as n — . Then

(2.6) lim b var £,(x) = 0 f () [ K*(u)du ,

where var fy(x) denotes the variance of fu(x).

PROOF. The proof of Lemma 2.5 is essentially the same as the proof
of Theorem 3 of Masry (1986) except here the theorem is proved under the
ARLT condition and X, takes value in R instead of R'. We will therefore
just sketch the proof. Note that var f,(x) = I,(x) + Ra.(x), where
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L(x)=n" él var Ki(x — X3},
2.7 .

Ri)=n 2 % cov {Kix = X), Ki(x = X)}

i#j

Using Assumptions 1 and 2

2.8) lim b1 (x) = 04 /(x) [ K* ) du
From (2.7)
2.9) IR0 <207 % él lcov {Ki(x — X3), Ki(x — X} -

i>jf

d(1=y)/n 1

Choose ¢, = b, where n= —1—¢+ (1 —y)a  where a= 1/v with y
and ¢ being small positive numbers such that a ' — (1 + &)(1 — y)"' > 1. This
can be done since 0 < a < 1/2. Note that

n>—l—e+(1-P+U+a)1-y)"T=0~-7).
Split the sum above into two regions, S1 and Sz,

Si={i,je{l,....,nk 1<i—j<c.},
(2.10)
S:={i,je{l,...nt e+ 1<i—j<n—-1},

and write the bound as
(2.11) |Re(x)| <1+ J2.

Note that c,b? = b, M /M=1 " which tends to zero as n — o since
((1 =y)/n) — 1 <0 and b, — 0 as n — . Using Assumption 3(i)

2.12) Ji<2Mn’? [f|K(u)|du]2>sz1
= O(ca/ 1) = O(cabl|nbd) = o(1/(nby)) .

Let 6 =2(1 —y)/y ory =2/(2 + d). Define

(2.13) gi(x) = (/b K ((x = w)/ )" (W,




RECURSIVE DENSITY ESTIMATORS 313

which tends to f(x) [ | K(12)|*"°du < o0 by Lemma 2.4 since f | K(u))* °du is
finite by Assumption 1.

Using Lemma 2.1 withr =s=2+ d and h = (2 + J)/J and following a
computation similar to (3.25) of Masry (1986), we have

n-1 . _ n-l np y/2 . y/2
h=Cn® T B L] VJZI["’ gl [ b?fﬂ%] -

b
Using the Cauchy-Schwarz inequality and Assumption 2, we obtain
Q1) 1= Cn'o 0 2 01 e [ 1K1 | (e
Thus
(2.15) nblJ, < Chy 4 li [p(D]"7

< Ch ™" Vey" T Mp(1)]'
All we need to show is that 1:2,1 (D] ™" < 0. However,

2.16) X MeH]'7 < cx [l =y cx I coo

Finally by (2.12), (2.15) and (2.16), nb2J, — 0 and nby| Ru(x)| — 0 as n — oo
since b, "' e, = 1 and ¢, — 0.

ASSUMPTION 4. Suppose sup |f/(x)| <o for each 1<j<d, where
Ji’ denotes the partial derivative of f with respect to x;, the j-th coordinate
of x. Suppose also that ; (bi/ bn) = O(n) as n — oo,

THEOREM 2.1. (1) Suppose Assumptions 1-3 are satisfied and b, | 0
as n — oo slowly enough that

(2.17) nbi® M oo
for some y <1 —v~'. Assume also

(218) n(V‘“/v—1)/2b:11'{(3‘27)V(1—}')*1}/2 = oo
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and

(2.19) n(v—ZH—1)/2bg(3v—2yv+l)/2 o

Then (nb2)"*( fu(x) — Efs(x))/ o has a standard normal distribution as
n — oo, where

o’ = édf(x)sz(u)du .

(i) If in addition, Assumption 4 is satisfied and nbi*? -0, then
(nb'X( fu(x) — f(x))/ 0 has a standard normal distribution as n — oo.

PROOF OF THEOREM 2.1(i). Define Y; = b//°4,(x). Then

(2.20) Su=nbi(fox) — Ba(x) = 2 540 = 2 ;.

Let w(n) be a positive function increasing to infinity sufficiently slowly that

(bl Hw(n))? — oo,

2.21
( ) n(-v+yv+l)/2b;1'{(3—2y)v(—l+y)+1}/2(w(n))2{(1—y)v~l} -0

>

(2.22) n(20+1—v)/2b;d(3v—2yv+1)/z(w(n))1+2v ~0.

Choose g = g = [(nb3® ) (w(n))*] and p = p(n) = [(nbd)'?| w(n)], where
[a] denotes the integer part of a. Then

(2.23) g/p=bl""Nwm) ' =o(l).

Assume for now that n/(p + q) = r where r is a positive integer. If n is
not a multiple of p + g then the proof can be altered, but the result remains
valid as will be pointed out later. We now set the r.v.’s Y}’s in alternate
blocks of size p and g. Let

(j-Diptg)+p
Un,x,j)= _ X Yi(x),
i=(j-1)(ptg)+1
(2.24) i+
Vin,x,j)= % Yi(x),

i=(j-1)(ptg)+p+1

where j = 1,...,r. Let

(2.25) Si= 3 Uln,x,j) and 7= 3 Vinx)),
E i=
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be the sum of r.v.’s ¥; in large blocks and small blocks, respectively. Let
¢>0 and let ’(S,) denote the variance of S,. It is easy to see that,

(2.26) P[S:/0(Sn) < x]< P[|S/]]6(Sn) < ¢, Su/o(Sn) < x]
+ P[|S]]/a(Sn) > €]
< P[S.— S7/0(Sn) <&+ x]+ P[|S7]|/0(Sn) > €]
= P[S!/a(Sx) <& +x]+ P[IS7]/0(Sn) > e] .

By (2.3) of Lemma 2.3,
227)  P[Si/o(S)<e+x]< P[ 21 Zu<x+e ] + 2rf(n, q, n)

where Z,; (1 <i<r) are independent r.v.’s such that for each i, Z, has the
same distribution as that of U(n, x,i)/o(S»). By (2.26) and (2.27),

(2.28)  P[Sa/a(Sn) < x]

<P| ¥ Zusx+ g] + P[ISY1/0(Sn) = e] + 2rB(n, g, 1) .

Similarly, using (2.4), it can be shown that
(2.29) P[Sx/a(Sn) < x]

=P él Zn<x—¢ ] ~ P[|S7|/0(Sn) = €] — 2rf(n, q,n) .

By a simple computation, we have

(2.30) rB(n,q,n) < Cn(p + q) 'n’q"*
< Cn(p + q) 'n'{(nbi® ) (w(n) 2}
< Cnl+9—(v/2)(p + q)—l(w(n))zvb’:dv(3—2y)/2
< Cnl+67(v/2)(nb;1)-1/2(w(n))l+2vb;dv(3—27)/2
< Cn(20+1—v)/z(w(n))l+2vb;d(3v—2~,-v+1)/2 — 0(1) ,

by (2.22).
Using (2.25)
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(2.31) (l/n)EISn”IZ:(l/n)élE[V(n,x,i)]z

+@Jm) & T cov {Vn,x, 1), Vin,x, )}

1>y

Employing (2.24)
12 d 2
232 E[V(nx)I' = X E[Yy-11pqrp-:]

q q
+ 2 X cov {Y-npegipti Yu-nmrgrp} -
P

i#l
By a simple computation using Lemma 2.4,

(2.33) E[Yy-vipraip+il’ < Mi(x),

for some constant M;(x) independent of i. Note that E.l [p(D)]' 77 < oo since
y<1—v"'. By Lemma 2.4

(2.34)  cov{Yi-1yprarepths Yi-1)ip+ar+p+i}

< Clo(tk = 1) 71N Yy-vipeqreps#ll || Yi-typeayepsill oy -
Again, by Lemma 2.4,
(2.35) max || Yill, < [Ma(x) bi ",
for some constant M>(x) independent of i. Therefore
(2.36) (1/n) £ E[V(n,x,)F
<(/m 3, él My(x)
£ UMM S S S [p(k— )]
< Mi()n 'rg + CMa()n '8 Vrg E [p(D]'
< M (x)nfqu + CMz(x)n_lb,’f(VA”rq ,

since
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oW = CE <o

Clearly

r r
237 2 ‘21 21 cov {V(n,x,i), V(n,x,j)}
=
i>j
roor jp*q) i(ptq)
=222 2
i=1j=1 k=(j-1)(p+q)+p+1 l=(i-1)(p+q)+p+1
i>j

cov {Yx, Yi}.

For i > j, the indices k, / differ by at least p, so by (2.35) and Lemma 2.1

(2.38) 2% jg’l cov {V(m, x,1), V(n, x, j)}

i>)

n

n-p
4 kgl 1 2 |cov{Yy, Y1}

=k+p

IA

n-p n

=C X ,;%p[sv(l— )11 Yillogy | Yall 2
< CMi(x)by"™" kZ‘: 1:%,, [p(I— K1
= CMI@bE M T [p (k)]
By (2.31), (2.36) and (2.38),
(2.39) (1/mE|Sy)>< Cn'rg+ Cn” b Vrg + Cbiv™" ép [p(k)]' 7.

Since g/p — 0 as n — oo,

(2.40) rq/n=nq/((p+ qn)=q/(p+q) =o(l).

By (2.23)

(2.41) b g =B n(p + @) g = b2 p + q) g
<b" plg=1/w(n) -0

as n — o,
Since g < p, by (2.21)
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@4 b7 o]
=P

< Cbg(J"Uq‘(l‘Y)V” — bg(}"1)[(nb5(3‘2}'))1/2(60(”))*2]*(1“}’)V+l
< Cb:li()"U{(nb:li@'z}’))l/z}'(1*}'”*1(w(n))2[l1‘7}vfl!
< Cbrlli(;"1Dn(‘V*VW1)/2b:’1(3‘2)0(*V*)“’”)/Z(w(n))zi(l“;‘)V‘1}

< Cul 7RGV T U 2y
Finally, from (2.39)-(2.42)
(2.43) (1/mE|SI|> =0,
which entails
(2.44) P[1S7] > en*1=0(1) .
Lemma 2.3 implies

(2.45) lim (62(Sn)/n) = nbd var ( fu(x)) = o”.

It follows from (2.44) and (2.45) that

(2.46) P[1S7] > ea(Sn)] = o(1) .
Since S, = S + Sy, by (2.43) and (2.45),

(2.47) (1/n)ES? — o .

Note that
(248)  (I/mEISI = (1/n) %, EU(n, %, )

+(2/n) léll jé:l cov{U(n,x,)Un,x,j)}.

>
Similar to the proof of (2.41),

(249) 2/m) %, 3, cov {U(n,x DU x, )} = Chi™" Z [p()]' ™ = o(1)

i>j

by (2.42).
Employing (2.47), (2.48) and (2.49),
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(2.50) (1/n) X EU*(n,x,j) ~ o°,
2

which together with (2.45) gives

(2.51) (1/0%(S) 2 EU(n,x,i) 1.
Note that
(2.52) | Vi = b 4;(x)

= b | b K((x - X)/b) - [ Ki(x — w)f(u)du

< C(b " + b"?)

since ij(x —uw) f(u)du — f(x) as j - and |K| is bounded by Remark
2.1. Hence max | Y| < Ch, " and

l<j<n
(2.53) max | U(n, x, j)| < Cpba ™" ,
<J=r

which entails

@54 (no®)" 3 E[Un,x,)I{| Uln,x, D) > nn'a}]

<(na®) 'p*b;r max P[|U(n, x,i)| >nn'’6]—0,

since
Dby d/z(nn”za)_1 < Cp(nbf)_ 20

by the choice of p. Here {4} denotes the indicator of the set A.
By (2.45) and (2.54),

(255 (1/0°(Sw) él E[U’(n, x,)I{|U(n, x,i)| = no(Sx)}] - 0,
or equivalently
(2.56) 3 E[Z3{1Zud > n}1 ~0,

where the Z,’s are defined in (2.27). Let
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(257) Snr = O'(an + e an) .
By (2.45) and (2.51)

(2.58) lim sy = 1.

r—oe

Employing (2.56) and (2.58)

(2.59) 3 EL(Zuf sw T1 Zul > nsu]] 0.
Then by the Lindeberg-Feller theorem

(2.60) P| 2 (Zulsw=x+e ] ~B(xte).

Since ¢ can be chosen arbitrarily small, by (2.28), (2.29), (2.30), (2.44) and
(2.60),

(2.61) P[Sn/0(Sn) < x] — P(x) .
The proof of (i) is completed by (2.20) and Lemma 2.5.
Finally, suppose n is not an integer multiple of p +¢q. Let r=
[n/(p + q)]. Define
Sn”’ = Yr(p+q)+1 + e+ Yn .
It is not hard to show that P[S,”/a(Sx) > ¢] — 0. The proof of the theorem
can be completed in the same manner as in the case n = (p + g)r since

Sn=8/+ 87+ 8"

PROOF OF THEOREM 2.1(ii). We have
26D Eh)=n" % b [K(x—y)/b)f()dy
= 3 K@ (x - biz)dz
=n' 3 [K@U G~ bi2) ~ () + f(x))dz
=)+ 0t & KL= bi2) £z

By Taylor’s theorem
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2.63) |Eh)—f@)] =n' E [IK@IIf(x~ bi2) ~ f(x)|dz

n d
= sup sup L@l E o £ 131 ) 1K@

<js

= C sup sup | /()In " 2 b J 1)1 K@) dz
=j< x =
<Cn’! Zl bi= Chun! 21 (bi/ bx) < Cb,

by Assumption 4. Therefore
(nb)"| Efu(x) = f(0)] |6 < C(nbi?)? by = Cn"?pi#P* 1 |
which tends to zero since nb? "> — 0 by assumption.

Example 2.1. Let X, be a stationary autoregressive process of order
1, that is, X, = aX;-, + e, where |a| < 1. Assume the e,’s are i.i.d. and each
e, has a Cauchy density with density symmetric about zero. Then X,
satisfies the ARLT condition with § =0 and @(n) = O(e *") for some s > 0.
Hence g(n) = O(n™’) for all v > 0. It is not hard to show that Assumption 3
is satisfied. Consider the case where b, = n ” for some p > 0. Then (2.17),
(2.18) and (2.19) are satisfied if for some arbitrarily large v and some

y<1—v",

1
(2.64) p< m ,
v—oyv—1
2.65
(2:65) P TE s T -y
and
(2.66) p v |

< dBv—2pw+1) "

By letting v — o0 and y — I, it is seen that (2.64)—(2.66) are satisfied if
p < 1/d. The condition nb?*? — 0 is satisfied ifp>1/(d+2).

3. Uniform convergence of 7,

LEMMA 3.1. Assume the conditions of Lemma 2.5 hold and in
addition f is continuous on R®. Let D be a compact subset of R°. Let I(x)
be defined as in Lemma 2.4 and let
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R¥) =n 3 X Jeov {Kilx — X)), Ki(x = X}l .
i;s]/'
Then for some constant C > 0,

nbiL(x)< C and nbl|R¥(x)|<C forall xeD.

Lemma 3.1 can be obtained by the same argument as of Lemma 2.5 by
noting that fis uniformly continuous on any compact subset of R

LEMMA 3.2. Assume n=2pq for some positive integers p, q. Let
{(jrs...,min), 1 <j < q} be a family of N-dimensional random vectors such
that for each j (1 <j < q), ;= (Mjr,..., nin) is measurable with respect to the
o-field generated by

Xk), 2-Dp-—p+1=<k=<2(j—-1p.

Let £ > 0. Then
g ~
P[ max 2 ni >s]<P max le” >8]+2qﬁ(n,p,n)
! <j<N | i=
where {(Zj,..., Zin), | <j < q} are independent random vectors such that

foreachj(1 <j<4q), Z;=(Z,..., Zin) has the same distribution function as
that of the random vector 1.

Lemma 3.2 is essentially the same as Lemma 3.1 of Yoshihara (1984).
The proof can be easily obtained from Lemma 2.1.

LEMMA 3.3. Suppose Assumptions | and 2 hold and in addition f is
continuous on R®. Suppose b, | 0 slowly enough that

(3.1 nby'fl(log n ' —

Let Y(n) = (log n)l/z(nb Y * and A, = (nbf log n)"*. Then for any compact
subset D ofR sup | fu(x) — Efn(x)| = O(¥(n)) a.s. as n — o if b, tends to
xeD

zero in a manner that
(3.2 (Ang(m)/ b)Y n'p([(nbi| A(m)g (M) D h(n) — 0,

for some function g(n) increasing to infinity arbitrarily slowly, and some
function h(n) > 0 with gl 1/h(n) < .
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PROOF. Let
(33) ] = n‘(l/d)—(3/(2t5))(log n)3/(2(5)+(1/d)b;d/(2r5) .

Since D is compact, it can be covered by, say, v cubes [; with sides parallel
to the coordinate axes and with center at xi. Now

(3.4) sup |/,(x) = Efu(x)] < max sup |£2(0) = /o)
+ max | fu(xk) = Efu(xi)]

+ max sup | Efn(xx) — Efn(x)] .

Isk=sv x¢'p

For x € I, using the Lipschitz condition of K and noting that bjd > C(log j)/Jj
by (3.1),

(.5 () = falx0l = (Clm) 2 b (lx = yll/ by’
< Cldnv ljgz (]/ logj)1+(§/d) < Clénl +(b'/d)(10g n)* 1-(6/d)
= 0(¥(n))
a.s. as n — oo. Therefore
max sup | f»(x) — fu(xx)| = O(¥(n)) as. as n-—oo,

I<k=v (¢,

max sup | Efn(xi) — Efn(x)| = O(¥(n)) as. as n—oo.

=V xelx

(3.6)

It remains to show that
(3.7) max | f,(x) = (x| = O(¥(n).

Assume n = 2pq for some increasing integer valued functions p = p(n),
q = q(n). Then the r.v.’s 4,s defined in (2.1) can be grouped successively

into 2q blocks of size p. Let S(n, x) = fu(x) — Efa(x) = (1/n) _; Ai(x). Write
S(n, x) as

Sn,x)=Sn,x,1)+ Sn,x,2),

where
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q q
S(nx, 1) = X Vnx2G- 1), S0,x2) = X Vinx,2~ 1)
with

V(n,x,j)=(/n) jf‘. dix) (G=1,...,9).

i=(j=p+1
Note that S(n,x,1) and S(n,x,2) are, respectively, the sum of the even-
numbered and odd-numbered groups. If it is not the case that n = 2pgq,
then the last blocks of S(n,x,1) and S(n, x,2) can be shorter than p but

this does not effect the proofs of the results, as will be seen. Let &, = n¥(n),
where # is a large number to be specified later. Observe that

(3.8) Phﬁyﬁm—ﬁﬁm>ﬂ
= P[ max 1 S(n, xi, 1) + S(n, xi, 2)| > 8,,]
< P[ max |S(n, xt, D] > 8,,/2]
+ P[ max | S(n, xk,2)| > sn/Z] .
Since | K| is bounded by Remark 2.1, we have

(B9 Voxp=Un T b K- X)/b) - EK(x~ X)/b)]

<Cn i
i=(j-l)p+1

By (3.1) and (3.2), there exists a function g*(n) increasing to infinity
such that

nbi(log n)"'/g¥(n) — o ,
and in addition (3.2) is satisfied with g(n) = g*(n). Choose
(3.10) p =[nbi/(Ang™(n)] = C(nbz) (log n) */g*(n) .

Then p — c. By Assumption 2 and (3.9),

jp
B Al V(n,x, )| < Clan 'b2% X (bu/b)? < Chupn 0,4 = 1/g*(n)
i=(j-1)p+1

(
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which tends to zero. We now approximate ARLT r.v.’s by independent
ones. By Lemma 3.2

(3.12) P[ max [S(n, xi, 1)| >cn/2]

3 VA
Jj=1

<P max > en/2 ] + 4‘]3(”,17, nj,

<k=v

where the {(V;*(xi1),..., V;*(x),j=1,...,q)} is a family of independent v-
dimensional random vectors such that for each j, the random vector
(V;*(x1),..., ¥;*(x,)) has the same distribution as that of {¥(n, x1,2(j — 1)),
o, V(n,x,2(j — 1))}. Note that |4,V;*(x)| < 1/2 for large n. Hence there
exists an N such that

exp V¥ (x) = 1+ V5 (x) + (V¥ () An

(3.13) -
exp (— V¥ (X)) = 1 = L V7%(x) + (V*(x)) An

for n> N. Using the independence of the ¥*(x)’s and applying Markov’s
q q

inequality separately to the summands ,21 V;*(x) and -21 — V;(x), we obtain
J= . J=

(3.14) P[

él Vi*(x) { >en]SP[ il Vj*(x)>e,,]+ P[ il - Vj*(x)>gn]

Jj= Jj=

N q
< e (11 Blexp 4P (0]
2
q
# 11 Elexp (— 477000
2
q
<2exp ( — Intn + A 2 E( Vi¥(x)) ) .
-
Clearly
q n
3.15) % EV¥*x)' =n’ [ P2 EAf +2 I3 |EAd] ] =1+ RF.
Jj= = =k<l=n
From (3.15) and Lemma 3.1

(3.16) é E(V*(x))’ < C/(nbd) .

By (3.12), (3.14) and (3.16)



326 LANH TAT TRAN
(3.17) P[ max | S(n, xx, 1)] >8,./2]
< Cvexp [ — Anen/2 + Chaf(nb)] + 4qf(n,p, n) .

Similarly, P[ max [S(n, xk,2)| > én/ 2] is bounded by the right-hand
side of (3.17). Now A&, = nlogn and As/(nb?) =logn. From (3.8) and

(3.17)
(3.18) P[ max | o) — Efu(x0)] > .s,,]

< Cuexp [ — Antn/2 + CA2/(nb)] + 4gP(n, p, n)
= Cvexp [~ (n/2) log n+ Clog n]+ 4qf(n, p,n)
= Con ) 1 4qB(n, p, n) .

From (3.3)

(3.19) v < Cn't B4 ((og gy BN 1 pd0)
By (3.1)

(3.20) b, > C(n” " log m)"?.

Using (3.19) and (3.20), it is easy to show that for sufficiently large #

(3.21) z on WO oo,

Note that (3.2) implies that g.] gf(n, p, n) is finite. The proof of the lemma
follows by the Borel-Cantelli Lemma from (3.2), (3.18) and (3.21).

THEOREM 3.1. (i) Assume that p(n)= O(n ") for some v > 3. Sup-
pose Assumptions | and 2 hold and b, | 0 in a manner that

(3.22) n((v_3)/2)_0(log n)'(3+v)/2(bn)(1+v}d/2(loglog n)7(1+£) = oo

for some & > 0. Then sup | ful) — Efn(x)| = O(¥(n)) a.s. for any compact
xeD
subset D of R
(i) If in addition, Assumption 4 holds and n(log n) 'b2"" = O(1),
then
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sup | fa(x) = /(0| = O(¥(n)) ~ a.s.
X €

Remark 3.1. Since b, >0, for (3.22) to be satisfied, it is necessary
that (v —3)/2)—8>0o0rv>3+26.

PROOF. (i) By (3.22), there exists a function g(n) increasing to
infinity such that

(3.23) " og m)* T (ba) M (loglog ) T g(m)' T — 0.
By (3.23)

([nbd 1og n]*g(n)) bHn’
- [nb3/ (nb log n)"’g(n))]"’n log n(loglog n)"" ™ — 0,

which implies (3.2) of Lemma 3.2 with h(n) = n log n(loglog n)'**. Note
that (3.23) implies (3.1). The theorem thus follows from Lemma 3.2.

(3.24) B =n" Z 67 [K(x = 0)/b)f0)dy .

(i) By the proof of Theorem 2.1(ii), it follows that sup | Efn(x) — f(x)|

< Ch, = O(¥(n)) since n(log n) 'bf** = O(1). Part (ii) follows from (i) and
the fact that

sup |/u(x) =/ (9] = sup |/u(x) = B ()] + sup | Efu(x) = f(3)] .
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