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Abstract. We develop a Bootstrap method in Markov-sequences. This
method is based on kernel estimates of the transition density of the
Markov-sequence. It is shown that the Bootstrap estimate of the variance
of a statistic which is a function of means, is consistent. We also show
that the Bootstrap distributions of mean-like statistics and von Mises
differentiable statistics converge to appropriate normal distributions. A
few simulation results are reported to illustrate the discussion.
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1. Introduction

Efron’s (1979) Bootstrap is perhaps the most important non-parametric
procedure for studying the sampling distribution of a statistic. In the case
of independently and identically distributed random variables, it has been
shown that Bootstrap has an edge over the traditional normal approxima-
tion as well as the Jackknife method of estimation of standard error of an
estimator (cf. Efron (1979), Bickel and Freedman (1981), Singh (1981),
Beran (1982), Babu and Singh (1983, 1984) and Efron and Tibshirani
(1986)).

Recent papers by Freedman (1981) and Bose (1986) discuss Bootstrap
procedures in linear stochastic models, such as auto-regressive and moving
average models. Here, residuals are regarded as proxies of unknown errors
which are independently and identically distributed random variables.
Resampling is done by sampling with replacement from the set of standard-
ized residuals. Freedman (1981) shows that in linear dynamic models,
Bootstrap estimators of standard errors of estimators are consistent, and
that the Bootstrap approximation of distribution of an estimator converges

*Most of this work was carried out when the author was at the Department of Statistics,
Pennsylvania State University.
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to the usual normal distribution. Bose (1986) extends the results of Singh
(1981) and Babu and Singh (1983, 1984) to auto-regressive and moving
average models. Carlstein (1986) discusses a very general procedure for
estimation of the variance of a statistic obtained from a strong mixing or
a-mixing sequence. His procedure is based on sub-series values of the
statistic, which parallel the sub-sample or psuedo-values of Hartigan (cf.
Carlstein (1986)).

In this paper, we plan to discuss the Bootstrap for Markov-sequences.
It is instructive to restate here the Bootstrap principle (see Efron and
Tibshirani (1986), Fig. 8). Suppose that we want to study the distribution
of a random variable R(X, P) where X denotes the data and P denotes the
unknown model. Let us assume that we have succeeded in developing a
method of estimation of the model P from the data x. Let this estimate be
denoted by P. Then, we can estimate the distribution of R(X, P) by that of
R(X*, P), where X* follows the distribution induced by P. If necessary,
the distribution of R(X*, P) can be approximated by Monte Carlo
methods.

We now apply the Bootstrap principle to obtain non-parametric
procedures in stationary Markov-sequences. (Actually, in many parametric
stochastic models, exact distribution theory is either unknown or too
complicated to be of any practical use. Further, traditional normal approxi-
mation may offer a poor approximation. Therefore, the parametric
Bootstrap offers an important alternative to the normal approximation.
Results on parametric Bootstrap can be deduced from our results (see
Remarks in Section 2).) We observe that the statistical model P associated
with a stationary Markov-sequence is completely specified by its transition
distribution function viz., P[X> < y| X1 = x]. We estimate this via estimat-
ing the transition density by suitable kernel estimates. The estimate of the
transition density or distribution function is then utilized to generate
Bootstrap sample paths. A distinct advantage of this approach lies in its
potential for relaxing the assumption of linearity made in Freedman (1981)
and Bose (1986) and thus, developing truly non-parametric methods in
large samples. In this connection, it is important to point out that
Bootstrap and other resampling plans may possibly play a more prominent
role in stochastic models in view of their mathematical intractability:
consider obtaining the asymptotic distribution theory for the two models
for which simulation studies are reported in Section 4.

Let X ={X1, Xa,...} be a first-order, strictly stationary Markov-
sequence with

F(x)= P[X:< ],
(1.1 F(x,y)= P[X1<x, X< ],
F(ylx) = P[Xa =yl X1 = x].
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In (1.1), we have assumed that F(x, y) is an absolutely continuous distribu-
tion function on R’. Derivatives corresponding to functions in (1.1) are
denoted by f(x), f(x,y) and f(y|x), respectively. The conditional proba-
bility density function f(y|x) would be referred to as the transition density
of the sequence X and, as remarked earlier, is the essence of statistical
model P of X.

Now, suppose that we have observed xi, x2,..., Xx», a sample path of
length n. Let k(x,y) be an appropriately chosen kernel on R’ regularity
conditions of which would be specified later. Then, an estimate of f(x,y) is
given by

A _Ln—l X—Xi Y— Xi+
(12 Foun = B k(5

where A = h(n) is a sequence of reals such that A(n) | 0 and nh(n) — . An
obvious estimate of the transition density is given by

flx,p)

(1.3) SOlx) = o 7 =[fx.y)dy.

Having estimated the model P of X, the Bootstrap can be performed as
follows.

(1) Generate a random variate x} with density f(-).

(2) Generate a random variate x§ with probability density f(- |xT).

(3) Repeat (2) to generate xf ~ f(-|x*1), r=3,4,...,n.

(4) Repeat (1), (2) and (3) B times, where B is the chosen number of

Bootstrap samples.
The rest of the Bootstrap methodology is the same as described in Efron
(1979) and Efron and Tibshirani (1986). If we have reason to believe that
X1 does not follow the equilibrium distribution f(x), the above Bootstrap
procedure can be modified to start with (2), with xT = x; for each Bootstrap
sample path.

In this paper, we propose to establish that under certain conditions,
the above Bootstrap “works”. These conditions involve assumptions of a
rather weak dependence, as defined through ergodicity and mixing co-
efficients.

Let P(x,A) = P[X: € A| X\ = x] be the (one-step) transition function
of the sequence X. Let B denote the Borel o-field. Let S denote the state-
space of X. We assume throughout this paper that the following holds:

Al: The transition function P(x, A) satisfies

sup | P(x,A)—- P(x,A)| < 1.

x.xeS AeB
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Assumption Al is related to the ergodicity coefficient

(1.4) a(P)=1—- sup . |P(x,A) — P(x’, A)|

x,x’€S,Ae

which dates back to Markov. It was rediscovered by Dynkin (cf. Iosifescu
and Theodorescu (1969), p. 40), and a good account of a(P) is available in
losifescu and Theodorescu (1969). We notice that 0 < a(P)<1 and
Assumption Al is equivalent to the condition that a(P) > 0. The indepen-
dence of X and X: is equivalent to a(P) =1, and a(P) =0 if and only if
for every ¢ > 0, there exist x and x’ such that P(x, A(x)) =1, P(x’, A(x")) = 1,
Plx,A(x) N A(x")]<e and P[x’, A(x) N A(x’)) <e. This suggests that
a(P)>0is a mild condition on X, since, with a(P) = 0, the two condition-
al probability distributions P(x,4) and P(x’, A) do not have any set of
common support.

There are some important consequences of the Assumption Al made
above. First, from losifescu and Theodorescu’s (1969) Theorem 2.1.35, it
follows that there exists a unique probability measure 7 on S such that
[PP(x, Ay —n(A) <(1-38)", 0<d=<1, where P"'(x,4) = P[Xn+1€ A|
X1 =x]. The distribution 7 is the unique stationary distribution of the
Markov-sequence X. Thus, if X; ~ 7, the Markov-sequence X is a strictly
stationary sequence. Further, such a Markov-sequence is a g-mixing
sequence (Lemma 2.1 below). This allows us to have uniform strong
convergence of f(y|x) to f(y|x), under some additional assumptions on
k(x,y) and f(x,y) (Corollaries 2.1 and 2.2 below).

We may point out here that all our results can be generalized to an
m-th order Markov-sequence also. This is particularly true, since
Ruschendorf’s (1977) results (which we have used in Lemma 2.2) hold for
estimators of densities in higher dimensions, obtained from a @-mixing
process with p(n) =p", p < 1.

The rest of the paper is organized as follows. In Section 2, we show
that the Bootstrap estimator of the variance of mean-like statistics is a
strongly consistent estimator. We also prove that, with probability one,
Bootstrap distribution of such a statistic converges to an appropriate
normal distribution. In Section 3, we show that Bootstrap works for
estimators 7, = T(F,) (here, F, denotes the empirical distribution function
of the observations Xi, Xs,..., X») which admit an expansion T,— 0=
(X h(X;, F)/n) + R,, where F is the distribution function of X; and R, =
op(n”"*). Further, n” "> T h(X,, F) obeys a Central Limit Theorem. As in
the case of independent observations, this class admits a large number of
estimators, such as maximum likelihood, least squares, quantiles and so
on. We show in this section that the Bootstrap distribution of n"*(T(FF) —
T(F;)) almost surely converges to an appropriate normal distribution (here,
F denotes the empirical distribution of X§, X¥,..., X;¥ (a Bootstrap realiza-
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tion), whereas £, denotes the estimator of F, obtained from (1.3)). Also, a
consistent estimator of ¢°, the variance of the asymptotic normal distribu-
tion, can be obtained based on the Bootstrap values. In Section 4, we give
a few simulation results and offer some concluding remarks.

Throughout this paper, we follow the convention of denoting the
Bootstrap samples by X, X5*,.... The symbols P*, E*, Var* would denote
conditional probability, expectation and variance given the sample. An
“almost surely” statement refers to the probability measure P of X.

2. Properties of kernel-based Bootstrap for mean-like statistics

We start with the ¢g-mixing property of a Markov-sequence satisfying
Al.

LEMMA 2.1. Suppose that X satisfies Al. Then, the sequence X is
@-mixing; i.e., for A € 6{Xi,..., Xn} and B € 6{Xn+m, Xn+m+1,... }, we have

sup | P(A N B) — P(A)P(B)| = p(n)P(A),

where p(n) = p" for some p,0 < p < 1.

PROOF. From losifescu and Theodorescu ((1969), p. 1), it follows
that the p-mixing coefficient between two o-fields &, and A, satisfies the
property that p(F1, &) < 1 — a(FH, F,) where a(FH1, ) is the indepen-
dence coefficient between 1, %, (defined in a manner similar to (1.4)).
Let a(P"™) be the independence coefficient between o{Xi,..., X} and
0{Xm+n,... }. From Proposition (1.2.4) of losifescu and Theodorescu (1969),
we have [1 — a(P)]<[1 — a(P)]".

Let |u| denote the Euclidean norm of a vector u of appropriate
dimensions.

LEMMA 2.2. Suppose that the following assumptions hold.

1. The kernel k(x, y) satisfies the following conditions.
(a) k(x,y)— 0as |(x,y)| = oo, uniformly in (x, y).
(b) k(x,yp) is of bounded variation on S X S.

2. f(x,y) is a uniformly continuous and bounded function on S x S.
The sequence X is a p-mixing sequence with p(n) = p", p < 1.

4. El [n"?R’ 7%V < oo, for some k = 3. Then,

sup | f(x,0) = f, )| =0, as.
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PROOF. Proof follows by verifying the conditions of Ruschendorf
((1977), Theorem 1, Part B).

COROLLARY 2.1. [f, in addition to the assumptions of the above
lemma, f(x) is uniformly continuous and bounded on S, we have

sup /() —f(0)] =0, as

COROLLARY 2.2. Suppose further that f(x)= >0 for each x € S.
Then, we have

sup If31x) = flx)] =0  as.

Remark 2.1. The condition that f(x)>J>0 for each x € .S may
appear to be restrictive. However, this is not so; this can be seen as follows.
For a given ¢ > 0, one can find a subset S(¢) of the state-space S such that
S(x)=d(e) (>0) for x € S(¢) and P[X, € S(¢)] > | — ¢. (This is more easily
seen when the state-space is the real line.) We may then consider the
process whose state-space is given by S(¢). For all practical purposes, this
reduction of the state-space would not affect sampling properties of the
Bootstrap estimators, provided moments of appropriate orders exist.

COROLLARY 2.3. Suppose that the assumptions of Corollary 2.2
hold. Let

F61, X000y Xm) = f01) 1T FGxrx1-1) 5
2.1 .
S X250, Xm) = f(x1) TL f (k| x0-1) -

Then, for each m, almost surely

2.2) sup | f(x1, X2, Xm) — f(x1, X2y, Xm)| — 0,  allin S .

X1y X250y

A similar result holds for an m-dimensional distribution function and
its estimate obtained from the density estimate. Corollary 2.3 explains why
the Bootstrap can be anticipated to “work”; finite dimensional distributions
of X and X™* eventually agree. Therefore, weak limits of statistics 7(-)
obtained from (X1, Xa,..., X») and (X7, X5,..., X;¥) should also match.

The following result makes this more precise in terms of the Mallows
metric (see Bickel and Freedman (1981) for a detailed discussion of the
Mallows metric). Let G and H be two m-dimensional distribution func-
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tions. Suppose further that the expectation of |u|” is finite under both
G and H. The Mallows metric dp(G, H) is defined by the infimum
{E|U - V|”}'” where the infimum is taken over all U ~ G and V ~ H.

THEOREM 2.1. Suppose that the assumptions of Corollary 2.3 are
met and that E(X/) < o. Then, for each m,

d(F[m], F[m]) =0, a.s.

where F[m) and F[m] denote the distribution function of (X1, Xa,..., Xm)
and its estimator derived from (2.1) respectively.

PROOF. In view of Corollary 2.3 and Scheffe’s theorm (cf. Billingsley
(1968)), it follows that P[F[m]— F[m] weakly] equals unity. Further,
since both X™* and X are strictly stationary, it suffices to prove that

EX*X#1— E[X{] as.

( so that E* [ ZIZX,-*Z ] - E[ leXiz ] a.s. ) . However, the last convergence

follows by an elementary computation. We complete the proof by an
appeal to Lemma 8.3 of Bickel and Freedman (1981).

The following result is a key result in our development of statistical
properties of the Bootstrap based on density estimates.

LEMMA 2.3. For almost all sample sequences x, the conditionally
Markov-sequence X* satisfies Assumption Al. Consequently, the process
X* is conditionally p-mixing with p(n) = p", for almost all x’s.

PROOF. As usual, it suffices to restrict ourselves to the sets 4 (in
Assumption Al) which are of the type ( — oo, y]. Conclusion of the lemma
then follows by using the almost sure uniform convergence of F(y|x) to
F(y|x) (uniform in x and y) and the fact that

sup | F(y[x) — F(y|x)]

xxy

< 2sup | F(y|x) — F(y|x)| + sup |F(y|x) — F(y|x)] .
x ¥ x,x'y

The mixing property follows from Lemma 2.1.

Most of the statistics we use in statistical analysis of Markov models
are smooth functions of means of functions of (X;, X;+1), i = 1,2,...,n. For
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example, the first-order serial correlation is a smooth function of X=
Y Xi/n, 2 X’/n and T X;X:.1/n. We therefore prove our results for mean-
like statistics only. This result can be easily extended to smooth functions
of such statistics (see Bickel and Freedman (1981), Section 3 and Lemma
8.10). Further note that, if the process {X, Xa,... } is p-mixing, so is the
bivariate process {(X1, X2), (X2, X3),... }. Since the g-mixing property of X
and X* plays a more prominent role in the proofs below, our method of
proof can be applied to any resampling plan under which one can establish
the p-mixing property of X* whenever X holds such a property. It follows
that if a parametric Markov model is assumed to be ¢-mixing for all @ in
the parameter space, the parametric Bootstrap process X* would be ¢-
mixing and results on a parametric Bootstrap would follow from our
results. Methods of proofs of Theorems 2.2 and 2.3 are general enough to
accomodate non-Markov models also.
For notational convenience, the proof below is given only for X.

THEOREM 2.2. Suppose that Var (X,) <cc. Let
(2.3) o” = Var (X;) + 2 Z Cov[Xi, Xen], 0< o’ < oo,

Then,
Var* (Wn X5 —d  as.

PROOF. For a g-mixing process with ¢(m) = p™, 0 < p < 1, the series
on the right-hand side of (2.3) is known to be absolutely convergent
(Iosifescu and Theodorescu (1969), Proposition 1.1.20). Let k be an integer

such that ZjZk (p/)'* < &. In view of Theorem 2.1, with probability one, we
have
() E*[X?— E[X7],
() E*[XF]— E[X1],
(i) EB¥XFX*]— E[XiXj+1],j=1,2,....,k— 1.
Further, in view of Lemma 2.3, we can choose an n = max {k, m(x)}, so
that, by Lemma 1 on page 170 of Billingsley (1968),

n-1 n-1 )
2| 2 Cov* [XT, X7 ]| =2 2 (p))'”* Var* (XT)
Jj= J=
< Var® (X7) .
Now, let n2(x) be chosen so that n = n,(x) implies that |[E*[X{] — E[X1]| <

e and |Cov* [XF, X/%1]— Cov [ X1, X;+1]| <e&/[2(k + 1)], for j=0,1,2,...,
k — 1. Let an integer n be so chosen that n > max {k, ni(x), n2(x)}. Then,
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n-1 n-1
Var*(XT) + 2 ,21 Cov* [XT, X%1] — Var (X1) — 2 .21 Cov [ X1, Xj+1]
iz j=
< |Var* (XT) — Var (X))|
k

-1
+2 X |Cov* [XT, X1]— Cov [ X1, X;+1]]
=

— =

+2 % {|Cov* [XE, Xl + |Cov [Xa, X;1]|}
<e¢+e[Var* (XT) + Var (X1)].

This completes the proof (also see Remark 2.2 below).

COROLLARY 2.4. Let g(x,y) be a function on S x S such that g(x, y)
is O(|(x, )|”) at (o0, 0). Let Sa(g) = {Zg(Xi, Xi+1)}/n. Then,

SH@ . Sn(g)

Var* Jn ’111}2 Var n a.s.

PROOF. Proof follows again from Lemma 8.3 of Bickel and Freedman
(1981) and an argument similar to the proof of the above theorem.

Remark 2.2. The number ¢” in (2.3) is not, in general, Var (\/r; Xo).
The exact variance would be given by

n-1 2 n-1
Var (X)) + 21231 Cov (X1, Xj+1) — - le Cov (X1, X;+1) .
< =

Again, in view of the p-mixing nature of X (with ¢(m) = p™), n times the
third term above can be shown to be absolutely convergent. Our proof
essentially ignores the third term, since, for the Bootstrapped process also,
this term is eventually negligible.

To prove the central limit theorem for the Bootstrap distributions, we
need explicit bounds for the error term in the normal approximation. Such
bounds involve moments of sums of X,’s and are given in Tikhomirov
(1980). We state his result in the form of a lemma.

LEMMA 2.4. (Tikhomirov (1980)) Suppose that a stationary se-
quence X satisfies the strong mixing property viz.,

sup | P(4A M B) — P(A)P(B)| < a(n)

where the supremum is taken over A in 6{X\,..., Xm} and B in 6{Xn+n,... }.
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Further suppose that
(1) a(n)<Ke™,
(2) E|X\)’ <.

n 2 n
Let E[X\]=0 and or= E(Eﬂ1 X,-). Let Sp= A; Xi/on and ¢a(t) be the
characteristic function of S.. Let b= b(m) denote the maximum of
k
[ 2| 2 x

exists a Ty such that for |t| < To,

371/3
] , the maximum being taken over k = 1,2,...,m. Then, there

B 34173
(2.4) Bi(t) = — tn(0) + Oy ‘”[E(lfll] [ ';_'b ]zqsn(z)
+&m34'2brdE{§{EuuT”

L BB [11b[E|Xi| "] m
On
L BB [a(m)] " nE1X:|"]"
On
¥ 95(t)n[E|X1P]”3|t|b[ 116 T
On '

On

In (2.4), 0(¢)’s refer to functions which satisfy |0(t)] <1 and B’s refer to
absolute constants.

PROOF. Proof follows from Tikhomirov ((1980), Section 4 and
Expression (4.6)). The constant 7y is given by 0,/ (32b(m)).

THEOREM 2.3. Let E|X\|)’ < o, 0}’ = V¥[Z X*]. Then, we have,

p* { L[XF - BRXO] _

ox

]— ®(2)

sup
< A*(myn "*(logn)  a.s.,

where @(z) is the distribution function of a standard normal variate at z
and A*(n) is a sequence of random variables such that A*(n) — A almost
surely 0 < A < oo,

PROOF. For brevity, we only sketch the proof. We first notice that,
almost surely, by Lemma 2.3, the conditional process X* is p-mixing and
therefore strong-mixing also, since p(n)P(A) < ¢(n). Further, since E*| X{* N
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can be shown to converge to E|X;|’, there is a set of probability unity
where the moment condition of Lemma 2.4 is satisfied. The following
argument is applicable to the x’s which belong to the intersection of these
two almost-certain events.

We now apply Lemma 2.4 to the process X*. Let T¢F = a¥32b*(m).
Now, as in Tikhomirov (1980), choose m such that [a(m)]"’ < Cn?,
(It|b*(m)/c*(n))* > < ¢/n for a suitable k and m = O **Y). Such a
choice is possible in view of the exponential decay of a(m) and the fact that
a*(n) = O(\/r; ) and b*(m) = O(m). At this stage, we make a routine appeal
to Lemma 2 on page 512 of Feller (1966). This establishes the bound
claimed in the theorem. To see that A*(n) — A, we need to note that A*(n)
is completely specified by 6*(m) and ¢*(n) and as before, b*(m)/m and
a**(n)/n converge to the corresponding population quantities.

Remark 2.3. It is possible to prove that, under Assumption Al and
the assumptions of Lemma 2.2 and Corollary 2.2, the Bootstrap distribu-
tion of smooth functions of sample moments offers an approximation to
the sampling distribution of such statistics which is superior to the usual
normal approximation. This approach assumes Cramér’s condition ((1.1)
of Gotze and Hipp (1983)) together with the existence of higher moments
resulting in Edgeworth expansions for smooth functions of sample
moments. This has been discussed by Bose (1986) for auto-regressive and
moving average processes. Actually, under Assumption Al (see (1.13) of
Gotze and Hipp (1983)) and Cramér’s condition, smooth functions of
sample moments obtained from a Markov-sequence admit Edgeworth
expansions of appropriate degree. We also refer to Babu and Singh (1984)
in this connection. For the sake of brevity, we have not adopted this
approach here.

3. Statistics which are of the von Mises differentiable type

Throughout this section, we assume that the conditions of Section 2
continue to hold; more precisely, Assumption Al and the assumptions for
the density estimation in Lemma 2.2 and Corollary 2.2 hold.

Let F, be the empirical distribution function of {Xi, Xa,..., X,}. We
first prove a lemma which gives sufficient conditions for a statistic T(F,),
obtained from a sequence of dependent observations, to have an expansion
which is of the von Mises differentiable type. Let h(x, F) denote
d\T(F; ox — F), the Géateaux differential of T at F in the direction of
0x — F, where 0, is the distribution function of a random variable degenerate
at x (cf. Serfling (1980), Chapter 6).

LEMMA 3.1. Suppose that the process X satisfies Assumption Al.
Suppose further that a statistic is Gateaux differentiable so that
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1 2
3. T(Fn) — T(F)=7i§1h(Xi, F)+ R,.

Assume that 0 < Var (h(X1, F)) <co. Then, R,= o,(n ). Consequently,
n""(T(F,) — T(F)) has the same limiting distribution as that of n '

3 h(Xi, F), which is given by N(0,0%), where

(3.2) o* = Var (h(X,, F)) + 2122 Cov (h(X1, F), h(X;, F)) .

PROOF. As noted in Lemma 2.1, the process X is g-mixing with
@n = p". Now, by Theorem 4 of Withers (1975), it follows that the empirical
distribution function process

3.3) nR S X<~ FO) (e S)

converges weakly to a Gaussian process. Therefore, with ||g(?)|| = sup |g(?)|,
we have n'/*||F, — F|| = O0,(1). By Lemma B of Serfling ((1980), p. 218), it
follows that n'’R, = 0,(1).

Now, in view of the p-mixing nature of the process and the assump-
tion that Var (h(Xi, F)) <o, it follows that the series on the right-hand
side of (3.3) is absolutely convergent. The Central Limit Theorem for
n > X h(X;, F) follows from Theorem 1.1.2.3 of Iosifescu and Theodorescu
(1969). Combining this with the fact that n'”R, = 0,(1), the proof is
complete.

Let F[1]= F, denote the estimator of F, the distribution function of
X1, obtained from (1.3). The following theorem shows that the limiting
distribution of the Bootstrapped statistic n'/*(T(F¥)— T(F,)) essentially
agrees with that of the n'*(T(F,) — T(F)).

THEOREM 3.1. Suppose that with probability one, for any m (= 1),
(3.4) E¥h(XF, E)h(X%, E)] — E[h(X1, F)h(Xm, F)] .

Then, for almost all sample sequences x, the conditional distribution of
n"(T(F¥) — T(Ey)) converges weakly to N(0, c").

PROOF. It is convenient to imagine that a very large segment of the
Bootstrap process has been observed: let N denote the Bootstrap sample
size and n denote the original sample size. As noted in Lemma 2.3, there
exists a sufficiently large n such that the strictly stationary processes X *
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satisfies Assumption Al, conditionally on (X1, Xz,..., X,). Further, there
again exists a sufficiently large n such that E¥*h*(X*, ;) < o, in view of the
assumption (3.4). Hence, by Lemma 3.1, for such a fixed n, it follows that
the result (3.3) holds (conditionally on x) for the empirical distribution
function process N "*(F¥(1) — Fu(1)), t€ S. Consequently, again by Lemma
3.1, as N tends to oo, N A(T(F¥) — T(F,))/o¥ converges weakly to N(0, 1)
conditionally on x (for almost all x’s), where

0¥ = Var* (W(XE, E)) + 2 X Cov* (n(XT, F), h(X}*, F.)) .

By making arguments similar to those in Theorem 2.2 and using condition
(3.4), it follows that o> — ¢ with probability one, where ¢” is as defined
by (3.2). The proof is complete.

Remark 3.1. Condition (3.4) is an analogue of corresponding condi-
tions of Bickel and Freedman (1981) for von Mises differentiable functions
in the case of independent observations. It is possible to replace the
condition (3.4) by conditions which do not involve the Bootstrap process.
We prefer to verify (3.4) in a given situation.

Example 3.1. (The sample quantiles) From Serfling ((1980), p. 236),
it follows that h(X), F)={p - I[ X\ < 6,1}/f(0,), where 6, is the p-th
quantile of the distribution function F. It is easily seen E*a(X{, T(E,))’ =
Ea(0p){1 = Fu(0,)}/[ f(Bp)), which converges to F(6,){1 — F(8,)}/[f(6,)T
(=p(1 = p)/[f(6,)]), almost surely. It can be similarly verified that
E*[h(XT, B)h(XF, E)]= P XT <8, X* < 0,)/[ /(0] so that (3.4) fol-
lows from Corollary 2.2 and the strong consistency of 8y, the p-th percentile
of F,.

Example 3.2. (Trimmed mean) Condition (3.4) can be again easily
verified for the trimmed mean by noting the expression for A(x, F) for the
trimmed mean in Serfling ((1980), p. 237).

Remark 3.2. We can extend the discussion in Example 3.1 to the
estimator p = median {X>/ X1, X3/ X>,..., X»/ Xa-1}, which can be viewed as
the analogue of the MPS (Median of the Pairwise Slopes) in the non-
parametric regression analysis. Notice that the Bootstrap procedure would
give correct answers irrespective of whether the linearity assumption
E(X3| X1) = pXi holds or not.

The above theorem cannot be used to conclude that the Bootstrap
estimator of variance is consistent. This would require the additional
assumption that E(R?)=o(n '), verification of which could be quite
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difficult if the observations are dependent. We may refer to Shao and Wu
((1989), Sections 2 and 5) for relevant discussion in the context of indepen-
dent observations. Extension of such results to the case of dependent
observations is under progress and will be reported subsequently. At this
stage, in the absence of verification of the condition E(RD) =o0(n"), we
may recommend the use of the interquartile range of the Bootstrap values
n""(T(F¥) — T(F,)) for estimation of o. This suggestion is due to Parr
(1985) whose arguments are based on the fact that, unlike the variance, the
interquartile range is a continuous functional on the space of distribution
functions (cf. Huber (1981)). We omit the proof of the result that under the
condition that E(R;) = o(n”"), the usual Bootstrap estimator of the variance
of ¢” is consistent under the set-up of the above theorem.

4. Simulation results for two Markov models

In this study, we simulated 400 samples each of size 100 from each of
the following Markov models.

(1) A Bilinear model: X, =.75X,-1 + .15Xy-16, + &, where &, is a
sequence of independent N(0, 1) variables. We refer to Tong (1981) for a
discussion of bilinear models.

(2) A Non-linear model: X, =.75X,\°! + &, where &, is as defined in
(1) above.

To obtain data from a stationary sequence, a sample of size 300 was drawn
in each case and the last 100 observations were retained.

For both the simulation studies, the same density estimate was employ-
ed to generate the Bootstrap samples. The kernel £ (x, y) was chosen to be
ki(x)k1(y) where ki(x) is the uniform density over ( — 0.5,0.5). Following
Silverman (1986), the sequence h(n) was taken to be (.90)n""/°§/1.34, where
§ is the interquartile range of the sample. Each Bootstrap observation was
rescaled so that the variance of the Bootstrap sample matched that of the
original sample (see Silverman (1986), p. 143).

Three statistics were included in the study: the serial correlation
coefficient (R), the sample mean (x) and the sample median (¥). Little can
be derived regarding the sampling distributions of these three statistics.
Therefore, the standard errors of these statistics were obtained by the
simulated values of these three statistics. The table below summarizes the
results of this simulation study.

Table 1 shows that Bootstrap procedure offers reasonable estimates of
variances and standard errors of the three statistics chosen. The perfor-
mance of Bootstrap estimators of standard errors is particularly satisfac-
tory in terms of bias and variance. We may point out that the theoretical
computations of variances of these statistics are almost impossible and may
not be of any practical use. Also, the performance of Bootstrap estimators
may possibly improve if better estimators of the density (such as two-stage
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Table 1. Simulation study* of Bootstrap estimators of variances and standard errors of three
statistics: serial correlation, mean and median.

Bilinear model

Mean of Bootstrap Mean of
.. . Standard )
Statistic Variance estimates of Bootstrap
error (s.e.) .
variance of s.e.
\/;R .5676 7534 5532 7212
(8.60 x 107%)* (3.30 x 107%*
\/;f 15.3366 39162 15.1719 3.6314
(191.772) (1.9846)
Vnx 14.2937 3.7807 17.4508 3.887
(237.886) (2.342)
Non-linear model
\/ER 1.069 1.0339 1.0294 989
(.2455) (5.11x107%)
Vnx 4.048 2012 3.888 1.926
(3.20) (.1778)
Vn % 4.955 2.226 522 2.2064
(7.983) (.3525)

*: n (sample size) = 100; B = 250. Results are based on 400 simulations.
* These figures are variances of the estimators of the variances or the standard deviations.

adaptive estimators etc.) are employed.
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