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Abstract. The distribution Fa(x) =1 — Eo( — x*), 0 < @ < 1; x =0, where
E.(x) is the Mittag-Leffler function is studied here with respect to its
Laplace transform. Its infinite divisibility and geometric infinite divisi-
bility are proved, along with many other properties. Its relation with
stable distribution is established. The Mittag-Leffler process is defined
and some of its properties are deduced.
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1. Introduction

The function Ex(z) = k)::() [Z*/ (1 + ak)], was first introduced by Mittag-

Leffler in 1903 (Erdelyi (1955)). It was subsequently investigated by
Wiman, Pollard, Humbert, Aggarwal and Feller. Many properties of the
function follow from the Mittag-Leffler integral representation
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where the path of integration C is a loop which starts and ends at — o and
encircles the circular disc |7| < z"°. Feller conjectured and Pollard proved
in 1948 that E.( — x) is completely monotone for x =0, if 0 <a<1. It is
proved in Feller (1966) that E.(z) is an entire function of order 1/a for
a>0.

In Feller (1966), the Laplace transform of Eu«(— x“) with 0 <a <1 is
shown to be u*'/(1 + u*), u=>0. But E.(— x") is not a probability distri-
bution. But we have shown in Theorem 2.1 that Fu(x) = 1 — Eo( — x") has
the Laplace transform
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fay=(1+u", u=0

which is completely monotone for 0 < a <1, and therefore it is a
(probability) distribution function. We call Fu(x), for 0 < a < 1, a Mittag-
Leffler distribution. Fi(x) is the exponential distribution. The function
Fa(x) =1 — Eo( — x"), x = 0 is investigated for its many properties.

Sections 2 and 3 deal with infinite divisibility and geometric infinite
divisibility, respectively, of Fu(x). Section 4 examines its relation with
stable distributions and also develops the stochastic process associated with
Fo(x).

2. Infinite divisibility of F,(x)

THEOREM 2.1. Fu(x)= X [(~ DX + k)], x=0, 0<a<l
is a probability distribution with the Laplace transform (1 + u*)", u = 0.

PROOF. By Feller (1966), the Mittag-Leffler function Eu( — x%) =

o

kg.o [(— D*x*/T(1 + ka)], x=0 has the Laplace transform WA+ uY),

0<a=<1,u=0. For any distribution F(x) with Laplace transform f(u), we
have the relation

J. e - Py = (1 - fw)u .

Equating (1 — fa(w))/u with «* /(1 + u®), we see that the Laplace trans-
form fu(u) of the function 1 — Eu( — x%) is (1 + *)™". But fu(uw) = (1 + u*)""
is completely monotone and fu(0) = 1 and therefore Fua(x) =1 — Eo( — x%),
x =0 is a probability distribution.

THEOREM 2.2. For 0<p<a<l1, [ xdFu(x)=[I'(l1-p/a)
I'(1+p/a)/I(1-p)]

PROOF. The proof follows by computation; see Wolfe (1975).
THEOREM 2.3. Fu(x) is infinitely divisible.

PROOF. By Feller (1966) a distribution F(x), x>0 is infinitely
divisible iff its Laplace transform is of the form f(u) = ¢ ¥, u =0 where
g(u) has a completely monotone derivative. Here for Fu(x), fu(u) = e ",
where gu(u) = log (1 + u“) and ga(u) = au” ' /(1 + u*) for a < 1. But «* ' is
completely monotone, (1 + u«*) " is completely monotone. Therefore the
product is completely monotone and hence the result.
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Remark 2.1. fo(u) = (1 + u®) " is the Laplace transform of a distribu-
tion with positive support iff 0 < a < 1.

PROOF. If 0<a<1, u" has a completely monotone derivative.
(1 +u)"' is completely monotone. Therefore by Feller ((1966), p. 417),
(1 +u*)"" is completely monotone, fo(0) =1 and thus fa(u) is the Laplace
transform of a distribution on R’. Suppose a> 1, then fu"(1) = — o’
J(a— 1) = (a+ Du"}/ (1 +u®)’. Then f."(u) is positive for u<[(a— 1)/
(¢ + 1D]”* and negative for u > [(a— 1)/(a + 1)]"*. Therefore fu(u) is not
completely monotone. Therefore by Feller ((1966), p. 415), fo(u) is not the
Laplace transform of a distribution on R".

Remark 2.2. The canonical representation of the infinitely divisible
distribution with Laplace transform fa() = (1 + u*)"', 0 < a < 1 is given by

oo l _ —Ux
~log fu(u) = J xe f(x)dx
where
© (=
S = T ke

PROOF. fa(u) = ¢ *™ where gu(u)=log (1 + u®) and ga(u) = ou""'/
(1 + u*) which is the ordinary Laplace transform of a k);() [(— DT+ ka))
(Feller (1966), p. 429).

3. Geometric infinite divisibility of Fa(x)

Klebanov et al. (1984) has introduced the concept of geometric infinite
divisibility of a random variable or its distribution. A random variable X is
geometrically infinitely divisible if for every p, 0 <p < 1

N )
X233 X,
I

where { X", n > 1} is a sequence of independent and identically distributed

random variables, N, is a geometric random variable with mean 1/p and it

is independent of the sequence {X,”, n > 1}.

THEOREM 3.1. Fu(x) is geometrically infinitely divisible.

PROOF. It can be easily seen that a random variable X with character-
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istic function ¢(u) is geometrically infinitely divisible iff ¢(w) (p + g (u))”"
is a characteristic function of a random variable for every p, 0 <p < 1. In
our case since ¢(u) = (1 + (— iu)®)"", this last statement is equivalent to
checking whether or not (1 + p(—iu)*)"' is a characteristic function for
every p, 0 <p < 1. And this obviously is, since it is the characteristic
function of p'* X, where X. has the distribution Fa(x).

4. Relations with stable laws

Here we establish the relationship between F.(x) and stable distribu-
tions with exponent a, for 0 < a< 1.

THEOREM 4.1. The Mittag- Leffler distribution with parameter o is
attracted to the stable distribution with exponent a, 0 < a < 1.

PROOF. Let T, denote the sum of n independent random variables,
each with distribution Fu(x). Then the Laplace transform of n *T, is
(1 + «"/n)™, which tends to e * as n tends to infinity.

The infinite divisibility of the Mittag-Leffler distribution enables us to
develop a corresponding stochastic process. The stochastic process {X(f),
t =0} with X(0)=0 and having stationary and independent increments,
where X (1) has the Laplace transform (1 + u*)"', 0 < a < 1 will be called
Mittag-Leffler process.

THEOREM 4.2. The Mittag-Leffler process X(t) has the distribution
Sfunction, for t >0,

(1 + k)x"o
T+ a(t+ k)

Ful) = 2 (~ 1)t

PROOF. X(¢) has the Laplace transform (1 + «")"'. For u> 1,

oo

1+u")'= P ( —kt) w "% But
R 1 fmxa(wk)—lewxdx
T'(a(t+ k)70 '

Since the distribution is uniquely determined by the Laplace transform for
any interval (a, ), a > 0, we have proved the result.

The following theorem brings out a connection between a positive
stable process and a Mittag-Leffler process with parameters a, 0 < a < 1.
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The proof follows by the Laplace transform technique and is not presented
here.

THEOREM 4.3, F..(x) in Theorem 4.2 has the following property.
For0<a<l,

Fur®) = [ Sus(0)Gi{ds}

where Sus(X) is the distribution of the stable process with the Laplace
transform e " and

__1_ ¥ -1 -y
Gz(x)—r(t)foy e’dy.

Remark 4.1. Theorem 4.3 is equivalent to stating that Fo.(x) is
obtained by randomizing the parameter s in Ses(x) with gamma distribu-
tion. Another way of saying is that the Mittag-Leffler process is sub-
ordinated to a stable process by the directing gamma process.
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