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Abstract. Nonparametric estimators are proposed for the logarithm of 
the intensity function of some univariate counting processes. An Aalen 
multiplicative intensity model is specified for our counting process and the 
estimators are derived by a penalized maximum likelihood method similar 
to the method introduced by Silverman for probability density estimation. 
Asymptotic properties of the estimators, such as uniform consistency and 
normality, are investigated and some illustrative examples from survival 
theory are analyzed. 
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1. Introduction 

This paper deals with the problem of estimating nonparametrically the 
intensity function of multiplicative intensity counting processes, which 
constitute an important class of point processes. The importance of such 
counting processes is that they provide an alternative to the proportional 
hazard regression model of Cox (1972). 

Estimation procedures for the intensity function of point processes have 
been analyzed in a number of papers, for instance, those written by Ogata 
(1978), Kutoyants (1979), Lin'kov (1981), Sagalovsky (1983) and Konecny 
(1984) in the parametric case, Aalen (1975, 1978), Bartoszynski et al. (1981), 
Leadbetter and Wold (1983), Ramlau-Hansen (1983) and Karr (1987) in the 
nonparametric case, to cite only few. For the multiplicative intensity model, 
Aalen (1978) provided an estimator for the cumulative hazard function 
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rather than the intensity function itself. Under appropriate assumptions, 
Ramlau-Hansen (1983) used kernel function methods from density estima- 
tion to smooth the Aaten estimator and to obtain a kernel estimator of the 
intensity itself in the nmltiplicative intensity model. Karr (1987) used 
Grenander's method of sieves and obtained estimators for the intensity 
function that are strongly consistent in the L ~ norm. McKeague (1986) used 
the sieve method to obtain consistent estimators for the parameters of a 
general semimartingale regression model which contains the point process 
multiplicative model as a special case. A common feature of these papers is 
the use of techniques developed for probability density estimation. In spite 
of this common feature, the means for obtaining detailed results--consis- 
tency, asymptotic distribution and the like -depend very much on the 
specific situation involved. 

Our interest in the multiplicative intensity counting process model and 
the questions addressed here was motivated by the work of Bartoszynski et 
al. (1981). The basic problem they treat is estimation (from i.i.d, realizations) 
of the intensity function of a nonhomogeneous Poisson process on ~+. The 
context is metastasis in the growth of malignant tumors. Their techniques 
are based on penalized maximum likelihood estimation, but questions of 
consistency or asymptotic normality for their estimators are not considered. 
Here, we obtain such results for the intensity estimators using methods along 
the lines of Silverman (1982) for probability density estimation, though 
some care is needed since the jump times are not i.i.d, random variables. In 
order to guarantee that the estimators of the intensity are nonnegative, we 
parametrize the logarithm of the intensity rather than the intensity itself. A 
penalized maximum likelihood scheme is used to derive the estimators, with 
its reasonableness .justified by virtue of uniform consistency in probability 
and asymptotic normality. Penalized maximum likelihood methods have 
also been applied by O'Sullivan (1983) and by Zucker (1986) for nonpara- 
metrically estimating a function representing time-dependent covariate 
effects in a model extending Cox's original model. 

The statistical problem we are dealing with is formulated in Section 2, 
where we also outline some basic results from the theory of counting 
processes. A survey of this theory intended for applications similar to ours 
can be found in Gill (1980) or Jacobsen (1982). In Section 3 we present the 
maximum penalized likelihood procedure for estimating the log intensity 
and give some conditions for its existence. The remaining sections are 
devoted to the asymptotic properties of the estimators and to the description 
of some practical examples. Finally, we would like to point out that our 
work has been, to a great extent, influenced by Silverman's work on 
probability density estimation. 
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2. Formulation of the Aalen model--notation and conventions 

Since we are interested in asymptot ic  properties, we shall consider a 
sequence of models indexed by n = 1,2, . . . .  As ment ioned in the introduc- 
tion, for each n we will observe an n-component  multivariate process 

(2.1) N (') = (N("), N~ ") .... , N,('>) , 

where each componen t  of (N(')(t), t e [0, T]) is a count ing process over the 
time interval [0, T]. The sample paths o f N  I~l are step functions, zero at t ime 
zero, with jumps  of size + 1 only, no two components  jumping  simultaneous- 
ly. Thus, multiple events cannot  occur. In this model, all properties of 
stochastic processes are relative to a complete r ight-continuous filtration 
(~( , ) :  t ~ [0, T]) of sub-a-algebras on the n-th sample space (Q('), o ~  ("), P(n)); 
O.5~ (") represents all the informat ion available up to time t in the n-th model. 
We will also assume, as in Aalen (1978), that  Ep'°'[Ni("I(T)] < oo for each n 
and every i ( i=  l , . . . ,n) ,  and that  N (") has a random intensity function 
A (") = ~,~1'~(') ,~2~('),..., 2,(n)) such that  

(2.2) 2~n)(t) = Yi(n)(t)Oto(t), 

where a0 is an unknown  nonnegative deterministic function,  called the 
intensity function,  while Y/') are nonnegative observable processes on [0, T], 
adapted to the filtration ~t t  I") and predictable. It will be sufficient for our  
purpose to note that  the adapted processes y t,I are predictable if their 
sample paths are left-continuous with right-hand limits. 

By stating that  N (') has intensity process A (') we mean that  the processes 
Mg (n) defined by 

(2.3) Mfl>(t) = N?)( t )  - f o  ~>')(u)du 

are square integrable or thogonal  martingales, with dual  predictable projec- 
tions 

(2.4) (Mi(')' Mi('))(t) = fo 2~'l(u) du . 

We shall require that  a0 is a cont inuous  smooth  funct ion and that  
PtnLalmost all sample paths of Yi Inl are left-continuous with r ight-hand 
limits. Several examples of the multiplicative intensity model  described 
above are given in Aalen (1975, 1978), which indicate its broad scope of 
applicability. 

The basic statistical problem in the multiplicative intensity model  (2.2) 
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is to estimate the intensity function a0 and to discuss asymptotic properties 
of the estimators as n tends to infinity. Convergence in probability and 
convergence in distribution will always be relative to the probability 
measures P(") parametrized by a0 on ~Q("). Our model is nonparametric, 
meaning that the unknown function a0 is allowed to range freely in some 
infinite-dimensional space of functions, which will be specified later. In 
terms of estimation, we have already mentioned in Section 1 that Ramlau- 
Hansen has obtained a pointwise consistent kernel estimator for a0. How- 
ever, such a procedure may exhibit considerable fluctuations in practice. 
With milder assumptions on a0 than ours, McKeague (1986) provided, using 
the sieve method, an L2-consistent estimator for the intensity function, but 
did not discuss the asymptotic distribution of his estimator. Our approach is 
based on a maximum penalized likelihood method which can be realized as a 
sort of "dual" of the sieve method (see, e.g., Geman and Hwang (1982)). 

3. A penalized maximum likelihood method for estimating the 
intensity 

In this section, we begin with some general consideration of the basic 
principle we have adopted for estimation and give conditions which 
guarantee the existence and properties of our estimator. The notation 
introduced in Section 2 will be employed throughout. 

3.1 The basic principle 
We shall consider in the sequel the stochastic processes on (Q("), ~'("), P(n)) 

defined on [0, T] by: 

i = l  

and 

i= l  

For each n, let P0 ~") be a probability measure on (~2 C"), ~--(~)) that makes 
the components Ni (~) of N I~) independent homogeneous Poisson processes, 
each with parameter 1. Then (see, e.g., Aalen (1975), Rebolledo (1978) and 
Jacobsen (1982)), the distribution of N <") under p(,)is absolutely continuous 
with respect to the distribution o f N  <~) under P0 t") and, up to a multiplicative 
random variable constant in a, the likelihood function is given by 

(3.2) L~n)(ct) exp ( - fora(s) Yn(s)ds + fo r ) = In [a(s)]dNn(s) , 
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where the stochastic integral appearing in (3.2) is a Lebesgue-Stieltjes 
integral. 

It is well known that  the likelihood funct ion Lr(a) is unbounded  above, 
and hence that  direct m a x i m u m  likelihood est imation of the unknown  
function a0 is not feasible. 

Mot ivated by the ideas of roughness penalty density est imation (see 
Tapia and T h o m p s o n  (1978) for a survey), our  purpose in the sequel is to use 
as an estimate that  intensity funct ion which maximizes a penalized modified 
version of the l ikelihood funct ion  (3.2). To overcome unavoidable  nonnega-  
tivity constraints  on the parameter  a, the logari thm of the intensity funct ion 
will be penalized for roughness  rather than the intensity itself. Note that  the 
logari thm of the intensity is a natural  quanti ty to estimate, particularly if the 
estimates are used for discrimination purposes. 

Before stating the est imation algorithm, we formulate  a preliminary 
version of it and provide a heuristic derivation. However,  it must  be stressed 
that  our  es t imator  is someth ing  which is defined and not  derived f rom 
general principles of statistical inference. That  it is a reasonable est imator 
will appear f rom its properties established in the next sections. 

We will assume that  0 = In (a), the unknown  parameter ,  lies in a 
separable real Hilbert space O with norm H • ]l. A penalized est imator  of 0 is 
obtained by minimizat ion over O of a functional of the form 

: + , 

where /n,T(0) is the negative log-likelihood function defined by (3.2), and 
J(O) (J: O ~ N+) is a penalty or roughness functional. Smaller values of 
L,T(O) correspond to "models"  0 which are better supported by the data, 
while smaller values of J(O) correspond to more plausible values of 0. The 
scalar 2 (2 > 0) controls  the a m o u n t  by which the data  are smoothed  to give 
the estimate. In our case 

(3.3) A*x(O) : - forO(s)dN,(s) +fore °''' L(s)ds + 2J (0 ) .  

A basic requirement  in order to be able to estimate 0 on the whole of [0, T] 
in a meaningful  way is that  the processes Yn be strictly positive on [0, T]. If 
this is not  the case, then given a realization of Y,, there will be an infinite 
number  of 0(t)'s that  give the same value of 21nJ(t). Sometimes,  it is clearly 
possible to make  such an assumpt ion,  but  at other times this may not  be 
possible. Hence, we will introduce a natural  modif icat ion of the negative 
l ikelihood part  of  (3.3), similar to the one used by Ramlau-Hansen  (1983). 
More precisely, since one may have Y,(t) = 0 for some t in [0, T], we will 
define 
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(3.4) Y.(s) + f f  eO.~L(s) ds, l,*, = - f (  o(,) ) 

where ~(s )  = I t/vo<,l>0/l with J~(s)[ Yn(s)]-1 = 0, whenever Yn(s) = 0 (the realiza- 
tions of the processes in(s) are left-continuous functions which may jump 
any time Y,(s) is "updated"). At this point, we should mention that 
expression (3.2) and the same expression with the log-likelihood function 
replaced by that in (3.4) do not have the same maximizer with respect to 0. 
The estimator proposed here deserves consideration for reasons of asymp- 
totic consistency and it is justified by the fact that, asymptotically, it turns 
out to be a kernel type estimate that adapts locally to the density of the 
observed jump times. As in Aalen (1975), we will assume in the sequel that 
the processes {~(s)[ Yn(s)] -1, 0 <_ s_< T} are Pl"l-almost surely uniformly 
bounded, i.e., for each integer n there exists c, > 0 such that sup {a~(s)[ Y,(s)] 1, 
0 <_ s <_ T} < c~ with Pl")-probability one. This condition ensures that the 
stochastic integrals above exist. Equation (3.4) provides us information 
about the random function J,(s)O(s) which can only be said to be closely 
related to O(s). 

3.2 Assumptions on the observational model and the penalty functional 
The following list of conditions will be assumed to hold throughout  this 

work. There are a number  of redundancies in them, and not all are needed 
for every result, but in this way we hope to avoid too many technical 
distractions in the theorems and their proofs. 

ASSUMPTIONS A. 
(i) O is a real separable Hilbert space of real functions 0: [0, T] ~ 

with inner product ( . ,  .) and norm [1-II. 
(ii) For some real m > 1, O = H~([0, T]) as sets and they have 

equivalent norms (H~ is the Sobolev space of order m). 
(iii) The penalty functional J is defined by J(O) = bbH0112 where H is a 

projection operator on O with finite-dimensional null space O0 containing 
the constant functions on [0, T]. 

(iv) There exist positive constants M1 and M2 such that 

M, 110112 ~ J(O) + II01l~2,t0,rl~ ~ Mall0112 . 

(v) The unknown function 00 is smooth in the sense of Wahba (1977), 
that is, 00 lies in a Sobolev space on [0, T] of order p, where p >_ m. 

Recall that, when m is an integer, H2m([0, T]) is the Hilbert space of 
functions on [0, T], whose derivativesf/i) up to the order (m - 1) exist and 
are absolutely continuous and such t h a t f  Ira) is in L 2. The norm of H2m([0, T]) 
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/1~ ilfli)ll ~2(t0, T1 ) X/1/2. When m is a positive number, one can is [Ifll2m = define 
i--I ] 

H2m([0, T]) using interpolation theory (see, e.g., Adams (1975)). The spaces 
H~ ° are reproducing kernel Hilbert spaces (R.K.H.S.). 

The set of Assumptions A is designed to represent prior notions about 
the behavior of the unknown function 00. A(iii) and A(iv) ensure that the 
penalty functional J is well behaved, and allow the optimization to be 
numerically tractable. Very often in practice, the penalty functional J(O) is 

r 2 where H2 m given by J(O)--f0 (DO)(s)ds D: ~ L2([0, T]) is a differential 

operator of order m with O0 = ker (D) (see, e.g., Cox (1984)). Assumption 
A(v) formulates the fact that it is probably reasonable to believe that 00 is 
smoother than just being in H2m([0, T]). In the sequel, following Silverman's 
terminology, the null family of H will be called the family of "infinitely 
smooth" log intensity functions. 

The next assumptions pertain to the stochastic part of our model. The 
conventions of Section 2 are in force. Unless otherwise stated, all limits are 
taken as n goes to infinity. 

ASSUMPTIONS B. 
(i) j ,(s)= Ep'°'(a~(s)) converges uniformly to 1 in [0, T] at a rate 

o(n-1). 
(ii) nEe'o,(~(s)[ Y~(s)]-1) is uniformly bounded below and above away 

from 0 and ~.  
(iii) {n~(s)[ Y,(s)]- ~; 0 <_ s <_ T} converges uniformly in probability to 

a continuous function ~" on [0, T]. 

The first part of Assumption B(i), i.e., the convergence ofjn(t) to 1 in 
[0, T] can be regarded as an identifiability criterion. It is easy to construct 
examples which violate this condition and for which 00 is non-identifiable. 
This condition also ensures asymptotic unbiasedness of our estimators. The 
rate o(n-~) appears rather strong but holds in some important special cases 
(see examples in Section 6). It is required for the asymptotic normality. 
Assumptions B(ii) and B(iii) guarantee the stabilization of the variance of 
the estimators, which is needed to get consistency and asymptotic normality. 
These conditions are also present, explicitly or implicitly, in the cases studied 
by Aalen (1975), Jacobsen (1982) and Ramlau-Hansen (1983). In Section 6 
we consider the problem of verifying these assumptions in some important 
practical situations. Under these assumptions, our estimator 0, of the 
unknown log intensity function 00, if it exists, will be the solution of the 
following unconstrained optimization problem: 

For fixed 2 > 0 and n _> 1, minimize over O the functional 
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(3.5) 
r ' 2 

= - £  + fo'e°' 'Z(s)ds + T J(O) . 

Remark. As pointed out by one of the referees, restriction to a fixed 
(i.e., deterministic) finite interval excludes many practical situations, for 
which the available data  has been randomly  censored. The possibility of 
censoring can be incorporated into our  model  as follows. Suppose  that  for 
each i, the count ing process N/n) and the baseline stochastic intensity y In) are 
observable only up to an ,~--~tn) finite s topping time r! n~ and that  (r~ <, i _>_ 1) is 
a stationary sequence of r andom variables. Define new state and covariate 
processes (which are observable over the whole interval [0, T]) by the 
s topped processes ~TgI")(t) = Nil")(t A r! ")) and ~ln)(t) = Yel")(t A r!n~). The 
censored version of our  model  is formed by replacing T, Nn and Y, by 
rn = Max r} "t, .N, and Yn in all previous considerations.  In order  to use the 
l ikelihood approach for est imating 00, the restrictions of the distributions of 
/Vn under  pin) and under  Po ~1 to the p re - (TA r~)-a-algebra ~ o  must  be 
absolutely continuous.  Proposi t ion 2.1 of Aven (1986) ensures that  the 
likelihood funct ion exists. The set of Assumptions  B should now be checked 
for the s topped processes AJn and Y,. In some applications it is reasonable to 
assume that  r] ~t is independent  of Ni In) and E .l"l. In this case, it suffices to 
check the assumptions for the unstopped processes and have Ptn)(r!") > s) > 0, 
for all 0 < s < T. 

3.3 Existence of  the MPL estimator 
A discussion of the existence of the M P L  est imator  of the intensity 

function of a nonhomogeneous  Poisson process is given in Section 4 of 
Bartoszynski et al. (1981), drawing on material  f rom Tapia and T h o m p s o n  
(1978). Since, in that  work,  the penalty funct ional  is a no rm (and not a 
seminorm),  the question of existence of our est imator is a little more 
delicate. The theorem of this section gives a condi t ion for the existence of 
M P L  estimators of the log intensity funct ion and it is similar to Theorem 4.1 
of Si lverman (1982). However,  the context  is different and our method  of 
proof  cannot  be thought  of as an extension of the techniques of proof  used 
in the aforementioned paper. 

THEOREM 3.1. Within the notation of  this section, the functional 
An.~, as defined in (3.5) above, has a unique minimizer in 6) whenever there 
exists a minimizer Oo of  l*v(O) in the space of  "infinitely smooth" log 
intensity functions. 

PROOF. Note first that  l 'v(0)  is weakly continuous and strictly convex 
on O. Indeed,  since, by Assumpt ion  A(ii), O is a reproducing kernel Hilbert 
space, we know that pointwise evaluation is a cont inuous  operator.  To 
establish the weak continuity of l*r(O) on O, we need only to show that for 
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any sequence {Oh, k >_ 1 } converging to 0 in O, 

fo r e°~(')a~ (s) ds ~_~ fo r e°(S)J, (s) ds .  

Since the norm of 6) is equivalent to a Sobolev norm with m >_ 1, Ok ~ 0 
uniformly on [0, T]. Now, I J , ( s ) l - <  1 and the exponential  function is 
continuous;  thus, the result clearly holds. 

A straightforward computa t ion  shows that  the second Gateaux varia- 
t ion (see Tapia  and T h o m p s o n  (1978)) of l*r(O) at 0 in the direction 11, is 
given by 

"l~ v( O)(rl, q) = fro qZ(s) e°(~)L (s) ds , 

which is P( ')-almost surely positive for any t/ in O such that  [[r/[[ > 0. 
Therefore,  l*r is positive definite relative to O and by Proposi t ion  16, 
Appendix  1 of Tapia and T h o m p s o n  (1978), l,*,,r is strictly convex in O. The 
last part  of the p roof  is similar to that  given by Cox and O'Sull ivan 0985)  
for the m a x i m u m  penalized l ikelihood of regression functions.  More 
precisely, let 2 > 0 be given and let 01 in O. If B = {0 e O; A,,~(O) <An, a(Ol)} 
is bounded  in O, then we are done by the weak lower semicontinuity of A,,~ 
on O. Suppose  that  B is unbounded ,  that  is there exists a sequence (0h)k_> 1 in 
B s uch  that  II0kll - ~ as k - ~ .  Since A,,~(Ok) is bounded,  II//(0k)[I must  be 
bounded,  so, if Id denotes the identity operator  on O, it must  be that  
I[(Id - lI)(Ok)[[ ~ ~ as k -~ ~ .  Write 

1 1 1 
0~ = ~-  (Id - II)(Ok) -- - f  Ok + --f ( - lI)(Ok). 

By convexity of l*r we have 

1 , 1 l *  . l;* r(O~) ---- ~ -  1;, r(Ok) + ~ . ,  T( --//Ok) 

However,  l*r being strictly convex and having a minimizer in Oo = ker ( / / ) ,  
this minimizer  is unique and l*r is coercive on O0, i.e., l * r ( O ) ~  oo as 
II01t-" ~ .  Hence, l*v(O~)--" ~ as k - - - ~ .  But this implies, by the weak 
cont inui ty  of l*r  and the b oundedness  of the sequence {[[//(0k)[[ }k>l that  
l*v(Ok) -" oo as k goes to infinity, which contradicts the definition of (0k)k~_ 1. [] 



790 ANESTIS ANTONIADIS 

4. Asymptotic properties 

In this section, the consistency and other properties of the MPL 
estimator introduced above will be studied. Assumptions A and B are in 
force throughout. 

4.1 Some useful facts 
Note first that, by Assumptions A(ii) and A(v), the intensity function 

ao(s) = exp (Oo(s)) and its first derivative are functions bounded below and 
above away from 0 and infinity on [0, T]. Following Utreras (1979a), we 
consider the following continuous bilinear forms on O × O: 

B(u, v) = (Hu, o) = (Hu, Ho) 

and 

(4.1) A (u, v) = fo r u(t) o(t) ao(t) d t .  

The bilinear form A(u ,v )  is the scalar product of the weighted space 
L2([0, T], ao(t)dt) and since a0 is bounded away from zero, L2([0, T], dr) and 
L2([0, T], ao(t)dt) have equivalent norms. Let (/li)i~0 be the eigenvalues of 
the following variational problem: 

(4.2) B(u, v) = 12A (u, v), A (u, u) = 1 , 

for all o in O with corresponding eigenfunctions 4)o, ~bl . . . . .  Since B(u, o) = 
(IIu, Hv),/~ = 0 is an eigenvalue of (4.2) with corresponding eigenspace the 
finite-dimensional kernel of the projector// .  Therefore, the eigenvalue 0 has 
multiplicity m0 = dim [ker (/7)] (i.e.,/z0 =/Zl . . . . .  [Am0-1) and a basis {4)o = 
4)~ . . . . .  4'mo-1} of orthonormal eigenfunctions will be chosen in Oo with 4,0 
constant on [0, T]. 

On the orthogonal complement of O0 in O, B and A are symmetric and 
positive definite, so the eigenvalues (/Zi)i~mo are strictly positive and their 
corresponding eigenfunctions (~i)i>_dim(Oo)are orthogonal. Moreover, since a0 
belongs to H~°([0, T]) and since Assumption A(iv) holds, the eigenvalues 
associated to (4.2) satisfy the following inequalities: 

(4.3) a'iZm <__lti+rno-I <_b. i  2m i =  1,2, . . . ,  

for some a, b > 0 (for a rigorous proof of this, see Utreras (1979b)). For each 
2 > 0, let B~ be the symmetric positive definite bilinear form on 6)× 6) 
defined by 
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(4.4) B~(u, o) = 2B(u, o) + A(u, o). 

It is easy to see that B~ is coercive and defines a norm on O which is 
equivalent to the norm I1" II by A(iv). We now state and prove, when 
necessary, some technical results which will be used later. 

The notation f ( h ) ~  g(h) as h ~ 0 means that, for some constants K 
and K'  and some neighborhood V of zero, K <_ I f(h)/g(h)[ <- K' for all h in 
V. 

LEMMA 4.1. I f c > _ O a n d d > _ O a r e s u c h t h a t e < 2 - 2 m - l a n d d < _ 2 p  
then, as 2 ~ O, 

o o  

-9 ,~-[(2mc+ 1 )/2m] 
~o/if(1 + /1i) - ~ 

and 

idfl2(1 + 212i)-2A(ao, thi) 2 = O()L-(d+am-2P)/2m). 
i=0 

The proof  is elementary (see, e.g., Cox (1984)). One uses the estimates 
from (4.3) and a standard argument involving the approximation of sums by 
integrals, for the first assertion of Lemma 4.1. The second part  is obtained 
by applying the dominated convergence theorem. 

The next result is the point process analogue of Lemma 5.4 of 
Silverman (1982). It gives the asymptotic behavior of certain random 
variables which will occur in the subsequent study of our M P L  estimator. 
Cons ide r  the fo l lowing sequences  of r a n d o m  variables,  def ined on 
(f2(,,), ~-(n), p(,,)) by 

:fo 
and 

(4.5) 
T m 

~(T) : fo 4,k (t)J. (t) ao (t) dr ,  

for all integers k and dependence on the sample size n has been dropped for 
notational convenience. 

For two real func t ions fand  g, the no ta t ionf (n)  ~ g(n) means that there 
exist a positive constant K and some integer no such that [f(n)[g(n)]- 11 _< K 
for all n _> no. We have then 
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LEMMA 4.2. Given n, one has Ee,",[flk(T)] = Ep,",[fl~(T)]for all k in 
N. I J A s s u m p t i o n  B(i) is in f o r c e  wi th  sup I j n ( t ) - l [  ~ .n  -~, then 

t ~ [0, T] 

[ So" E~,.,[/~*(T)] ~ n -~ and Ee '°' f i g ( T ) -  4)o(t)ao(t)dt ~ n- . Moreover, iJ 

Assumpt ion  B(ii) holds, then 

Ep,°'[fl~'(T) 2] ~ n ' and 

PROOF. Notice first that, by our basic assumptions, each of the 
processes {],(s)[ Yn(s)]-l; 0 _< s _< T} is predictable and uniformly bounded. 
Thus, the stochastic integrals in (4.5) are well defined for all n ~ N. By the 
theory of stochastic integrals, for each sample size n and each integer k, the 
processes {/~k(t)-t iff(t) ,  t~  [0, T]} are mean zero, square integrable  
martingales with variance process 

, L ( s )  <~,-/~Y>(') =f0 a0(s) ~ 4)~(s)2as. 

Therefore, given n and for all k, one has 

Ep,0,t/~(T)] = e , , , , , [ ~ ( V ) ]  = fo~in(s),~o(S)4)~(s)ds. 
By definition of the family {4)k, k _> 0} and since 4)0 is a constant function on 
[0, T], for all k _> 1, we have 

fo r ao(s)  4)~ (s) ds  = O . 

Hence, for all k _> 1, 

fo~Jn(s,4)k(s)ao(s)ds= fo"(j=(s) - 1)4)k(S)ao(s)ds 

and 

I E(fl*(T))I -< fo r t 4)k (s) l ao (s) d s .  sup 
t¢[O,T] 

- 1  [jn(t)-  I I ~ n 

by our assumption on the asymptotic behavior of the functions jn. For the 
particular value k -- 0, 
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and the conclusion follows as before. 
Following, for example, Jacobsen ((1982), p. 131), one obtains 

Ee'"'{[flk (T) - fl*(T)] 2 } = EP'", {</~k - fl~>( T)} 

=foTaO(S)E( L(s) ) -, ~ . ( s )  4~k(s)+ds ~ n , 

by Assumption B(ii). Now, for k _> 1, 

Ee,o,{[/~+(T)] 2} = Var [/~k(T)] + E2e,",{[fl~(T)]} 

and 

Var [/~k(T)] = Ep,",{[/~k(T) - Ee,°,(fl~(T))] 2} 

<_ 2Ee,",{[flk(T) - fl~'(T)] 2} + 2 Var [fl~'(T)]. 

By the Schwarz inequality, 

T 2 T _ 

-<fo ao(,),C,+(,)d~, f0 ao(s)E([J+(,) - j.(s)]2)+s, 

793 

4.2 Approximation o f  the M P L  estimator 
In this subsection, an approximation t~ to t) will be defined and 

studied; the question of the asymptotic closeness of this approximation, in 
order to obtain consistency results for 0, will be considered later. Our 
approach here is a point process extension of Section 6 of Silverman 
(1982). 

Given n, define a quadratic form on O by 

(4.6) 
1 

Q(O) = --f 11110112 

r 1 0 + fo [ l + (O(s)- Oo(s)) + --f ( ( s ) -  Oo(s))2 ] ao(s)ds 

_ forO(S) J.(S) ~.(~)  d~o(s). 

and E([a~(s)-jn(s)] 2) = jn ( s ) . ( l - jn ( s ) )  by definition of a~. Given that 
sup {j,(s)} _< 1, it follows that Var (tiff(T)) ~ n -1. Regrouping all the previous 
inequalities, the second assertion of Lemma 4.2 follows. [] 
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It is straightforward to see that pInl almost surely, Q is uniformly convex 
on O; thus, Q has a unique minimizer ~ in O. Within the notation of 
Subsection 4.1, up to a constant, Q(O) admits the following eigenfunction 
expansion: 

2 r 1 ~0 A (0, 4)k) 2 Q(O) : -~ k~molZkA(O, 4)k) 2 + A(O, 4)O) fo 4)o(s)ao(s)ds + --f : 

- ~ A(Oo, 4)k)A(O,4)k)- ~ A(O,4)k)flk(T) 
k=0 k=0 

1 r r  
= - -  A (0, 4)0) Jo 4)o(S) ao (s) 2 k~mo (1 + 2/~k)A(0, 4)k) 2 + ds 

- ~ [A(0o, 4)~) + flk(T)]A(O, 4)k). 
k=O 

It follows from this expression that the coefficients A(0,4)~) satisfy the 
equations: 

A (0, 4)0) = ( r )  - f [  4)o(s) ao(S) ds + A (0o, 4)0) 

and 

(4.7) A(O, 4)k) [A(Oo, 4)k)+flk(T)](1 + /.zk) , k >  1. 

We are now able to state the asymptotic properties of ~i using the results of 
Subsection 4.2. 

THEOREM 4.1. Defining 0 as above, and using the notation and 
assumptions of  this section, as )L -- 0 and n ~ 0% one has: 

and, given 3 > 0, 

(4.8) 

PROOF. 

Ee'°'[A({)- 0o, 0 -  0o)] = O(n-12 -1/2m + 2 v/m) 

E [ I I ~ -  0oll 21 = 012-~(n-12 -l/m + 2/2p-w2z)] • 

From our notation and equations (4.7), it follows that 

o o  

A (0 - 0o, 0 - 0o) = ~o [A (0, 4)k) -- A (0o, 4)k)] 2 

= [ Bo(r)- f[ao(S)4)o(S)dS ] 2 
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+ Z [/~k(T) - 2flkA(Oo,~k)] 2 
k->l (1 + 2/*~) 2 

= [ fio( T) - forao(s)cbo(s)ds ] 2 

+ Z 221"t2A(O°'g4°k)2 
k~ i (1 + 2pk) 2 

+ Z /~k(T)2 22 E 
kel (1 + 2/ak) 2 k~l 

I~kA (0o, cbk)flk( T) 
(1 + 2/./k) 2 

Combining the results of Lemmas 4.1 and 4.2, one obtains for the 
mathematical expectations of the right-hand side of (4.8): 

E{A(O- 0o, O- 0o)} = O(n-') + 220(2 (p-2m)/m) + O(H-12 -1/2m) 

= O(n- 12- l/2m ~_ 2p/m). 

Now, for each 2 > 0, B). defined by (4.4) defines on O a norm 
equivalent to its Sobolev norm. By the Sobolev imbedding theorem (see, 
e.g., Adams (1975)), for every e > 0, there exists a positive constant C, such 
that 

I10- 0o112 <~ C~ E k'+~[A(O,~k) - A(Oo,~k)] 2 
k~l 

= C~ Z k '+~ [ilk(T) - 2flkA(Oo, qOk)] 2 
k_> I ( 1 + 2/*k) 2 

2C~ [[ k~>l k 1+~ /~(T)  22 k~+,/t~A(00, 4~k) 2 ] 
(1 + 2/./k) 2 q'- Z ] " k>-m° (1 q- 2]./k) 2 

Taking 0 < e < min (2m6, 8m - 3, 2p) one has 

E[ Y~ k 1+~ fi2(T) ] 12-U2m2-1/m 
k_>l (1 +2/tk) 2 ~ n -  

and 

22 y~ kl+~ A(Oo, cbk):,u 2 = 220(2_Ll+~.+4m_Zpl/2m) = o(2_[l+e_2p]/2m ) 
k~J (1 + 2/lk) 2 

by Lemmas 4.1 and 4.2. Thus, 

E[ I IO-  0o11~] < C~-~/2m(n- l ~ -1/m + ~12p- lt/2m) , 
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and since ~ < 2m6 

E[II0-  00[I g] = o[2-a(n-12 1/m + 2¢2p-~/2,~)] . [] 

Remark .  The behavior of the approximant  0 with respect to n is tied 
directly to the asymptotic behavior o f j ,  and (J~(s)[ Y,(s)]-1). Any specifica- 
tion as to the consistency and uniform boundedness rates of these quantities 
will give corresponding rates in Lemma 4.2 and Theorem 4.1. 

4.3 Closeness o f  the approximat ion and the main consistency result 
The nota t ion  Op denotes an order of magni tude in probability.  The 

next l emma considers the closeness of 0 to 0 and is a consequence of 
Theorem 4.1. 

LEMMA 4.3. Suppose  that the definit ions and assumpt ions  o f  this 
section are in force  and that 2 0 and nm-'~2 ~ ~ as n -- ~ .  Then, f o r  all 
sufficiently small  ~ > O, as n -- ~ ,  

II0 - 011~ = Oe[;-c/2m(n -l}t-Um + )L(2P-1)/2rn)] • 

The result follows by identical calculations as in the proof  of Lemma  
7.1 of Silverman (1982). The details are straightforward and therefore 
omitted. 

It is now possible to state our main consistency result for the maxi- 
m u m  penalized likelihood est imator 0 of the true log intensity function 00. 

THEOREM 4.2. Suppose that assumptions o f  Section 3 hold  and that 
the smoo th ing  parameter  2 sat is f ies , for some 6 > O, 2 ~ 0 and nm-~2 ~ oo as 
n ~ ~ .  Then 0 is uni formly consistent as an est imator o f  Oo, and in addition, 
for all e > 0 sufficiently small, as n ~ oo, 

II0 - 0011~ = o ~ [ x  ~/2m(n 11~ 1/m ~_ ~(2p-1)/2m)]. 

PROOF. The proof  is obtained by combining the relevant part  of 
Theorem 4.1 with Lemma 4.2. Indeed, 

(4.9) II0 - 0o112 ~ 2 1 1 1 ~ -  00ILL + I{0 - 0 { l ~ ] ,  

and by the aforementioned results, it is the I I 0 -  0o I I ~ part of the right-hand 
side of (4.9) which dominates,  the other term being negligible. [] 

We will end this section by describing briefly a possible approach to be 
employed for the numerical  evaluation of the M P L E  estimators.  It seems 
reasonable to restrict ourselves to fixed-step size Newton-like schemes, one 
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reason being that these methods can be meshed with existing software. 
The maximum penalized likelihood equation for 4 is dAn,n(@ = 0. Let 

H,,?.(8) be the Hessian of A,,n at 8. Observe that d&n(B) E O* = 0 and 
that, for every 0 in 0, H,.n(B) is a bounded linear operator from 0 into 0. 
A Newton-like method for converging to fi is to start with an initial value 
t9(‘) and iteratively determine 19~~) by 

@+l) = J(k) - [G,,n(e’k’)]-‘dA,,d(B(k)) . 

Possible choices for G,J(@ are G,,a(@) = E&n(B) (Newton-Raphson method) 
or G,,z(B) = E[&n(8)] (F’ h is er’s scoring technique). In our context one can 
easily check that 

For a numerical implementation it is necessary to evaluate LfAn,n(@ and 
[Gn,n(B)]-‘. F o owing the work of Cox and O’Sullivan (1985) it is possible 11 
to find for each 6’ in 0, eigenvectors spanning 0 such that (Gn,~(B)&, #j) = 
(1 + yi)Gv where 6e is Kronecker’s delta and 0 I yi I y2 I ..p are the associat- 
ed eigenvalues of 3, IV. Choosing W to be a differential operator, one then 
obtains the &‘s and yi’s as the eigensystem of an elliptic boundary value 
operator and one can proceed, at least theoretically, to the computation of 
(4.10). However, a proper numerical analysis of this problem is beyond the 
scope of this paper and further work needs to be done before we can get a 
good understanding of the issues and subtleties involved. 

5. Asymptotic normality 

In this section, the asymptotic normality of our modified penalized 
maximum likelihood estimator is derived. We shall rely on the theory of 
weak convergence of stochastic integrals with respect to a martingale and 
on a particular representation of the approximate estimator e”. 

We find it convenient to present first the following result (see, e.g., 
Rebolledo (1978)) proving that, under certain conditions, martingales 
converge to normal processes with independent increments. Consider a 
sequence {Nn, ~12 I} of counting processes on the interval [0, T] with a 
corresponding sequence of martingales given by 

M,(t) = N,(t) -JotAn( l E [O, T] ) 

where {/in, ~12 I> is the sequence of intensity processes. Let (H,, y2 P I} be a 
sequence of square integrable predictable processes, and define square 
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integrable martingales by 

~¢,(t) =f0 ~ H,(s)dM~(s),  t e [0, T ] .  

Since we are only interested in martingales associated with point processes, 
we do not quote Rebolledo's result (see Rebolledo (1978), Corollary 9) in 
its full generality. 

PROPOSITION 5.1. Suppose that 

f~) 2 ~ ~ 0  ~ r e > 0 ,  H£(s)I{IH2(s)l > e}A~(s)ds e`°' 

as n ~ ~ (we then say that M,  satisfies the strong asymptotic rarefaction o f  
jumps  property  o f  the second k ind ( S A R J 2 ) )  and that there exists a 
continuous funct ion F on [0, T], nondecreasing, with F(O) = O, such that 

(~¢n, &Cn)(t) =f0' H~(s)A,(s)ds p'"' F ( t ) ,  

as n ~ ~ and all t in [0, T]. Then, there exists a Gaussian process M with 
mean 0 and  covariance f u n c t i o n  F(min  (s, t)) on [0, T] 2, such that 
Mn ~ m in O ([0, T]) as n ~ ~ .  

We now reintroduce the sequences 0 and 0 of the previous section and 
we assume that, as n ~ ~ ,  2 ~ 0 and obeys the conditions stated in 
Theorems and Lemmas of Section 4. Under such conditions, 0 - 0  con- 
verges uniformly to 0 in probability as n ~ ~ .  Therefore, for any s in 
[0, T], 0(s) and O(s) will have the same asymptotic distribution, if such a 
distribution exists. To derive the result we will use the fact that 0 behaves 
as a kernel smoothing estimator with a particular kernel. 

More precisely, let, for each t in [0, T], Qt be the functional defined on 
O by 

~ fo T ~ foT02(S)OlO(S) Q,(O) = [o(m)(s)]2ds + ds - O(t) , 

~ L r where from now on we assume that [IHO II ~ = (o(rnJ(s))2ds. Since a0 and its 

first (m - 1) derivatives are bounded on [0, T], the functionals Qt have a 
unique minimizer in O, say K~(., t). Moreover,  for each 2 > 0, Q~(O) + O(t) 
defines a norm on O equivalent to its Sobolev norm. Therefore, as in Cox 
(1984), K~(., .) is the Green's function of a linear elliptic boundary value 
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problem and it is symmetric. In fact, {Ka(s, t); (s, t) e [0, T] 2} is the reproduc- 
ing kernel of  the R.K.H.S. O~, where O~ denotes the space O with the norm 
Qt(O) + O(t). It is straightforward to see that our approximating estimator 

for the log intensity function 00 is implicitly given, for all s in [0, T] by: 

(5.1) ~(s) = forK~(s, t)Oo(t)ao(t)dt - forK~(s, t)[ L( t )  - 1]ao(t)dt 

r L( t )  
+ fo K a ( s ' t ) ~ ( t )  dM"(t)" 

Our consistency result will follow from the particular structure of the 
kernel Ka. Let x* be the symmetric kernel function on ~ given for each 
x > 0 b y  

tc*(x) + I¢(x) = 2 '/2 exp ( - x~ V/2) cos ( x / x / ~ ) ,  

where ~c denotes the solution vanishing at + ~ and - ~ of 

(5.2) ( -- 1)mK (2ml + K = d ,  

with ~ denoting the Dirac delta function. Appealing to Theorem B, 
Proposition 2 and Remarks in Section 5 of Silverman (1984), there exists a 
kernel function Kc on ~,  depending on both x* and x, such that, for every 
t e [0, T] one has 

(5.3) sup 1~l/2mao(t)-l/2raKa(l + ~l/2muo(t)-l/2mx, l) Kc(X) I 
x~ ~,(~o) do(t) 

<_ c{21/2" + exp [ - 2-1/2mao(t)l/2m2 -v'~ min (t, T -  t)]}, 

the constant c depending only on ao, where I,(ao) is the interval given by 

L(ao) = [ - t2-1/2"~Cto(t) '/2m, ( T -  t)2-l/2mtl.o(l)l/2m]. 

We can now state the main result of this section. 

THEOREM 5.1. Let O, 0 be as defined in Section 4 and let Assump-  
tions A and B o f  Section 3 be in force. Assume also, that, as n ~ oo, 2 ~ 0 
and for  some ~ > O, nl2/31m-6)t --* oo. Then, for  each t in [0, T], n1/221/4'n(O(t) - 
Oo(t)) converges in distribution to a normal random variable with mean 
zero and variance 

 (t)oo(t) 
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PROOF. By Lemma 4.2, for every e > 0 sufficiently small, we have, as 

IlO- 011~ = Op[2-c/2m( n 12-1/m ~- 2(2p-lj/2m)] . 

Hence, for all t ~ [0, T] and as n -- oo, 

V / n 2 1 / 4 m ( O ( t )  -- O ( l ) )  = O e [ 2 - ~ / 2 m ( n  - 1/22-3/4m -~- 2 (4p- ll/4rn)] , 

Since r/I2/3)m-~2 --~ oc as n ~ oo, for e sufficiently s m a l l  n~/221/4m(o(1)  - O ( l ) )  

converges to 0 in probability as n ~ ~ .  Therefore, n~/221/4"(O(t) - Oo(t)) and 
n~/22~/4'~(O(t) - Oo(t)) will have the same asymptotic distribution. 

By L e m m a  4.2 and the rate  at which  2--" 0, it is c lear  tha t  
n ~ / 2 2 1 / 4 m ( E [ O ( t ) ] -  Oo(t))~ 0 as n ~ oo. Thus, n l / 2 2 1 / n m ( o ( t ) -  E[0(t)])  will 
have the same asymptot ic  distr ibution as n~/22'/4m(O(t)- Oo(t)). Using 
expression (5.3), the random part of n~/22~/4"(O(t) - E[0(t)]) is given by 

T 1/4m L ( t )  
(5.4) f~ x/n2 K~(s , t )~ ( t )dM~( t ) ,  s~ [0, T ] .  

Set Hn(t) = W~21/4mg2(s, t)(~(t)/Yn(t)) with s fixed in [0, T]. Since K~(s, t) 
is continuous in t, {H,} defines a sequence of predictable processes. In 
order to prove our result, it remains to check the conditions of Proposition 
5.1 above. We have, for every e > 0, 

Z(t) 

{ l/4m --=--,x/nn~(t) } = n2 IK~(s,t)l r n ( t ) > e v  

Let Vn be defined by 

( S -  t)ao(t) I/2m ] 2_1/2m L ( t )  
Vn(t) =/],1/4,,. x 21/2 m • • ao(t) l/2m-l" n ~',(t) " 

By the uniform approximation (5.3) and its rate with respect to 2, I{t Hn(t)[ 
> e} and I{] Vn(t)[ > ~n 1/2} have the same asymptotic behavior. Now, xc is 
uniformly bounded in ~ and a0 is logarithmically uniformly bounded on 
[0, T]. By Assumption B(iii), nJn] / l  converges uniformly in probability 
towards a continuous function bounded on [0, T]. Hence, I{1V.(t)[ > 
en 1/2} ~ 0 uniformly on [0, T], since H1/22 l/4m ~ oo as n -- ~ .  By definition 
of H~, 
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T 2 
fo H,; (s)I{ I Hn (s) l > e} Y. (s) ao (s) ds - 7  0 ,  

as n --- ~ and the SARJ2  is satisfied. Again, by (5.3), one has: 

(5.5) forH~(t)An(t)dt ( T  11/2m r~-2,_ L ( I )  
=J0 eta /~a ~a, t) - ~  ao(t)dt 

= f T t ~  1/2m K2[( S -- t) ;- l/2m (~0 (1)1/2m] 
• " 0 t]l/mao(i )- 1/m(l,o(t)2 

" L(t) 
+ Oe(al/")f ° n ~ ( t )  ao(t)dt. 

L(t) 
 o(0 dt 

The last term on the r ight-hand side of (5.5) converges to 0 in probability, 
since 2 ~ 0 as n -~  ~ ;  therefore expression (5.5) has the same limit in 
probability as 

fo 
T~ - 1/2m K2[( S -- t)~-l/2m ao(1)l/2m] 

CtO(1)- I/m flo( t) 2 
L(t) 

n ~ ( t  ) dt. 

This last expression, by a change of variables, is equal to 

(5.6) 
K [uao(s- u; ) ] f(~-r); ..... n L ( s -  /,//]l/2m) 2 1/2m 1/2rn 

as 2 .... ~n(S : ~ O[O('----S -~ Ig"-~ ,/2re)l-1/--""~ ri l l .  

Since nJn Yn' converges uniformly in probability on [0, T] and the limit is a 
2 cont inuous  function,  and since xc and ao l÷l/m are uniformly cont inuous  

and bounded  on [0, T], expression (5.6) converges, as n - ,  ~ ,  to 

ao(s) Xc[Uao(s) ] d u -  ao(S),_,/2m _ . 

Now, Theorem 5.1 follows f rom Proposi t ion 5.1. [] 

Remarks. 
1. By using a multivariate extension of Rebolledo's theorem, given in 

Appendix  I of the paper  by Andersen and Gill (1982), and the Cramer- 
Wold device, it is not difficult to see that  the finite-dimensional distribu- 
tions of {0(s), s e [0, T]} are asymptotically multivariate Gaussian. 

2. Some rates of uniform consistency have been obtained by Ramlau-  
Hansen (1983) for the kernel est imator of the unknown  intensity; though 
his results are for different estimators than ours, they appear to be weaker 
insofar as a compar ison is possible (see Ramlau-Hansen  (1983), Theorem 
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4.1.3 and the rates given in the proof of Theorem 5.1 above). 

6. Examples 

This section describes some typical statistical models for which the 
penalized likelihood procedure of the previous sections can be applied. 

Example  6.1. (Hazard rate for a random censored i.i.d, sample) In 
statistical analysis of survival data (or failure time data) from a homo- 
geneous population, one is interested in estimating the death intensity (or 
force of mortality, or hazard function). Nonparametric estimation about 
hazard rates has been studied by several authors. For recent references, see 
for example Jacobsen (1982), Yandell (1983), Tanner and Wong (1983) and 
Ramlau-Hansen (1983), where kernel estimators are defined, extending the 
results of Rice and Rosenblatt  (1976) for kernel estimators in the absence 
of censoring. 

Consider the analysis of a sample of n individuals. The individuals 
under study may consist of patients at a given hospital suffering from some 
lethal disease. Let XI, X2,..., Xn denote nonnegative independent, identical- 
ly distributed random lifetimes (times to failure) for the n individuals under 
study, and independent of the Xi's, let C1, C2,..., Cn be the corresponding 
censoring times. In this kind of data collection, right censoring is inevitable, 
since in practice one cannot continue the data collection until all individuals 
are observed to die. Censoring may also occur because some individuals 
are lost from followup. Suppose that the distribution function F of the Xi's 
is absolutely continuous with corresponding density f and that H, the 
continuous distribution function of the C?s, are such that F ( T ) <  1 and 
H ( T - )  < 1. The observed random variables consist of i.i.d, triples (Z~, ~;, Y,.) 
where Zi = min (Xg, Ci) is the observable portion of the i-th individual's 
lifetime, Oi = l~x,~_ c,) and Y; is defined by Y-(t)= l~z,>,). Now let Ni(t) denote 
the indicator function of an uncensored failure for individual i prior to 
time t: 

Ni(t) = I(z,<_t,6~-,) , 

and suppose that the hazard rate function Cto(X)= ( 1 -  F ( x ) ) - l f ( x )  is a 
continuous "smooth" function, in the sense that it belongs to a Sobolev 
space of order m (m _> 2). Hence, no two component  processes will jump, 
with probability one, at the same time. The number of failures at time t or 
earlier is given by 
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and has a stochastic intensity process 

Am(t) = ? . ( t ) ao (O ,  

where 

n 

~ ( t )  = i~=ll{Xi>_t, Ci>_,) = I n  - -  ) g n ( / - ) ]  + 

denotes the number  of individuals alive just before time t (risk set size at 
time t-). Note that Yn(t) is binomially distributed with parameters n and 
[(1 - F(t))(l  - H(t-))] (Aalen (1975), Lemma 4.2). Thus, j , ( t )  = E(J~(t)) = 
1 - [(1 - F(t))(1 - H(t-))]" andj~ converges uniformly to 1 on [0, T] at an 
exponential  rate as n - - - ~ .  Thus, Assumption B(i) of Section 3 holds. 
Moreover,  since 

( Is: ]} 0 <  ( l - H ( s - ) ) e x p  - ao(u)du < 1 ,  

by the Glivenko-Cantelli theorem, we have 

n L ( t ) / • ( t )  --  [(I - H(t-))(1 - F(t))] -1 , 

uniformly in probability on [0, T], and Assumption B(iii) is satisfied. It is 
also straightforward to see that, 

n E [ ~ ( t ) / Y n ( t ) ]  ~ [(1 - H(t-))(l  - F(t))] -1 , 

as n --, 0% thus, for n sufficiently large, Assumption B(ii) also holds. 
The choice of the degree m of smoothness of a0 is generally dictated by 

one's prior knowledge of the properties of the hazard function, or by the 
use one will make of the estimate. With the penalty functional 

T 2 
J(a)  =fo [a(u)] du , 

all results of the previous sections apply. To apply our maximum penalized 
estimator in practice, one has to decide only upon a choice for the 
smoothing parameter  2, while the kernel function smoothing method 
requires not only a choice for the window size but also the choice of the 
kernel function. 

E x a m p l e  6.2. (Competing risks model) Apart  from the simple sur- 
vival model, the life history model that has been discussed most frequently 
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in the literature is the competing risks model, where more than one cause 
of death (failure) is considered. Formally, a competing risks model may be 
described as a time continuous Markov chain with one transient state 
labeled 0 and k absorbing states numbered from 1 to k (see, e.g., Aalen 
(1978)). Let Po~(S, t) be the probability that the process is in state i at time t 
given that it started at state 0 at time s. We assume that Pog(S,t) is 
absolutely continuous in both variables and that the intensities, or forces of 
transition, defined, for i = 1 ..... k, as 

ai(s) = lim - - - -  
I I s 

Poi(s, t) 

t - - S  

exist and are smooth functions. As mentioned before, if the Markov chain 
is observed during the time interval [0, T], then transitions from the state 0 
to any other state are observed in detail, while Poi(s, t) = 0 for every i ~ 0. 
The total force of transition to the set of states { 1,..., k} is denoted by 

k 

a(s )  = Y ai(s) . 
l 

We will assume that, the probability P00(0, T) of not leaving the state 
{0} dur ing  the t ime in terval  [0, T],  which  is given by P00(0, T ) =  

(So ) exp - a(u)du , is strictly positive. We also have, for i = l , . . . ,k  

Poi(O,t) = f~ ai(s) exp ( - foa(u)du ) ds . 

Consider n independent Markov chains of this kind, and assume that each 
process starts in state 0 at time 0. If we denote the sample paths of the 
individual processes by ~ ( ,  ), it follows that 

g/ 

N~(t) = J=Y~, I{Xj(t) = i i =  1,.. . ,k 

is the number of processes in state i at ume t. Then, each Nn is a counting 
process with corresponding intensity process 

3 ~ ( t )  = a~(t) r.(t),  

where 

Y~(t)  = n - N;, ( t - )  
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and 

k 
N ; , ( O  = E Ni ( t ) .  

i=1 

Fix a value of i. We havejn(s) = E(Jn(s))  = P ( Y , ( s )  > 0) = 1 - [1 - Po0(0, T)]". 
Thus, Assumption B(i) is satisfied. It is also easy to see that, as n goes to 
infinity and since P0o(0, s) > 0, 

t l  
J.(s) Jo(s) 1 
Y.(s) = [ 1  - Poo(O,s) " 

Hence, Assumptions B(ii) and B(iii) hold. If the same smoothness condi- 
tions as in the previous example are assumed for each of the a~'s, then each 
of the intensities is estimable by our MPLE procedure. 

7. General remarks 

Another approach to the estimation problem addressed in this work 
would be to extend to the point process setting the results of Klonias (1982, 
1984) for density and regression estimators. In these papers, the MPLE 
problem is studied with a "roughness" penalty imposed on the square root 
of the density rather than its logarithm, and numerically efficient methods 
are described. 

The computational issues of the penalized likelihood estimator have 
not been discussed in our work, even though this is an important and 
difficult numerical analysis problem. When the "sample" size is large, it is 
quite feasible to use the approximating kernel estimator K of Section 5 to 
obtain a good approximation of the MPL estimator. It seems that it may 
be possible to extend the results of Messer (1986), to provide detailed 
asymptotic expressions for comparison of the bias and eovariance func- 
tions of the two estimators. Another important problem is the design of 
efficient data-based methods for choosing the smoothing parameter,  
though it should be possible for techniques from other density estimation 
methods to be adapted for this. It is hoped that these questions will be 
investigated in a future work. 
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