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Abstract. This paper describes a procedure for testing the presence of a
pure feedback loop in a transfer function model for a multivariate
discrete dynamic stochastic system. A modification of the portmanteau
statistic based on sample cross-covariance matrices of the prewhitened
series is proposed. The statistic is shown to be asymptotically distributed
according to a y’-distribution with certain degrees of freedom under some
pure feedback assumptions. Some numerical results are given to show the
behavior of the proposed method.
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1. Introduction

Box and Jenkins (1976) proposed “transfer function model fitting” for
describing a dynamic relationship between the input and output of a
univariate system. They considered that the input and the noise are
characterized by scalar autoregressive integrated moving average (ARIMA)
models, and employed a three-step procedure (identification, estimation
and diagnostic checking) for model building. Tee and Wu (1972) used this
technique for investigating paper machine process data. Box and
MacGregor (1974), however, pointed out that Box and Jenkins’ “open-
loop” identification procedure was not adequate for this kind of a “closed-
loop” situation. Since the input was the stock gate opening controlled by
an experienced operator observing the paper weight output, they suggested
the use of a “pure” feedback closed-loop transfer function model, and also
proposed a simple procedure for detecting the presence of a feedback loop
in a system.

Besides the Box and Jenkins approach, several methods have been
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proposed for the analysis of multivariate input-output dynamic systems
operating in closed loops. Akaike (1971), Phadke and Wu (1974) and
Caines and Chan (1975) considered both the input and output processes
jointly as the output of a system driven by noise only. The identifiability
concerning this approach was extensively studied by Anderson and Gevers
(1982). This method is useful for a wide class of general closed-loop
systems. It is, however, sometimes too general to be used as a final model
for finite data, particularly when the number of observations is not large. It
is well known that the model should contain as few parameters as possible
for the best accuracy of parameter estimation. Therefore, in cases where we
have prior knowledge about a system and are confident that the system has
a pure feedback, a parsimonious pure feedback model should be employed
instead of other general models. We also note that the transfer function of
the pure feedback model is not identifiable by this method because of the
singularity of the noise process. Gustavsson et al. (1977) surveyed predic-
tion error estimation methods and some identifiability results. Recently,
techniques of analyzing linear systems using this method were explained in
detail by Ljung (1987). By this method, if the form of the transfer function
of a system is determined, parameters can be estimated regardless of
whether the data have been collected in an open or a closed loop. However,
some nonparametric methods, such as correlation analysis or spectral
analysis, are used for specifying the model form. The results of these
preliminary analyses should be carefully interpreted depending whether the
process is operated under an open or a closed loop.

In any method stated above, it is important to know whether a system
consists of an open or a closed loop, at least in the identification step, i.e.,
the stage to select tentative model forms. Caines and Chan (1975) gave a
procedure to test the null hypothesis of an open-loop model against the
alternative hypothesis of a general closed-loop model. In this paper, we
propose a statistic to test for the presence of the (subset) pure feedback in a
general closed-loop model by modifying the portmanteau statistic investi-
gated by Box and Pierce (1970) and Hosking (1980).

In the next section, we describe definitions of three types of dynamic
stochastic models and consider the difference among them. We also give
the form of a test statistic. In Section 3, the asymptotic distribution of the
statistic under the assumption of an autoregressive moving average
(ARMA) model is shown to be a y’-distribution with certain degrees of
freedom. A practical testing procedure and some comments on the usage
are given in Section 4. Section 5 contains an analysis of Tee and Wu’s
paper machine data and some simulation results.

2. Properties of models and definition of a test statistic

We are concerned with systems in which both the input {y,;} and the
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output {x,} are m-variate discrete stationary processes. Suppose that {x;} is
dynamicalily related to {y:} by a transfer function model

(2.1) X = H(B)yl + wy s

where {w,} is an m-variate random noise, the backward shift operator B is
such that By, = y,-1 and H(B)= Ho+ H:B+ H,B* + --- is an m X m transfer
function matrix describing the process characteristics. In general feedback
control cases, {y:} is also considered to be written by a transfer function
model

(2'2) yl = K(B)x, + Zy 5

where {z;} is an m-variate random noise and K(B) = Ko + KiB+ K:B* + -+
denotes an m x m transfer function matrix which characterizes the feedback
controller. We assume that noises {w,} and {z;} are stationary processes
generated from linear models

(2.3) wi = M(B)a:,
(2.4) z;= N(B)b.,

where {a;} and {b;} are mutually independent m-variate white noise se-
quences, M(B) = I, + MiB+ M;B* + --- and N(B) = I, + N\B+ N,B* + ---
are stationary linear filter matrices, and /. denotes an m X m identity
matrix. This general closed-loop model, in which both a feedback loop and
an input noise exist, is shown diagrammatically in Fig. 1, and has been
studied by several authors, for example, Akaike (1971), Phadke and Wu

a

M(B)

b =P N(B) H(B) P X

K(B)

Fig. 1. Closed-loop model.
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(1974), Caines and Chan (1975), Gustavsson et al. (1977) and Anderson
and Gevers (1982).

Box and Jenkins (1976) studied mainly the case where K(B) =0, i.e.,
the system which has no feedback loop. We define this model as an open-
loop model. On the other hand, where b, =0, ie., there is no added
“dither” noise, is adequate for describing “pure” feedback operating data
such as Tee and Wu’s paper machine data. This model is defined as a pure
feedback model. The open-loop model and the pure feedback model are
two extreme cases of the closed-loop model shown by Fig. 1.

We assume that I, — H(B)K(B) and I, — K(B)H(B) are invertible.
Then, the closed-loop model is expressed as

(2.5) xi = {In — H(B)K(B)Y "{M(B)a, + H(B)N(B)b,} ,
(2.6) yi={In— K(BYH(B)} '{K(B)M(B)a, + N(B)b.} .

Under very general conditions, a stationary process {x;} can be *“pre-
whitened” by an appropriate linear filter. We denote this prewhitened
sequence as {u:}. In other words, there exists a linear filter matrix P(B) =
In+ PiB+ P,B’ + - such that

Q.7 P(B)x.= u

where {u;} is an m-variate white noise sequence. Considering equations
(2.5) and (2.7), w is constructed by linear combinations of a,-x and b«
(k = 0). Similarly, {y;} can be prewhitened by a linear filter to a sequence
{u,}, and v, is also represented by other linear combinations of a,-x and b«
(k = 0). Therefore, the covariance matrix between u, and v,-x, which 1s
denoted by Cov [u, v,-«], is generally not equal to zero for k > 0. The open-
loop model also has the same property. The pure feedback model means
that N(B)b, = 0. Equations (2.5) and (2.6) then reduce to

(2.8) x. = {I, — H(B)K(B)} 'M(B)a,,
(2.9) yi={I.— K(B)H(B)} 'K(B)M(B)a, .

If we define the prewhitened sequences {u} and {v.} as above, both u; and v,
are apparently products of constant matrices and a.. Hence, for k=1,
Cov [us, v-x] = 0. These facts suggest that if estimates of Cov [u, v:-4]
(k=1) are near to zero, the pure feedback model is appropriate, and
otherwise, the closed-loop model or the open-loop model are adequate.

As the number of observations is finite, we usually use parsimonious
models such as an ARMA model or an autoregressive (AR) model for
prewhitening the data. Once the order of an ARMA or an AR model is
decided, parameters are estimated by the maximum likelihood method
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under the assumption of normality, or by the least squares method. Using
these estimated parameters, #; and &, which are estimates of u and v;, can
be calculated. Sample cross-covariance and covariance matrices are given
by

. | -
(2.10) Clk) = v l; -k
P A
(2.11) 2= N ,; i
and
. 1 ]ZV: o
(2.12) T=— Lo

Here, C(k) is an estimate of Cov [, v:-4].

As stated above, the hypothesis of the pure feedback model can be
checked by examining whether C(k) is near to zero or not for k> 1. In a
similar situation concerning univariate processes, Box and Jenkins (1976)
proposed a quality-control-chart-type of approach, and Box and Pierce
(1970) proposed the use of the “portmanteau” statistic. We employ the
latter approach for testing the pure feedback model. Considering the
multivariate portmanteau statistic introduced by Hosking (1980), we define
a statistic

(2.13) S = Néll Tr{CkyZ 'Ck)T™"},

where d is an adequately chosen integer and Tr C denotes the sum of the
diagonal elements of a square matrix C. Following the lines of McLeod
(1978), the asymptotic properties of this statistic are derived in the next
section under the assumption that the pure feedback model equations (2.8)
and (2.9) have stationary ARMA forms.

3. The asymptotic distribution of the test statistic

In this section, we deal with the case where the pure feedback model
equations (2.8) and (2.9) are reduced to ARMA models

(3.1) A(B)x: = B(B)Ua, ,
(3.2) E(B)v.= Z(B)Va,,
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P . q r s
where 4(B)= X A:B', B(B)= X B:B', E(B)= X E:B' and Z(B) = X 7B
with Ao = Bo = Eo = Zy = I,,, U and V are upper triangular regular matrices,
and {a,} is a mutually independent m-variate white noise sequence with
mean 0, covariance matrix I, and bounded fourth moments. We assume
that the orders p, ¢, r and s are known and all the roots of |A(z)| =0
|B(z)| =0, |E(2)] =0 and |Z(2)| = 0 lie outside the unit circle |z| =1, i.e.,
{x.} and {y,} are stationary and invertible processes. We also assume that
identifiability conditions such as rank {4, B,] = rank [E, Z]= m are satis-
fied; see Hannan (1969).

Suppose that the data {x., y,} are observed at r = 1,..., N. We define

(33) ut = X + /‘ile-»—l + o+ A.pxt*p - Bll:l[vl e — Bquz—q y

where A.,..., Ay, Bi,..., B, are arbitrary m x m matrices in the admissible

parameter space and u = xx =0 for kK <0. We can estimate parameters

Ai,...,Ap, Bi...., By, U by Ai,..., Ap, Bi,..., B;, U, which minimize the value
N

of log | 2| + (1/N) X2 "1z, where = UU’. These estimates are approx-
t=t p

imate maximum likelihood estimates if we assume the normality of {a:}.
The estimate 4, of Ua, is given by replacing A1,..., Ay, Bi,..., B, in (3.3) by
Ay,...,Ap, Bi,..., B,. Parameters Ei,..., E,. Zi,..., Zs and V are also estimated

N
by minimizing log | T + (I/N)Z)1 0,7 ', where T= V1,

(3.4) b=yt B+ o+ Eveer— Ziby 1 — -+ — Zshi-s

and bx = yx = 0 for k < 0. The estimate o, of Va, is similarly defined. Then
Cov [Ua,, Va,«] is estimated by (2.10).

We introduce some definitions and properties of Kronecker products
to express the results concisely. If C is an m x n matrix whose (i, j)-th
element is ¢;, vec C is defined by vec C = [Ci1,..., Cm1, €12, -5 Cm2ye -+, Clny. .., Cnn]'.
If Dis a pxgq matrix, C @ D denotes the mp x ng Kronecker product
whose (i, j)-th submatrix is ¢; D. If A, B and C are matrices such that the
matrix product ABC is defined, vec (4BC)=(C" K A) vec B can be
proved.

We investigate the asymptotlc distribution of &; = vec [C(l) -C(d)].
Let 6 = vec [Al Ay Bi--B;), A=vec[Ei-E, 2,---Z), E=16",17 and
ca, 4,0, 0, 2, 1, &, & are similarly defined. Using Taylor’s theorem and the
result that £ — &= 0, (l/\/‘) (Hosoya and Taniguchi (1982)), we can
obtain an approximate linear expansion of ¢4 as

9¢ 9
(3.5) a=ca+ aCd -0+ aZ‘f

d-b+o (5],
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where O, denotes order in probability; see Fuller (1976).

LEMMA 3.1. The terms 0éa/30’|é-: and 8éq/ A’ |é-: converge in proba-
bility to {I; ® (VU") @ 6.} X and 0, respectively, where X = [ X{X3--- Xi],

(3.6) =¥ ¥ ~ Q-1 - .QI-,],
(3.7) BB)Y'=1(B)=II, + I,B+ ILB* + -,
(3.8) A(BY'B(B)= ®(B)= Do+ & B+ DB + ---
(3.9) ¥i= .§O¢i'—j®17j,

=

and all the elements of IT;, ®; and ¥, are defined to zero for j < 0.

PROOF. Let d=vec[A4---Ap), f = vec [Bi-- By] and ¢(k) = vec C(k).
We can write

[ 9¢(1)  de() ]
_ da'  8p’

(3.10) Ll |
de(d) de(d)

LT

and one of submatrices is written as
(3.11)

for k = 1,..., d. After some calculations, we have

du, 2

(3.12) = Xty i 1@ T

Therefore, we obtain

d¢(k)

313) =2

glv, k®[§[xx 1-j° x,p,]®17}

e
e
2]»—‘

1 XN
PN N;[)t k®X1pJ]®IJ}.

I
\|M8

Using the equation x;-5-; chu, -n-j-1, WE have
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N )

i 1 X

(3.14)

Since it is easily verified that u, = w|é-¢ and v, = 0,|i-. have the same
asymptotic properties as Ua, and Va,, respectively, we have

| R 1
(3.19) "thll),fkufzékVU'*f' Op(—\/—]v),
where
I, k=0,
(3.16) Ok = .
0, otherwise.

Thus, we obtain

(3.17)

(9' k oo
—;t(i’—) b= BV Py VU P ) @ M+ Op(

%‘t

—VU) @ Ind[Fher - P ] + O, (ﬁ) .

Note that @, and I7, decay exponentially to zero as £ goes to infinity.
Following a similar argument, we obtain

de(k)

(3.18) o =AU Q@ Ind = In @ i1+ = In & Tlk-4)
8,3 &=¢

1
+ Op ( \/’N‘ ) .
These results show that dé(k)/98’|¢-: converges in probability to

{(VUYR W1 Py —In @ Ik-1- — In @ Ik 4]
={VU) R I} X .

d¢(k)/9A’|:-¢ is shown to converge to 0 in the same way.
LEMMA 3.2. Asymptotically,
(3.19) VN@-6)=F'w,

where
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< -1
(3.20) F=LX/TQENX,

Xj is as Lemma 3.1, and

1 ¥ dw

(3.21) w= *thl )

-1
) Z U;
0=8

are asymptotically distributed with mean 0 and covariance matrix F.

PROOF. Estimates § and U must satisfy the equations

1 N o ., B
(3.22) S =0
and

TIT _— 1 X A Ay
(323) UU = Z = N tgl uu; ,

from their definitions. As it is verified that 2= X + Op(1 /\/]7 ) (Hosoya
and Taniguchi (1982)), we have

(3.24) VN@-9)

by expanding (3.22).
N
We can show that (1/N)tgla{(au;/aé)xlu,}/aaqg:o converges to F.
The (i, j)-th element of 3{(du/90) ™'}/ 30" is written as (341 96,06) % ', +
(91/36)) X '(9u:/96;), where 6 denotes the i-th element of 6. From the

proof of Lemma 3.1, elements of 8%/ 36;d0; are written by linear combina-
tions of x;-; and ;- for j > 1. Hence, summing over ¢ and dividing by N,
N

we have asympto}t\jcally that the (i, j)-th element of (1/N) E.l 3{(0u:/ 90X " "u}/
36’|o-0is (1/N) z 91/ 30X "' (d1,/ 3 |4-6. Also from the proof of Lemma

3.1, we have
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I ¥ dur __, duy
285 — ¥ =3 .
(3 5) N =1 89 2 39’ o=b
1 N 0 ’
- F tgl (}g(\[xll‘] Xiopo) Uimi=jee = Uisg j] ® 17])
R Z_l (lgo[xl,"lvl”.xt,‘Pl — u;—lfl”' — u;_qu] ®Hl)

A L S I B LI 7 Ay } ® UI'E ') .
After some algebra, this expression is shown to converge to

(3.26) Z[sﬂ,l Yp Q@1 — I Q@IL-JER L
AF Wy @I~ @ T

“IXCE®I X -

Considering the equation

3.27 S % QU] o
(3.27) \/— = 96 oo u,
[ Xi-1-j ] \
1 N i xt—. -7 _
=-——=2X(2X o /AP
\/IV =11 720 _ul—lvj ® -7 U; ,
— Ui-gq-j |

the asymptotic normality of this term is proved by an argument similar to
that of the proof of central limit theorem for m-dependent random
variables (see Fuller (1976)), but details are omitted here. We note that the
expectation of this term is 0 and the covariance matrix is shown to be
equal to F similar to the above calculations.

From Lemmas 3.1 and 3.2, we have asymptotically

1

w
(3.28) ba=[LQ@VU)Q I}XF™ ' I VN

Cdq
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LEMMA 3.3. The joint asymptotic distribution of[ \/]%C ] is normal
d

with mean 0 and covariance matrix

F - XML WUV I} ]
LR VU)Q IX LRTRZ ’

where F and X are as in Lemmas 3.1 and 3.2.

PROOF. The asymptotic normality of cs was essentially shown by
Chitturi (1976). Considering the relation

[ Xe-1-j 1
- xt"p-j , -1
_.I';O — Ui-1-j ® I]j 2
w 1 § J
(3.29) =—= : Ui,
VN ¢ VN L _ . '
[ V-1
& Im
L Ur-d J

we can calculate the covariance matrix of this random vector after some
similar algebra as given above.

THEOREM 3.1. The statistics S defined by (2.13) is asymptotically
distributed according to a y’-distribution with m*(d — p — q) degrees of
freedom for sufficiently large d.

PROOF. Lemma 3.3 and (3.28) show that VN &4 is asymptotically
normally dlstrlbuted with mean 0 and covariance matrlx LRV U
(Iwa— YF'Y) L ® V' @ U’) where Y (LQ U’ ® U ")X. We assume

that d is sufficiently large so that F= Z X/(Z & Z )X, is approximated
by 2 X/(ZQ ZHX;= Y'Y. Then f(ld® V' ® U™ ")é,is asymptotical-

ly normally distributed with mean 0 and covariance matrix Ina—
Y(Y'Y) 'Y’ Considering that I,za— Y(Y'Y) 'Y’ is a symmetric idempotent
matrix with rank m’*(d — p — q), the asymptotic distribution of

(3:30) (VNI V' QU HeYIVNLQ V' Q@ U )ed
LR T 'R E Heu= Né] Tr {C(kyZ ' C(k)T ™"}
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is a y*-distribution with m’(d - p — q) degrees of freedom. X and T can be
replaced by £ and T without changing the asymptotic distribution.

Note that the degrees of freedom of the y’-distribution do not depend
on r and s, which are the ARMA orders of the input {y}.

4. Practical procedure and some remarks

The results of Section 3 are directly applicable to testing for the
presence of pure feedback if data are known to be generated from ARMA
models. However, we rarely have such information about a process. Most
real data are considered to be generated from general linear stationary
processes, which are represented by infinite order AR models. We also
know that the identification and the estimation of multivariate ARMA or
MA models require complicated calculations. For these reasons, appro-
priate finite order AR models may be used for approximating real
processes.

Once AR models are assumed, we can use some order selection
criteria, for example, the FPE criterion (Akaike (1971)) or the AIC
criterion (Akaike (1973)). If we consider the estimated order of a model to
be the true order, we can use the results of the above theorem. Therefore,
the test for the presence of a pure feedback loop in process dynamics may
be achieved by the following procedure:

1. For each sequence of the m-variate observed input {y:} and output
{x.}, fit an AR model by the FPE (or AIC, etc.) criterion. We denote the
estimated autoregressive order of {x;} as p.

2. Using the fitted AR models, prewhiten the input and output
sequences.

3. Calculate the statistic S using sample cross-covariance matrices of
prewhitened series. We choose the value of d appropriately.

4. Compare the value of S with a significance point (5% or 1%, say)
of a y’-distribution with m’(d — p) degrees of freedom. If the value of S is
greater than the significance point, we can conclude that a pure feedback
model is inappropriate. Otherwise, the model is not inappropriate.

In some environments including many process control cases whose
feedback controller is integrating, the input and/or the output are not
stationary but homogeneous nonstationary; i.e., some suitable differences
of the data are stationary. Then we should use {(1 — B)*y} and {(1 — B)*x.},
instead of the original {y:} and {x.}, for the above procedure. Here, non-
negative integers d, and d; may be determined in order to make all the
elements of {(1 — B)“y,} and {(1 — B)“x.} stationary, following the method-
ology proposed by Box and Jenkins (1976).

Our procedure is also applicable to testing a subset of pure feedback
loops in a general closed-loop model. Let the input {y.} and the output {x,}
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be stationary and partitioned into subvectors such as x, = [x{, x%;]" and
¥ =1, ¥4, where dimensions of x;; and y are identical, say, r. The
hypothesis of pure feedback from {x»} to {y»} is given by equations (2.1)
and

Y Kiu(B) Ki(B) X1 2y
(4.1) = + ;

Yu 0 K> (B) X2 0
where K;:(B) is an r X r transfer function matrix and the dimension of {z1,}
is as same as that of {y);}. Note that (4.1) is a restricted version of the

closed-loop model (2.2). The hypothesis of subset pure feedback can be
tested by applying the above procedure to the input {y;} and the output

{xzz}.

5. Numerical results

We first analyzed Tee and Wu’s paper machine data. Their data
consist of 160 observations on the stock gate opening {y.} and the paper
weight deviation {x;}. We used the FPE criterion with maximum autoregres-
sive order 10. For the (mean deleted) input {y,}, the AR(1) model

(5.1) (1-0.895B)y: = v,

was selected. The output {x,} was decided to be a white noise sequence.
Setting d = 30, the value of S is 38.94. As this value is less than the 5%
significance point of the y’-distribution with degrees of freedom 30
(=30 - 0), we can conclude that the pure feedback model is not inappro-
priate for this data.

Some simulation experiments were done to see the behavior of the
proposed statistic. We considered the closed-loop model defined by

04B 1+08B 0.12B 0.4+0.28
1-07B —02B T'[ 1+09B 0.7B

+[ ~ 03B 1—0.63] [ 0 1—0.83]“’

1-068 03B 1'[02-0168B —0.1B

~06B 1-0.7B ] [ 0.048  0.2-0.14B ]

+vb, ,

1+07B —-02B 1'104-024B —-0.16B
(52) Xt = }y

5.3 w= [

where {a,} and {b;} were normally distributed with mean 0 and covariance
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matrix ». The stationary nature of processes can be easily verified. For
some values of v, observations of length 200 were generated for 100
replications. For each replication, § and its degrees of freedom were
calculated for d = 30 using the FPE criterion with maximum autoregressive
order 10. The results are summarized in Table I.

Table 1. Results of simulation.
S D.F. Number
N
Mean Variance Mean Variance 5% 1%
0 98.13 285.35 103.24 36.43 4 2
0.2 108.01 204.42 103.60 34.42 8 1

0.4 117.84 234.20 103.04 24.93 27 6
0.6 124.90 213.33 102.44 33.58 39 19
0.8 130.63 19533 102.20 34.06 63 27
1.0 13517 198.45 101.96 34.10 74 40
2.0 147.22 196.08 103.48 17.67 94 65

First column of Table 1 shows the value of v. The sample mean of
values of S and their sample variance are given in the second and third
columns. The sample mean of values of degrees of freedom and their
sample variance were given in the fourth and fifth columns. The last two
columns show the numbers of § whose values were greater than 5% or 1%
significance points of the y’-distributions with corresponding degrees of
freedom. In the case of v = 0, the process follows a pure feedback model.
Simulation results show that the asymptotic result described in Section 3
holds well in this case. As the value of v becomes large, the hypothesis of
pure feedback tends to be rejected. These results show an example of the
effect of feedback noise {z:} on the test procedure.

The same experiments were carried out for an open-loop model
written by (5.2) and

1-088 03B 71!'[1-07B 0
(5.4) Y=

-03B 1-0.7B —-0.5B 1-08B

The sample mean of values of S and their sample variance were 152.23 and
279.47 and the sample mean of values of degrees of freedom and their
sample variance were 101.40 and 30.51. The numbers of S which were
greater than 5% and 1% significance points of x’-distribution were 98 and
82. We can see that there is little possibility of wrongly accepting the
hypothesis of a pure feedback model for this open-loop model.
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