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Abstract. This paper describes a procedure for testing the presence of a 
pure feedback loop in a transfer function model for a multivariate 
discrete dynamic stochastic system. A modification of the portmanteau 
statistic based on sample cross-covariance matrices of the prewhitened 
series is proposed. The statistic is shown to be asymptotically distributed 
according to a zZ-distribution with certain degrees of freedom under some 
pure feedback assumptions. Some numerical results are given to show the 
behavior of the proposed method. 
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1. Introduction 

Box and Jenkins (1976) proposed "transfer function model fitting" for 
describing a dynamic relationship between the input and output of a 
univariate system. They considered that the input and the noise are 
characterized by scalar autoregressive integrated moving average (ARIMA) 
models, and employed a three-step procedure (identification, estimation 
and diagnostic checking) for model building. Tee and Wu (1972) used this 
t echnique  for invest igat ing paper  machine  process data.  Box and 
MacGregor (1974), however, pointed out that Box and Jenkins' "open- 
loop" identification procedure was not adequate for this kind of a "closed- 
loop" situation. Since the input was the stock gate opening controlled by 
an experienced operator observing the paper weight output,  they suggested 
the use of a "pure" feedback closed-loop transfer function model, and also 
proposed a simple procedure for detecting the presence of a feedback loop 
in a system. 

Besides the Box and Jenkins approach, several methods have been 
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proposed for the analysis of multivariate input-output dynamic systems 
operating in closed loops. Akaike (1971), Phadke and Wu (1974) and 
Caines and Chan (1975) considered both the input and output processes 
jointly as the output of a system driven by noise only. The identifiability 
concerning this approach was extensively studied by Anderson and Gevers 
(1982). This method is useful for a wide class of general closed-loop 
systems. It is, however, sometimes too general to be used as a final model 
for finite data, particularly when the number of observations is not large. It 
is well known that the model should contain as few parameters as possible 
for the best accuracy of parameter estimation. Therefore, in cases where we 
have prior knowledge about a system and are confident that the system has 
a pure feedback, a parsimonious pure feedback model should be employed 
instead of other general models. We also note that the transfer function of 
the pure feedback model is not identifiable by this method because of the 
singularity of the noise process. Gustavsson et aL (1977) surveyed predic- 
tion error estimation methods and some identifiability results. Recently, 
techniques of analyzing linear systems using this method were explained in 
detail by Ljung (1987). By this method, if the form of the transfer function 
of a system is determined, parameters can be estimated regardless of 
whether the data have been collected in an open or a closed loop. However, 
some nonparametric methods, such as correlation analysis or spectral 
analysis, are used for specifying the model form. The results of these 
preliminary analyses should be carefully interpreted depending whether the 
process is operated under an open or a closed loop. 

In any method stated above, it is important to know whether a system 
consists of an open or a closed loop, at least in the identification step, i.e., 
the stage to select tentative model forms. Caines and Chan (1975) gave a 
procedure to test the null hypothesis of an open-loop model against the 
alternative hypothesis of a general closed-loop model. In this paper, we 
propose a statistic to test for the presence of the (subset) pure feedback in a 
general closed-loop model by modifying the portmanteau statistic investi- 
gated by Box and Pierce (1970) and Hosking (1980). 

In the next section, we describe definitions of three types of dynamic 
stochastic models and consider the difference among them. We also give 
the form of a test statistic. In Section 3, the asymptotic distribution of the 
statistic under the assumpt ion of an autoregressive moving average 
(ARMA) model is shown to be a z2-distribution with certain degrees of 
freedom. A practical testing procedure and some comments on the usage 
are given in Section 4. Section 5 contains an analysis of Tee and Wu's 
paper machine data and some simulation results. 

2. Properties of models and definition of a test statistic 

We are concerned with systems in which both the input {yl} and the 
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outpu t  {xt} are m-variate discrete stat ionary processes. Suppose  that  {x~} is 
dynamically related to {yt} by a transfer function model  

(2.1) x, = H ( B ) y t  + wt , 

where {w,} is an m-variate r andom noise, the backward shift operator  B is 
such that B y t  = yt - I  and H ( B )  = Ho + H~B + H2B 2 + ... is an m × m transfer 
funct ion matr ix  describing the process characteristics. In general feedback 
control  cases, {y~} is also considered to be written by a transfer funct ion 
model  

(2.2) Yt = K ( B ) x ~  + z~, 

where {zz} is an m-variate r a n d o m  noise and K ( B )  = Ko + K1B + K2B 2 + ... 

denotes an m × m transfer function matrix which characterizes the feedback 
controller.  We assume that  noises {wt} and {zt} are stationary processes 
generated f rom linear models 

(2.3) wt = M ( B ) a t ,  

(2.4) z, = N ( B ) b , ,  

where {at} and {bt} are mutual ly independent  m-variate white noise se- 
quences, M ( B )  = In + M ~ B  + M 2 B  2 + "'" and N ( B )  = In + N I B  + N2B 2 + ... 

are stationary linear filter matrices, and In denotes an m × m identity 
matrix.  This general closed-loop model,  in which both a feedback loop and 
an input  noise exist, is shown diagrammatical ly in Fig. 1, and has been 
studied by several authors,  for example,  Akaike (1971), Phadke  and Wu 

at 

+ 

+ Wt 

Fig. 1. Closed-loop model. 
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(1974), Caines and Chan (1975), Gustavsson et  al. (1977) and Anderson 
and Gevers (1982). 

Box and Jenkins (1976) studied mainly the case where K ( B )  = 0, i.e., 
the system which has no feedback loop. We define this model as an open- 
loop model. On the other hand, where b~ = 0, i.e., there is no added 
"dither" noise, is adequate for describing "pure" feedback operating data  
such as Tee and Wu's paper machine data. This model is defined as a pure 
feedback model. The open-loop model and the pure feedback model are 
two extreme cases of the closed-loop model shown by Fig. 1. 

We assume that I m -  H ( B ) K ( B )  and I m -  K ( B ) H ( B )  are invertible. 
Then, the closed-loop model is expressed as 

(2.5) 

(2.6) 

xt = {Im -- H ( B ) K ( B ) } - ' { M ( B ) a t  + H ( B ) N ( B ) b , }  , 

yt  = {Ira - K ( B ) H ( B ) } - I { K ( B ) M ( B ) a t  + N ( B ) b , }  . 

Under very general conditions, a stationary process {xt} can be "pre- 
whitened" by an appropriate linear filter. We denote this prewhitened 
sequence as {ut}. In other words, there exists a linear filter matrix P ( B )  = 

Im + P1B + P2B 2 + "'" such that 

(2.7) P ( B ) x ~  = ut , 

where {ut} is an m-variate white noise sequence. Considering equations 
(2.5) and (2.7), ut is constructed by linear combinations of at-k and bt-k 
(k _> 0). Similarly, {yt} can be prewhitened by a linear filter to a sequence 
{vt}, and vt is also represented by other linear combinations of a,-k and bt-k 
(k_> 0). Therefore, the covariance matrix between ut and or-k, which is 
denoted by Coy [ut, or-k], is generally not equal to zero for k _> 0. The open- 
loop model also has the same property. The pure feedback model means 
that N ( B ) b ,  -- 0. Equations (2.5) and (2.6) then reduce to 

(2.8) 

(2.9) 

xt = {Ira - H ( B ) K ( B ) } - ~ M ( B ) a t ,  

yt = {Im -- K ( B ) H ( B ) }  ' K ( B ) M ( B ) a t .  

If we define the prewhitened sequences {u,} and {0t} as above, both u, and ot 
are apparently products of constant matrices and at. Hence, for k >_ 1, 
Coy [ut, vt-k] = 0. These facts suggest that if estimates of Coy [Ut, Ot-k] 

(k_> l) are near to zero, the pure feedback model is appropriate,  and 
otherwise, the closed-loop model or the open-loop model are adequate. 

As the number  of observations is finite, we usually use parsimonious 
models such as an A R M A  model or an autoregressive (AR) model for 
prewhitening the data. Once the order of an A R M A  or an AR model is 
decided, parameters are estimated by the maximum likelihood method 
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under the assumption of normality, or by the least squares method. Using 
these estimated parameters, fit and 6, which are estimates of u, and v,, can 
be calculated. Sample cross-covariance and covariance matrices are given 
by 

1 N 
(2. lO) (~(k) = ~ ,=,Y~ u t o ,  ~ ~ ' -  k, 

N 1 ,_Zi 6,hf, 
(2.11) Z = ~  

and 

N 
1 E 6fi; ( 2 . 1 2 )  f '= . 

Here, C(k) is an estimate of Cov [u,, o,-k]. 
As stated above, the hypothesis of the pure feedback model can be 

checked by examining whether C(k) is near to zero or not for k _> 1. In a 
similar situation concerning univariate processes, Box and Jenkins (1976) 
proposed a quality-control-chart-type of approach, and Box and Pierce 
(1970) proposed the use of the "portmanteau" statistic. We employ the 
latter approach for testing the pure feedback model. Considering the 
multivariate portmanteau statistic introduced by Hosking (1980), we define 
a statistic 

d 
(2.13) S = N ~ Tr {(~(k)'2-'(~(k)T-1}, 

k=l 

where d is an adequately chosen integer and Tr C denotes the sum of the 
diagonal elements of a square matrix C. Following the lines of McLeod 
(1978), the asymptotic properties of this statistic are derived in the next 
section under the assumption that the pure feedback model equations (2.8) 
and (2.9) have stationary ARMA forms. 

3. The asymptotic distribution of the test statistic 

in this section, we deal with the case where the pure feedback model 
equations (2.8) and (2.9) are reduced to ARMA models 

(3.1) ,4 (B)x ,  = B(B)  Ua,, 

(3.2) E(B)y ,  = Z (B)  Vat, 
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P q 
where A ( B )  = F~ A,B',  B(B)  = E B~B', E(B) = ~ E~B' and Z(B)  = ~ Z,B' 

i=0 i=0 i=0 i=0 

with Ao = Bo = E0 = Zo = Im, U and V are upper triangular regular matrices, 
and {at} is a mutually independent m-variate white noise sequence with 
mean 0, covariance matrix I,~ and bounded fourth moments.  We assume 
that the orders p, q, r and s are known and all the roots of IA(z ) l  = 0, 
[B(z)l - 0 ,  [E(z)[ = 0 and I / ( z ) l  = 0 lie outside the unit circle [zl = 1, i.e., 
{xt} and {y~} are stationary and invertible processes. We also assume that 
identifiability conditions such as rank [Ap Bq] = rank [Er Z~] = m are satis- 
fied; see Hannan (1969). 

Suppose that the data {xt, yt} are observed at t -- 1,..., N. We define 

(3.3) l~lt = Xt ~- A l X t - 1  -~ "'" 4- ApXt p - glf~t-i . . . . .  Bql-tt-q , 

where A1 ..... /[p, BI , . . . ,  Bq are arbitrary m × m matrices in the admissible 
parameter space and zik = xk = 0 for k <_ 0. We can estimate parameters 
A~,..., Ap, B~ .... , Bq, U by A~ .... , As,/~1 .... ,/~q,/), which minimize the value 

N 
(1/N)ty~t. ,  "-1. of log [ZI + _- u~X u~ where X = U/.)'. These estimates are approx- 

imate maximum likelihood estimates if we assume the normality of {at}. 
The estimate t~t of Uat is given by replacing A~,..., As, [11,..., Bq in (3.3) by 
/{~ ..... ~[p,/?~ ..... /~q. Parameters E~ ..... E~, Z~ ..... Z~ and V are also estimated 

N 
by minimizing log t IPJ + (1 / N )  t~=l o ~ r - l o t ,  where T = I212', 

(3.4) 

and 0h = y~ = 0 for k _< 0. The estimate 5t of Vat is similarly defined. Then 
Cov [Ua, Vat k] is estimated by (2.10). 

We introduce some definitions and properties of Kronecker products  
to express the results concisely. If C is an m x n matrix whose ( i , j ) - th  
element is co, vec C is defined by vec C = [c1~,..., cm~, c~2,..., c,,2,..., Cl,,..., Cm,]'. 
If D is a p × q matrix, C @ D denotes the mp × nq Kronecker product  
whose ( i , j ) - th  submatrix is c~D. If A, B and C are matrices such that the 
matr ix p roduc t  A B C  is defined, vec ( A B C )  = (C' @ A)  vec B can be 
proved. 

We investigate the asymptotic distribution of Oa = vec [C(1)--. C(d)]. 
Let O : v e c [ A ~ . . . A s  B I ' " B q ] ,  ~ = v e c [ / ~ l ' " / ~ r  Z I " ' L ] ,  4 : [ 0 ' , ~ ' ] '  and 
ca, Od, 0, 0, 2, 2, ~, ( are similarly defined. Using Taylor's theorem and the 
result that ( - ~ =  Op(l / , , /~)  (Hosoya  and Taniguchi (1982)), we can 
obtain an approximate linear expansion of Od as 

(3.5) -O)+T2; - 2 ) + o s  , 
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where  Op denotes  o rde r  in p robabi l i ty ;  see Ful ler  (1976). 

LEMMA 3.1. The terms Ota/ O0'14=~ and Ota/ O)c'[~=¢ converge in proba- 
rX,  X ,  v,~, bility to { l a @  ( VU') @ Im}X and O, respectively, where X =  t 1 2 " " A a l ,  

(3.6) 

(3.7) 

(3.8) 

(3.9) 

Xj  " =  [ ~ j - l " "  ~ j - p  -- [m @ ~Ij-I  . . . .  I m @  1-Ij-q] , 

B(B)  -t = H ( B )  = Ho + I-liB + H2B 2 + . . .  , 

A(B)-LB(B)  = ~ ( B )  = ~o + qb~B + q)2B 2 + ... , 

j=O 

and all the elements o f  Hi, ~j and ~ are defined to zero for  j < O. 

PROOF. Let  0 = vec [At ...Ap],/q = vec [B1...Bq] and  d(k) = vec d'(k).  

We  can  write 

Ota 
(3.10) O0' = 

aa(1) at(l)  
aa' Off' 

OS(d) at(d)  

0~t' 0fi '  

and  one of  submat r i ces  is wr i t ten  as 

(3.11) Or(k)_ 1 ~i),-k@ Of~t 
Oa' N t=t O~t' ' 

for  k = 1,... ,  d. Af ter  s o m e  calcula t ions ,  we have  

oo 

(3.12) - j~[x;-t:u -j.. .  x't-p-j] @ l'I;. 
0~t' 

There fo re ,  we ob ta in  

(3.13) Or(k) 
Oa'  - -  - N t~=lO'-k @ J: [x[-,-j '"x[-p-j] @ IIj 

, ' N ] 
: ,~t o,-k ® X o,-~ ® x;-~-j ® 

j :o  : N t:t  " 

o¢ 

Using  the e q u a t i o n  X,-h-j = ~_oqb~U,-h-j-~, we have  
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- -  ot-k @ X;-h-j = l=o t=i t-~Ut-h-j-I ~ [ .  (3.14) N t: 

Since it is easily verified that ut = ut]9~o and v,= Otl~:~ have the 
asymptotic properties as Uat and Vat, respectively, we have 

( ')  L (3.15) N ,:l ' 

where 

3k = I 1, k = 0 ,  
(3. 16) 

[ 0, otherwise.  

Thus, we obtain 

(3.17) O~(k) =J :  aa' ~_o[VU'O~ ~-j... vu'g,L,~-d ® ~ + o,, 1 

= {(VU')  ® I , ,}[Ttk- , '"  TU~ p] + Op (--x~-N ) . 

Note that qbh and llh decay exponentially to zero as h goes to infinity. 
Following a similar argument, we obtain 

(3.18) O/q' = {( V U ' )  ® Im}[ - Im ® IIk-1 . . . .  Im ® l-Ik-q] 

These results show that OO(k)/00"1~=~ converges in probability to 

{(VU') @ Iml[hVk-, ... ~k-p - lm @ Hk-,  . . . .  lm ® IIk-q] 

= { ( v u ' )  ® 1m}X~. 

O~(k)/O)~']~ ~ is shown to converge to 0 in the same way. 

LEMMA 3.2. Asymptot ical ly ,  

(3.19) x/~(O - 0) = F - ' w ,  

where 

same 
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(3.20) 
c~ 

F=jZ= Xj'(Z (~ Z-')Xj , 

Xj is as Lemma 3.1, and 

(3.21) 1 N O~l~ t) 0 "~-lut  
W ~- - - ' - '~- t~=l  " ~  - 

are asymptotically distributed with mean 0 and covariance matrix F. 

PROOF. Estimates 0 and 0 must satisfy the equations 

(3.22) N t= 1 /3=/-J - -  u ,  = 0  

and 

(3.23) 
^~ 1 u 

= = Z~tfi~ u u '  £ - ; t= ' 

from their definitions. As it is verified that Z= Z+ Op(l/x/~) (Hosoya 
and Taniguchi (1982)), we have 

(3.24) 0) 

t = l  ~ 0=0 - -  t = l  

by expanding (3.22). 
N 

We can show that (1/N) ZO{(Of~/Ot))Z-lft,}/at)'lo=o converges to F. 

The (i, j)-th element of O {(O a;/at)) 27-l a,}/at)' is written as (O2u~/Ot)jOt)i)27-1~lt + 

(Of~f/Ot)i)Z-'(Of~dOt)j), where 0i denotes the i-th element of t). From the 
proof of Lemma 3.1, elements of 022;/Ot)jOt)z are written by linear combina- 
tions of xt-j and ut-j for j _> 1. Hence, summing over t and dividing by N, 

N 

we have asymptotically that the (i,j)-th element of (1 / N) ,~=10{(Oftf/Ot))X-'~lt}/ 
N = 

0t)'l 0= 0 is (11 N) ,~=l (Of4~/Ot)i)X-l(Oft,/0t);) I 0~ o. Also from the proof of Lemma 

3.1, we have 
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(3.25) ~ , = 1 7 g  ] a r  

1 x/ 1-;. . .x/-p j 
N t = l  j= 

• ~ '  Xrx;1=o L x' - l " "  t-p l 

-- U;-1- j  . . . .  U; q j ]  @ H j J '  ~ 

- u '  .. ' , ] @ / / I ]  t-1 l" Ut -q-  l 

N =,=o,:o k k ~l~,tx:_,_,..: . v ~  , - , ; - , - ,  . . . .  +,-q-, ," 

• [ X ; - l - l ' " X t - p - 1  -- U ; - I - I  . . . .  b4;-q-l] ] @ ( / ' /S,~V'-I/- /I)  . 
) 

After some algebra, this expression is shown to converge to 

(3.26) 
z e  

/~11%-, . . .% ,, - I : ® ~ _ ,  . . . .  l , , , @ ~ _ q ] ' ( z ® z  ') 

• [%._~. . .%_, ,  - i , , , ® n j ,  . . . .  i : @ I I j - d  

ao  

= £ Xj'(Z @ S ')Xj = F. 
j = l  

Considering the equation 

(3.27) 1 ~ Of,; o:o I 1 

-- r~ t=l j = 0  

Xt -  1 - j  

X t - p - j  

- -  Ut- i - j  

- - U t  q - j  

lut 

the asymptotic normality of this term is proved by an argument similar to 
that of the proof of central limit theorem for m-dependent random 
variables (see Fuller (1976)), but details are omitted here. We note that the 
expectation of this term is 0 and the covariance matrix is shown to be 
equal to F similar to the above calculations. 

From Lemmas 3.1 and 3.2, we have asymptotically 

(3.28) & = [{L ® (VU') ® I,,}XF-' 

[1] 
Cd 
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w ] is normal LEMMA 3.3. The joint asymptotic distribution o f  x /~  Cd 

with mean 0 and covariance matrix 

F - X'{Id ~ (UV')  ~ I,~} ] ,  

J - { I d ~ ( V U ' ) @ I m I X  I a @ T @ S ,  

where F and X are as in Lemmas 3.1 and 3.2. 

PROOF. The asymptotic normality of Cd was essentially shown by 
Chitturi (1976). Considering the relation 

(3.29) 
w ]  

4;cd - 4-; ,:, 

j=0 

Xt ~ I - j  

X t - p - j  ~ 1-lj' 

-- UI- I - j  

-- 12t-q- j  

• ® I m  

Ot-d 

Z-I 

Ut 

we can calculate the covariance matrix of this random vector after some 
similar algebra as given above. 

THEOREM 3.1. The statistics S defined by (2.13) is asymptotically 
distributed according to a z2-distribution with m 2 ( d - p -  q) degrees of  
freedom for  sufficiently large d. 

PROOF. Lemma 3,3 and (3.28) show that x/N8d is asymptotically 
normally distributed with mean 0 and covariance matrix (Ia Q V Q U) 
• (Im~a - YF -1Y')(ld Q V' Q U') where Y = (Ia Q U" ~ U-~)X. We assume 

that d is sufficiently large so that F--j~,_ X/(Z (~) 
c o  

X- l ) s j  is approximated 
d 

byj.~lX/(Z ~) X-1)Xj = Y'Y. Then v/N (Id (~ V -1 (~ U-1)Cd is asymptotical- 

ly normally distributed with mean 0 and covariance matrix Im-'d- 
Y( Y' Y)- ~ Y'. Considering that I,,2d -- Y( Y' Y)- ~ Y" is a symmetric idempotent 
matrix with rank m 2 ( d - p  - q), the asymptotic distribution of 

(3.30) ® v-'® ® v-'® u-')&} 
d 

= NO5(la @ T-'  • Z-1)Od = N Y, Tr {C(k l 'Z - 'd (k )T  -11 
k=l 
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is a Z'~-distribution with m " ( d  - p - q) degrees of freedom. X and T can be 
replaced by Z and T without changing the asymptotic distribution. 

Note that the degrees of freedom of the z2-distribution do not depend 
on r and s, which are the ARMA orders of the input {yt}. 

4. Practical procedure and some remarks 

The results of Section 3 are directly applicable to testing for the 
presence of pure feedback if data are known to be generated from ARMA 
models. However, we rarely have such information about a process. Most 
real data are considered to be generated from general linear stationary 
processes, which are represented by infinite order AR models. We also 
know that the identification and the estimation of multivariate ARMA or 
MA models require complicated calculations. For these reasons, appro- 
priate finite order AR models may be used for approximat ing  real 
processes. 

Once AR models are assumed, we can use some order selection 
criteria, for example, the FPE criterion (Akaike (1971)) or the AIC 
criterion (Akaike (1973)). If we consider the estimated order of a model to 
be the true order, we can use the results of the above theorem. Therefore, 
the test for the presence of a pure feedback loop in process dynamics may 
be achieved by the following procedure: 

I. For each sequence of the m-variate observed input {y,} and output  
{xt}, fit an AR model by the FPE (or AIC, etc.) criterion. We denote the 
estimated autoregressive order of {xt} as p. 

2. Using the fitted AR models, prewhiten the input and output 
sequences. 

3. Calculate the statistic S using sample cross-covariance matrices of 
prewhitened series. We choose the value of d appropriately. 

4. Compare the value of S with a significance point (5% or 1%, say) 
of a z2-distribution with m 2 ( d  - -  p )  degrees of freedom. If the value of S is 
greater than the significance point, we can conclude that a pure feedback 
model is inappropriate. Otherwise, the model is not inappropriate. 

In some environments including many process control cases whose 
feedback controller is integrating, the input and/or  the output are not 
stationary but homogeneous nonstationary; i.e., some suitable differences 
of the data are stationary. Then we should use {(1 - B)d'yt} and {(1 - B)d2xt}, 
instead of the original {yt} and {xt}, for the above procedure. Here, non- 
negative integers dl and d2 may be determined in order to make all the 
elements of {(1 - B)d'yt} and {(1 -- B)d~'xt} stationary, following the method- 
ology proposed by Box and Jenkins (1976). 

Our procedure is also applicable to testing a subset of pure feedback 
loops in a general closed-loop model. Let the input {yt} and the output  {xt} 
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be stationary and partitioned into subvectors such as x~ = [xfi, xL]' and 
yt = [y~t, y~t]', where dimensions of xzt and y2~ are identical, say, r. The 
hypothesis of pure feedback from {x2,} to {y2,} is given by equations (2.1) 
and 

where K22(B)  is an 
is as same as that 
closed-loop model 
tested by applying 
{x2,}. 

r × r transfer function matrix and the dimension of {z~t} 
of {y,}. Note that (4.1) is a restricted version of the 
(2.2). The hypothesis of subset pure feedback can be 
the above procedure to the input {y2t} and the output 

5. Numerical results 

We first analyzed Tee and Wu's paper machine data. Their data 
consist of 160 observations on the stock gate opening {y,} and the paper 
weight deviation {xt}. We used the FPE criterion with maximum autoregres- 
sive order 10. For the (mean deleted) input {y~}, the AR(1) model 

(5.1) (1 - 0.895 B ) yt = ot 

was selected. The output {x,} was decided to be a white noise sequence. 
Setting d = 30, the value of S is 38.94. As this value is less than the 5% 
significance point of the z2-distribution with degrees of freedom 30 
( = 30 - 0), we can conclude that the pure feedback model is not inappro- 
priate for this data. 

Some simulation experiments were done to see the behavior of the 
proposed statistic. We considered the closed-loop model defined by 

(5.2) x~=[  l + 0 . 7 B - 0 . 2 B  ] - t [ 0 . 4 - 0 . 2 4 B  -0 .16B ]yt 

0.4B 1 + 0.8B 0.12B 0.4 + 0.2B 

- 0 . 3 B  1 - 0 . 6 B  0 1 - 0 . 8 B  

- 0 . 6 B  1 - 0 . 7 B  0 . 0 4 B  0 . 2  - 0.14B 

+ vb t  , 

where {at} and {bt} were normally distributed with mean 0 and covariance 
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matrix 12. The stationary nature of processes can be easily verified. For 
some values of v, observations of length 200 were generated for 100 
replications. For  each replication, S and its degrees of freedom were 
calculated for d = 30 using the FPE criterion with maximum autoregressive 
order 10. The results are summarized in Table 1. 

Table 1. Results of simulation. 

S D.F. Number 

Mean Variance Mean Variance 5% 1% 

0 98.13 285.35 103.24 36.43 4 2 
0,2 108 ,01  204.42 I03,60 34.42 8 1 
0.4 117~84 234,20 103.04 24.93 27 6 
0.6 f24.90 213.33 102.44 33.58 39 19 
0.8 1 3 0 . 6 3  1 9 5 , 3 3  102.20 34.06 63 27 
1.0 1 3 5 . 1 7  1 9 8 . 4 5  101.96 34.[0 74 40 
2.0 1 4 7 . 2 2  1 9 6 . 0 8  103.48 17.67 94 65 

First column of Table 1 shows the value of v. The sample mean of 
values of S and their sample variance are given in the second and third 
columns. The sample mean of values of degrees of f reedom and their 
sample variance were given in the fourth and fifth columns. The last two 
columns show the numbers of S whose values were greater than 5% or I% 
significance points of the zZ-distributions with corresponding degrees of 
freedom. In the case of v -- 0, the process follows a pure feedback model. 
Simulation results show that the asymptotic result described in Section 3 
holds well in this case. As the value of v becomes large, the hypothesis of 
pure feedback tends to be rejected. These results show an example of the 
effect of feedback noise {zt} on the test procedure. 

The same experiments were carried out for an open-loop model 
written by (5.2) and 

[, ] I, 07B 0] (5.4) vt = bt.  
" - 0 . 3 B  1 - 0 . 7 B  - 0 . 5 B  1 - 0 . 8 B  

The sample mean of values of S and their sample variance were 152.23 and 
279.47 and the sample mean of values of degrees of f reedom and their 
sample variance were 101.40 and 30.51. The numbers of S which were 
greater than 5% and 1% significance points ofz2-distribution were 98 and 
82. We can see that there is little possibility of wrongly accepting the 
hypothesis of a pure feedback model for this open-loop model. 
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