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Abstract. In this paper we deal with comparisons among several esti- 
mators available in situations of multicollinearity (e.g., the r - k  class 
estimator proposed by Baye and Parker, the ordinary ridge regression 
(ORR) estimator, the principal components regression (PCR) estimator 
and also the ordinary least squares (OLS) estimator) for a misspecified 
linear model where misspecification is due to omission of some relevant 
explanatory variables. These comparisons are made in terms of the mean 
square error (mse) of the estimators of regression coefficients as well as of 
the predictor of the conditional mean of the dependent variable. It is 
found that under the same conditions as in the true model, the superiority 
of the r - k class estimator over the ORR, PCR and OLS estimators and 
those of the ORR and PCR estimators over the OLS estimator remain 
unchanged in the misspecified model. Only in the case of comparison 
between the ORR and PCR estimators, no definite conclusion regarding 
the mse dominance of one over the other in the misspecified model can be 
drawn. 
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1. Introduction 

Econometricians,  while dealing with the problem of choice of a proper 
model, face, inter alia, the problems of multicollinearity and misspecifica- 
tion of the model. The statistical consequences of multicollinearity in a 
linear regression model have been studied in great detail (see Judge et al. 
((1980), Chapter  12) for detailed discussion of this problem). It is well 
known that in situations of multicollinearity, it becomes difficult to obtain 
precise estimates of  the separate effects of the variables involved in the 
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regression model; the method of least squares produces large sampling 
variances of the estimated regression coefficients, which in turn gives rise to 
the possibility that otherwise significant coefficients may be dropped from 
the analysis improperly. 

In order to circumvent these problems, many alternative estimators 
have been suggested by researchers. These often yield point estimates (of 
parameters) superior to those provided by the traditional procedures under 
a variety of loss functions. These procedures include, for example, the 
ordinary ridge regression (see for instance Hoerl and Kennard (1970), 
Vinod (1978) and Vinod and Ullah (1981) for relevant discussions) and the 
principal components regression (see Farebrother (1972) and Fomby et aL 
(1978) etc. in this context). Although detailed sampling properties of these 
estimators are mostly unknown, these continue to remain ad-hoc solutions 
to the problem of multicollinearity. In fact, there have been many works 
concerning the efficiencies of these estimators vis-a-vis the ordinary least 
squares estimator. Further, Baye and Parker (1984) proposed the r - k  
class estimator which includes the ordinary least squares (OLS) estimator, 
the ordinary ridge regression (ORR) estimator and the principal compo- 
nents regression (PCR) estimator as special cases, and compared its 
performance to the PCR estimator by the mean square error criterion. 
Nomura and Ohkubo (1985) extended this further, and compared the 
performance of the r - k class estimator with the OLS and ORR estimators 
by the criteria of mean square error (mse) of the regression coefficients as 
well as those of the predictor of E(y /X) .  The principal results concerning 
these estimators, viz. the r - k  class estimator, the ORR and PCR esti- 
mators, are that these estimators are generally biased, and that under 
specific conditions on the parameters involved, there exist specific values 
for the constant k (or a range of values for k) for which the r - k class 
estimator has smaller mse value than the ORR as well as the PCR 
estimators. There are similar results concerning the mse dominance of the 
ORR and PCR estimators over the OLS estimator as well. But all these 
comparisons of superiority of one of the estimators over the others have 
been carried out for what could be termed "true models". 

Omission of some relevant explanatory variables in regression models 
is quite common in applied works. The consequences of such omissions on 
standard inferential problems have been widely studied. But the conse- 
quences of such omissions (henceforth to be referred to as misspecification 
and linear models with such omissions as misspecified models) for linear 
regression models with multicollinearity have not yet been examined. In 
other words, it becomes an interesting investigation to find out if these 
alternative estimators would still remain superior in misspecified models in 
situations when these are so in true models. This paper attempts to 
examine precisely this point. The comparisons are made among these 
estimators themselves as well as with the OLS estimator. Indeed, this study 
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is expected to shed light on whether  in actual analysis we really have to 
differentiate between working with a true model and a misspecified model, 
insofar as comparison by means of the mse criterion is concerned. The 
paper has been arranged as follows: In Section 2 we describe the model and 
then define the r - k  class estimator. The comparisons among the esti- 
mators (including the OLS) of the regression coefficients and those of the 
predictor of E ( y / X )  by means of the mse criterion are done in Sections 3 
and 4, respectively. The paper ends with conclusions in Section 5. 

2. The model 

We consider the true model as given by 

(2.1) y = Xf l  + Z7 + e ,  

where y is an (n × 1) vector of observations on the dependent variable, X is 
an (n × p) matrix of non-stochastic variables of rank p, Z is another (n x q) 
matrix of non-stochastic variables of rank q (p + q < n), fl and y are the 
corresponding (p × 1) and (q × 1) vectors of parameters associated with X 
and Z, respectively, and e is an (n × 1) vector of error terms with mean zero 
and variance-covariance matrix o-2In. We now assume that the misspecified 
model is one where the set of  q regressors have been omitted from the true 
model in (2.1) and is given by 

(2.2) y = Xf l  + u ,  

where u = Z7 + a. The error term u of the misspecified model is distributed 
with mean vector Z~ and variance-covariance matrix o-2I,. 

Let T =  (t~, t2,..., tp) be an orthogonal matrix with T ' X ' X T =  A being 
diagonal, and T~ = ( / l ,  t 2 , . . . ,  tr) where r _< p. Obviously, then, T;X'XT~ = Ar = 
diagonal (21, 22,..., 2r). Also, T~-rX'XTp-r = Ap-r = diagonal (2r+ 1, 2r+2,,. . ,  )].p) 

where Tp-~ = ( t,+ l, tr+ z,..., tp). 
Baye and Parker  (1984) proposed a general estimator for fl, and called 

it the r - k class estimator for ft. This est imator b*(k)  for fl, in the context  
of the misspecified model in (2.2), is given as 

(2.3) b*(k) = Tr(T 'X 'XT~ + kL)- '  TTX'y, k >_ O . 

This estimator is a general estimator which includes the ordinary least 
squares (OLS) estimator, the ordinary ridge regression (ORR) estimator 
and the principal components  regression (PCR) estimator as special cases. 
In fact, for the misspecified model in (2.2), these special cases of the r - k 
class estimator are as follows: 

(i) b*(O) = b* -- ( X ' X ) - ~ X ' y  is the OLS estimator. 
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(ii) b*(k) = b*(k) = (X'X + kip) ~X'y is the O R R  estimator. 
(iii) b*(0) = b* = T~(T[X'XTr)-IT[X'y is the P C R  estimator. 

3. The mean square error comparison of the estimators of regression 
coefficients 

As stated in the previous section, the r -  k class estimator of fl in the 
misspecified model is given as 

(3.1) b*(k) = T~(T'X'XTr + kL) 'T;X'y 

= Tr(Ar + kit) -1T[X'(Xfl + Zy + 8). 

Let &(k) -1 be the inverse of the matrix &(k) = (A~ + kIr). Then 

(3.2) E(b*(k)) = ~,S,(k)-' Tr'X'Xp + ~Sr(~) -1 ~'6,  

where d = X'ZT. 
The mean square error (mse) of b*(k), denoted by MSE (b*(k)), is 

obtained as 

(3.3) MSE (b*(k)) = E[(br*(k) -/~)'(b*(k) - /~)]  

= fl'(TrSr(k) -1T[X'X- I)'(T~Sr(k)-ITr'X'X- I)fl 

+ a 2 tr (&(k)-'ArSr(k) -~) + &'Tr&(k)-2T;d 

= MSE (br(k)) + d'Tr&(k)-2T;d, 

where M S E  (br(k)) = {fl'(TrS,.(k) -1T[X'X- I)'(T,.Sr(k) -1T[X'X- I)fl + 0 .2 • 
tr (&(k) ~ArSr(k)-l)} is the mse of the r - k class estimator of fl, if the model 
in (2.2) was, in fact, the true model. The mse expressions for the OLS, 
O R R  and PCR estimators can thus be obtained as special cases of 
MSE (b*(k)) from (3.3) by appropriate choice of the parameters r and k. 

It should be noted at this stage that in the mse expression above, the 
first term refers to the rose of the estimator (of fl) considered if the model 
in (2.2) was, in fact, not misspecified, and the second term, i.e., the 
quadratic form in c~, appears due to misspecification of the model. 

It is known (see Baye and Parker (1984) and Nomura  and Ohkubo 
(1985) for instance) that under certain conditions, the r - k class estimator 
is superior to the OLS, O R R  and PCR estimators for the true model over 
some specified range of values for k. For example, Nomura  and Ohkubo 
((1985), p. 2493) have stated in their Corollary 2 that if ~_ (a~ - a2/2g) _< 0, 

i~N, 

thenMSE(br(k))<MSE(b)forO<k<_( 20"2 / ]~/i, ,v, a2) 'whereNr={l'2' ' ' ' 'r}'  

N r = { r +  1, r + 2  .... ,p} and ai is the i-th element of the vector a = T'fl. We 
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now examine if the superiority of the r - k class est imator over the other 
estimators would still be maintained under the same conditions and the 
same specified ranges of values for k even when the model is misspecified. 
For the purpose of this comparison (by the mse criterion) between any two 
estimators of fl in the misspecified model, it is then obviously sufficient to 
compare the two relevant quadratic forms in 3 only. 

3.1 The r - k class estimator vs. the O L S  estimator 
We first consider comparison between the r - k class estimator and the 

OLS estimator of fl for the model given in (2.2) by means of the rose 
criterion. To that end, we first obtain the expression for MSE (b*), the mse 
of the OLS estimator b*, by substituting k = 0 and r = p in (3.3). Then, by 
subtracting this from (3.3), we get 

(3.4) M S E  (br*(k)) - M S E  (b*)  = M S E  - M S E  (b)  

+ ~ 'S- I (STrSr(k ) -2T[S  - I ) S  ItS, 

where MSE (b) = tfl tr (S -1) and S -1 = TSp(O)-IT '=  ( X ' X )  -1. 
In order to study the definiteness of the quadratic form in d in the 

above expression in (3.4), it may be noted that all the characteristic roots 
of the matrix ST~Sr(k) -2 T/S are same as that of Tr'ST~S,(k) -2 T~'ST~ -- A ,&(k)  -2 
• A,, since T;T, = L. But, 

A,&(k)-2Ar = [(I + k A f ) ( I  + kA~-l)] -~ 

= [ I +  B,] -1 , 

where B, = 2kA71 + k2Ar 2 is a non-negative definite (n.n.d.) matrix for all 
k_> 0. Thus, all the roots of ( I +  Br) are_> 1 and hence the roots of the 
matrix [ I +  Br] -l are all _< 1. One can then conclude (cf. Rao (1974), p. 70) 
that (ST~&(k)-2T,'S - I)  is a non-positive definite (n.p.d.) matrix. So, 
(MSE (bY(k)) - MSE (b*)) is negative, if (MSE (b~(k)) - MSE (b)) is so. 
We thus have the following theorem. 

THEOREM 3.1. Suppose  i, ~-N, ( a ~ -  tr2/2/) < 0 and O K k <_ 2tr2//i, y'N, cti2" 

Then, MSE (b*(k)) < MSE (b*). 

It is therefore established that if the r - k  class estimator is mse 
superior to the OLS estimator in the true model, then it remains so in the 
misspecified model as well. Obviously, if the r - k class estimator is inferior 
to the OLS estimator by the mse criterion in the true model, then no 
conclusion can be drawn regarding superiority of one over the other in the 
misspecified model. 
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3.2 The r - k class es t imator  vs. the O R R  est imator  

By substituting r = p  in (3.3), we find the expression for MSE (b*(k)),  
the mse of the ORR estimator b*(k),  and hence, we have 

(3.5) MSE ( b * ( k ) )  - M S E  (b*(k) )  = M S E  (b , (k) )  - M S E  (b(k))  

+ cS'[T~S,(k)-2E ' - S(k)-2]c~, 

where MSE (b(k)) = {k2fl'S(k)-2fl + or: tr ( S ( k ) -2 X ' X ) }  and S(k )  -~ = TSp(k) 1 

• T ' =  ( X ' X  + kip) -~. As in the previous case, we find from Nomura  and 
Ohkubo (1985) that under certain conditions, the r -  k class estimator is 
superior to the ORR estimator in some range of values for k in the true 
model. To see if this superiority of the r - k class estimator is still retained 
in the misspecified model, it is enough to check if the quadratic form in c~ 
in (3.5) is negative. Now, 

~'[ TrSr(k) -2 Tr' - S(k)-2]c~ 

: 6'[TrSr(k)"2T " - T(A  + klp)-ZT']O 

= - ~'Tp r(Ap-~ + klp-,)-ZTp-~6, 

and this is always n.p.d, for all k _> 0. We thus have the following theorem. 

THEOREM 3.2. I f  the r - k  class es t imator  is superior  to the O R R  

es t imator  in the true model ,  then the same holds  in the misspeei f ied  m o d e l  
also. lJ; however ,  the r -  k class es t imator  is not  superior  to the O R R  
est imator in the true model ,  no definite conclusion can then be drawn.  

3.3 The r - k class es t imator  vs. the P C R  es t imator  
As in the previous two cases, we can find the expression for MSE (b*), 

the rose of the PCR estimator b*, as a special ease of MSE (b*(k))  in (3.3), 
where k = 0. Now, proceeding as before we can state the following theorem 
for this case. 

THEOREM 3.3. I f  the r - k class es t imator  is mse d o m i n a n t  over the 
P C R  es t imator  in the true model ,  then there always exists a pos i t ive  value 

o f  k f o r  which the r - k class es t imator  has a smaller mse value than that  
f o r  the P C R  est imator in the misspecif ied m o d e l  as well. 

Finally, we compare the performance of any two of the OLS, ORR 
and PCR estimators. To this end, we look at the differences between the 
two relevant mse expressions and then simplify them to obtain the following 
theorem. 
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THEOREM 3.4. I f  the mse of  the OLS estimator is greater than each 
of  the mse's o f  the ORR and PCR estimators in the true model, then the 
same will be true in the misspecified model also. However, no such difinite 
conclusion can be drawn (in the misspecified model) in comparing mse 
superiority between the ORR and PCR estimators, even when such a 
superiority between the two estimators exists in the true model. 

4. The mean square error comparison of predictor 

In this section we compare the performance of the r - k class estimator 
and the three other estimators, viz., the OLS, ORR and PCR estimators by 
means of the criterion of mse of the predictor of E(y /X ) ,  defined as 

MSE (y*(k)) = E[(b*(k) - fl)'X'X(b*(k) - fl)]. 

Since the results as well as the proofs are similar to those in the last 
section, we omit the derivations and state these results in the following 
theorem. 

THEOREM 4.1. The r -  k class estimator dominates the OLS, ORR 
and PCR estimators by the criterion of  mse of  the predictor of  E ( y / X )  in 
the misspecified model, i f  the dominance o f  the r - k class estimator over 
the other estimators holds for the true model. 

Insofar as comparisons among the OLS, ORR and PCR estimators by 
this criterion are concerned, it can easily be shown that the results are 
exactly the same as stated in Theorem 3.4, and hence these are not 
explicitly stated for this case. 

5. Conclusions 

An attempt to compare the performance of several well-known estima- 
tors available for regression models with multicollinearity in situations of 
misspecification of the model, has been made in this paper. The criteria 
used for the purpose of these comparisons are the mean square error of the 
regression coefficients as well as of the predictor of E(y /X) .  It has been 
found that misspecification of the model does not alter the relative perfor- 
mances of these estimators so long as the same holds for the true model; 
the only exception to this is the comparison between the ordinary ridge 
regression estimator and the principal components  regression estimator. 
Nothing definite can be said on the superiority of one of these two 
estimators over the other in the misspecified model even if this is possible 
for the true model. 
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