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Abstract. Explicit formulae for prior distribution moments through 
values of the Bayes estimator of binomial probability are obtained. These 
are used to derive a new admissibility criterion. 
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1. Introduction 

Consider the classical problem of estimating an unknown binomial 
probability 0. Let X be a binomial random variable with parameters n and 
0, and assume that 0 is estimated by d ( X )  under quadratic loss. 

Johnson (1971) (see also Brown (1981)) has shown that every admis- 
sible estimator d must be of the form 

(1.1) d(x) : 

0 x<_r ,  

f01 ox-r(1 _ O)S-x-l  ~ ( o )  

fo 1 ox - r - l (1  _ O)S-X-l df l (O ) 

1 

r + l <_x<_s-  I 

X>_S . 

Here - 1 _< r < s _< n + 1, and/1 is a probability measure such that 

/1({o} u {1}) < 1. 

(This condition implies that the corresponding Bayes rule is well-defined 
not only for x = 0 and x = n (cf. Lehmann (1983), p. 246).) 

In other words, every admissible est imator has the form of a Bayes 
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procedure on the "middle"  part  of the range of X. It is easy to show that  
estimator (1.1) depends only on the first s - r I moments  of/~. 

Kozek ((1982), Theorem 6) obtained the "analytic counterpar t"  to 
Johnson 's  Bayesian characterization of admissibility. Let ~ be an est imator  
of 0 based on X with values in (0, 1). Define 

i-1 
(1.2) "(n+l,i((~) = ~_FI0 (6(k)/(1 - 6(k))), i =  1 ,2 , . . . ,n  + 1 . 

In establishing the equivalence of his criterion to that  of Johnson ,  Kozek 
demonstra ted that  g is Bayes (hence admissible)--i.e.,  has the form given 
by (2.1)--if  and only if there exists a probabil i ty measure r /on  [0, ~ )  and a 
non-negative constant K such that  

r~+~.i(c~) = tidrl(t), i =  1 ,2 , . . . , n ,  

and 

zn+l.~+l(cS) = tn+ld~l(t) + K .  

Thus,  if ~ has the form (2.1), then straightforward calculation (Kozek 
(1982), Remark  4) shows that  

q([0, t]) = (1 - O U ' d / 4 0  ) (l  - O)°+'d/~(O), t >_ O,  

while 

K :   ,(ll l) / fo l (1 -  . 

The converse follows f rom a moment  space theorem of Karlin and Studden 
(1966). 

In this paper (Section 2), we derive a new admissibility criterion 
expressed in terms of the inverse Bayes rule map: Bayes est imators 
moment  (n + 1)-tuples. We define the inverse explicitly (see (2.12)). Benefits 
which are derived thereby include the ability to distinguish those admissible 
estimators that  determine the prior, relative to which they are Bayes (these 
priors of necessity have finite support)  f rom those that  do not. (There are 
then uncountably  many priors relative to which the admissible est imator  is 
Bayes.) 

In Section 3, the structure of the class of Bayes estimators is given in 
complete detail for n = 3, together  with illustrative examples. Explicit 
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criteria for an estimator to be Bayes are also given for n = 4. Proofs of 
technical lemmas and the main theorem are given in the Appendix. 

We note that a characterization of prior distributions by linear Bayes 
estimators was obtained by Diaconis and Ylvisaker (1979) and complete 
class results for double sample estimation were given by Cohen and 
Sackrowitz (1984). 

2. The inverse Bayes estimator map 

In this section, we shall study the inverse mapping for Bayes estimators 
of 0. To be precise, we view such an estimator as an image under a 
mapping B~+ 

B n + l :  M n + l  --* R n+l  . 

Here n is an arbitrarily given integer _> 1; we interpret R "+' as the space of 
functions &: {0, 1,..., n} ~ R; and take M,+~ to be the space of the first n + 1 
moments for probability distributions on [0, l] with support not confined 
solely to the endpoints (the Bayes estimators of 0 with respect to these 
prior distributions are uniquely defined). For such a distribution/~, we take 

f01 ci = O id /u (O) ,  i = O, I , . . . ,  n + 1 . 

It is well known that the Bayes estimator depends on /~ only through 
Cl, c2,..., cn+l. Indeed, for each 

c = ( c l , c 2 , . . . , C , + l )  ~ ;14,+1 , 

one has 

(2.1) 8.+1(c)(i) = fo 1 o'+'( l  - o) o / fo' O'(l - O)" 

(n -  i ) ,  (n - i) 
= Ci+l / c i  , i =  O, 1 , . . . , n ,  

where 

(2.2) el j/ el ~-~/ I~-~/ = - c ~ + ~  , i = O ,  1 , . . . , n + l - j ,  j = l , 2 , . . . , n + l ,  

with 

cl °) = ci, i =  0, l , . . . ,n  + 1 . 

(See Skibinsky (1968) for a more explicit rendering of (2.1) in terms of e.) 
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We note  in passing that  (2.1) affirms the conjecture  of  Cheng (1982) to 
the effect that  the Bayes es t imator  of  0 relative to a Beta (a, fl) prior  is 
Bayes also relative to dis t r ibut ions  of  finite suppor t  on [0, 1]. Indeed,  by 
(2.1) it is Bayes relative to each of  the uncountab le  infinity of  such 
dis tr ibut ions whose  first n + I moments  coincide with those of  Beta  (ct, fl). 

In keeping with our  in te rpre ta t ion  of  R n+ z, we shall write 3i for  6(i) ,  
i = 0 ,  1 . . . . .  n so that  6 = (c5o, 61 . . . . .  ~n). 

LEMMA 2.1. Let  

,,N~+I = {c5 e Rn+1:0 < c50 -< 61 _< .-. _ < 3 , <  1}. 

Then 

B~+I(M,+I) C , dG+l .  

Let M*+I denote  the collect ion of  all (n + 1)-tuples c such that  cln-il # 
0, i = 0, 1, . . . ,n,  i.e., for which the r ight-hand side of  (2.1) is well defined. 
Note  that  M*+I, hence M,+I, does not  conta in  any sequence  all of  whose  
componen t s  are the same. We denote  the extens ion of  Bn+1 to M*+I by B*+I. 
Thus (deleting subscripts) 

M C M* and B =  B*rM.  

LEMMA 2.2. B~*+I is one-one  on Mff+l. 

Let 6 ~, J / .  + ~ and put 

___ .;(0) 
(2.3) c~, !°) ~5i, i 0 ..... n; ,,,+l = 1 (by conven t ion ) .  

For  j = 1,2 ..... n, recursively define 

(2.4) ~}/) 
1 - / - ' }  ' 

i = 0 , 1 , . . . , n - j +  1,  

where for  j -- 0, 1 .... , n 

(2.5) • ( J )  x(J} (~t (j}, i = t , i + l -  " i = O , l , . . . , n - j .  

Note  that  by our  convent ion  in (2.3) 

A(/) . (2.6) ~-.1 + 1 = 1, j = O, 1 .... , n . 

Hereafter ,  we shall also write 2i for  21 °), i = 0, 1,..., n. 
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LEMMA 2.3. F o r j  = 1 ,2 , . . . ,n ,  we have f o r  c~ e,//g~+~, 

£ ( j -  1) x ^ ( j -  l ) ~ ( j -  1) 
• O i + l  J (2.7) 21.;)= 21;-')(1 - + Zi+l o, 

(1 - 21J-~))(1 - 21J] ')) , i =  O, l , . . . , n  - j .  

Note that by (2.5) and (2.6), whenever  i = n - j ,  (2.7) is reduced to 

( j  - 1 ) 
] ( j )  . j ( j )  f , n - j  + 1 
, ~ n - J  = I - -  * ' ~ n - j - -  1 - / ] . ~ ' )  ' j =  1 , 2 , . . . , n .  

LEMMA 2.4. For c~,//g,+~ and j = O ,  1 , . . . ,n ,  c~! j) is posi t ive,  non- 
decreasing, and less than 1 on {0, 1,..., n - j } ;  equivalently, 

(J) . 
8~ j) > 0 ;  )~I j) _> 0, i = 0, 1,..., n - j - 1; 2 ,- j  .> 0 .  

Also,  

Moreover,  

n - :  (Y) 
60(J) + ~ 2i = 1 . 

i=0 

0 < & _< &(" _< &(2) _< ... _< &(.)< 1,  

~(~) < ~(2) .. 2(o,) 

Some insight into computa t ions  deriving f rom these recursions (e.g., 
see Lemmas  3.1 and 3.2) is gained by observing that  for i =  0, l , . . . , n  - j -  1, 
j =  1 ,2 , . . . ,n ,  

!J) , = 0 ~ cii= fii+l . . . . .  c~i+j+i ; 

a consequence  of  (2.7) and the above 1emma. 
For  each 6 ~ ,//G+1, define 

(2.8) 

and put 

(2.9) 

il-rl g ( n - k )  

v . + , , i ( g )  = : . o , , k  , 

Now we apply 
c o m p o n e n t s  of  vn+l 

i =  1 ,2 , . . . ,n  + 1, 

Vn+l : (•n*-l,l, Vn+l ,2 , . . . ,  l ] ,+ l , n+ l )  • 

the analogues  of  the definit ions (2.2) to the n + 1 
given by (2.8). Thus ,  for  i = O , l , . . . , n + l - j ,  j =  
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1,2 .... ,n + 1, we define functions on,/~,+~: 

¢/I vl/+ ,I vlJ-   n I , i =  n 1 , i - -  n+l , i+ l  

with 

(0) 
v,+l,i=v,+,.i, i = 0 , 1 , . . . , n  + 1, l)n+l.0 = [ . 

LEMMA 2.5. For each ~ ~ ,/A¢,+1, and for each pair o f  non-negative 
integers i,j such that i + j <_ n, 

V (j) IX'* / V (jt t X ~  ( ~ ! n - j  - i) 
n + l , i + l [ O ] /  n+1,ilU] = 

# 
COROLLARY 2.1. Foreach c~,//g,+l, B,+i(V,+l(C~)) = c~. 

PROOF. By Lemma 2.5, setting i + j  = n, we have, using (2.1) and the 
definition of B*+ i, that 

6 i = ~ ( 0 )  v(nn+l/~+l(~)/ (n i).~-. V n + l . i ~ O )  B*+l(Vn+l(c~)) ( i )  , 

for i = 0, 1,..., n and 6 ~ ~.~,+ 1. But this is the desired result. 

The inverse of  the mapping ~:,+1 ~ R  "+1 given by (2.9) and the 
inverse of the Bayes estimator mapping M,+I ~ J'¢',+1 defined by (2.1) are 
specified in the following theorem. Note that the first inclusion statement 
of this theorem is just Lemma 2.1. 

THEOREM 2.1. 

B,+~(M,+~) C , . / ~ , + 1 ;  Mn+l C Vn+l(t /~(n+l)  C M * + I  ; 

the inverse mapping vnl+l is the restriction of  B*+I to Vn+l(¢J~,+l); the 
inverse mapping B~ll is the restriction of  v~+ 1 to B,+ I(M~+ 1). 

We proceed by defining n + 1 disjoint subclasses of functions in ~g',+l 
as follows. Let ~ , , 0  denote the collection of all d ~ R "+1 such that 

d~=0, a, or 1, 

according as 0_< i <  r, i =  r or r < i_< n, for some integer r, 0_< r_< n and 
some a, 0 _< a <_ 1. For  m -- 1,2,..., n, denote by ~ , , m  the collection of all 
6 e R "+1 such that 

c~i=O, B,+l(c)(i-r),  or 1, 
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according as 0 < i < r ,  r < _ i _ < m + r  or m + r < i < n ,  for  some integer r, 
0 < r < n -  m and some c ~ M.+1. 

Thus,  a typical  funct ion  in ~ n .  1 is of  the fo rm 

f i i=0 ,  ( c l - c 2 ) / ( l - c l ) ,  c2/cl, or 1 ,  

according as 0 _ < i < r ,  i - - r , i = r + l ,  or  r +  l < i _ < n ,  for  some integer r, 
0 _< r < n -  l, and some (c~, c2)~ M2 (i.e., for  some c~, c2 such that  c 2 < 
c2 < c~, 0 < cl < I). At  the other  extreme,  

~n ,n  • Bn+l(Mn+l), 

the class of  all Bayes rules relative to pr ior  d is t r ibut ions  whose  suppor t  is 
not  conf ined to the endpoints  of  [0, 1]. 

If  we now put  

m s 0  

we may  reformula te  Johnson ' s  theorem referred to in the in t roduct ion.  

JOHNSON's (1971) THEOREM. ~ is precisely the class o f  all admis- 
sible estimators o f  O. 

Observe  now that  by  T h e o r e m  2.1, ~n.m ma y  for  m - -  1 ,2 , . . . ,n ,  be 
descr ibed as the collection of  all funct ions 3 ~ R n+ 1 such that  

3 / - - 0 ,  3i-,, or 1 

accord ing  as 0 <_ i < r, r <_ i _< m + r, or  m + r < i <_ n, for  some  integer  r, 
0 _< r<_ n - m, and some 3 e vm~l (M,. . l ) .  

Thus  in part icular ,  ~ . . 1  is par t i t ioned in a natura l  way  by the 
elements of  

v21(M2) = {3 e ,J~'2: v22.1(3) - v2,2(3) < v2,1(~), 0 < ]/2.1(~) < 11. 

In fact, this class is ,~¢2 itself (see L e m m a  3.1). At the o ther  ex t reme 

~n .n  = vn+l l (Mn+l )  , 

which for  n >_ 3 is a p rope r  subclass o f , ~ , + l  (see T he o re m 3.1). 
J o h n s o n ' s  cr i ter ion for  admissibi l i ty  ma y  now be given in terms of  

es t lmator -dependent  de terminants  of  Hanke l  matrices 
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(2.10) _A,,,, J , , ,  t = 1,2, . . . , s ;  s = 2,3 ..... n + 1 . 

Here, for positive integers k, we define ZJs,2k, for 2k<_s (d~s, 2k+l, for 
2k + 1 < s) to be the determinant of the (k + l)-square matrix with entry 
v~,~+j-2 (vs, z+j-~) in its i-th row and j- th  column; i , j =  1 ,2 , . . . , k+  1. 
Similarly, J~,2k-t, 1 _< 2k - 1 _< s (A~,2~, 2k _< s) denotes the determinant of  

(1) ~v (~1 ~ in its i-th row and j- th  the k-square matrix with entry Vs,~+j 2 ~ ~.~+j-~) 
column; i , j  = 1,2, . . . ,  k. 

Direct application of Theorems 17.2 and 17.3 (Karlin and Shapley 
(1953)) yields the following useful result. 

THEOREM 2.2. Let 3 ~ ~'~+1 then c~ ~ - ~ , ,  (equivalently 6 ~ B,+I(M,+I); 
equivalent ly  v,+l(O) ~ Mn+l), / f  and  only  i f  one o f  the f o l l o w i n g  two  
condi t ions  holds.  

1. _A~+~,k(3)>0, J,+~.k(cl)>0, k =  1,2 ..... n + l .  
2. F o r s o m e i n t e g e r k ,  2 < _ k < _ n +  l, ei ther3_~+i,k(3)=O,A,+~.k(g)>O 

orA_~+l,k(cS) > 0, J~+~,k(3) = 0 and  

all zl(fi)'s o f  index  % k are >_0. 

Note that each c1 ~ ~ , , n  which satisfies condition 1 of the above 
theorem is the Bayes estimator with respect to each of the uncountably 
many distributions kt on [0, 1] whose first n + 1 moments  coincide with 
vn+,(6). On the other hand, each c~ e ~ , , ,  which satisfies Condition 2 is the 
Bayes estimator with respect to precisely one distribution/~. This distribu- 
tion has finite support, being the lower or the upper principal representa- 
tion of (vn+~,l(3),..., Vn+l,k--l((~)), according as the first or the second pair of 
inequalities obtains (see Propositions 1-6 of Skibinsky (1986)). 

To see the connection between Kozek's criterion for admissibility and 
our own, observe first that if ~ ~ ,~'n.l  (hence takes all its values in (0, 1)), 
we may, by an easy inversion of (1.2), express its values in the form 

3i = r,+l.,+~(a)/(r,+x,i(3) + vn+l,i+1(3)), i =  O, 1 .... , n  . 

Substitution into (2.4) and induction yield 

6? /J+ = ri+t(O)/ °(O), i = O ,  1 , . . . , n - j ,  j = O ,  1 , . . . , n ,  

where, viewed as functions on ./~¢n+ 1, 

k=0 k Tn+l,i+k, i = 0 , 1 , . . . , n +  l - j ,  j = 0 , 1 , . . . , n +  1. 

By (2.8), therefore, 
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(2.11) v,,+,,i= r~"+'-i)/r~o "+t) 

i) (.+,) 
~" "Cn+l,i+k Tn+l,k • 

k=0 k k=0 k 

Note that  by (1.2), the inverse Bayes rule map (2.9) is now explicitly 
defined. Thus,  for each 6 6 ,/~,+1 and for i = 1,2, . . . ,n ,  

(2.12) v,+l,i(6) = 

n+l-i(HJc 1--i) i+k-I  
E P0 (~,/(1 - a,)) k=O k = 

Z ( & / ( l  - &)) 
k=O k = 

On the other  hand,  if we restrict 6 to B,+I(M,+~) (by L e m m a  2.1, a 
subclass of . / /g ,+0--equivalent ly ,  if v,+1(6)~ M,+l - -we  have by (2.1), 
following Kozek ((1982), Remark  4), that  

z'.+1.i(c$) = fo 'o i (1 -  O) n+l ida(O)/fol ( 1 -  O)"+ldlt(O), i =  1 , 2 , . . . , n +  1. 

It follows that  everywhere o n  Bn+l(Mn+O and for i = 1 ,2 , . . . ,n  + 1, 

n.i (n+ , i )  (n+,) 
(2 .13)  Tn+l,i = k~=O (-- 1) k k V.+l,i+k k=~0(-- 1) k k Pn+l,k. 

One may also obtain this result directly via formula  (4) in Skibinsky (1968). 
Clearly, the (n + 1)-tuples with components  (2.13) and (2.11) restricted to 
Bayes estimators are composi te  maps on B,+ I(M,+ 1); say 

r.+,  = ~ . + , ( v o + , ) .  v.+l  = ¢o+1(~ .+ , ) .  

Note first that  

.+ (o+,) 
o ( -  1)k k Vn+l(k) = 1 k=0 k r,+l,k. 

-1  It is now easily established that  ~,+t = ~n+l .  

3. Admiss ib le  est imators,  n = 3 , 4  

We illustrate our  method  of development  by making use of the 
notat ion and results of Section 2 to explicitly exhibit  the class of all 
admissible estimators,  n = 3. Thereby we show that not  all est imators in 
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• //¢'4 are admissible, a fact already noted by Kozek ((1982), Remark 1). In 
this process, moreover, we are able to characterize the class of all prior 
distributions, relative to each of whose members any specific admissible 
estimator is Bayes (e.g., see Lemma 3.3). In particular, we can identify 
those admissible estimators for which the prior is unique, and if necessary 
exhibit this prior in terms of the estimator (see Examples 1 through 4). 

Finally, for n = 4, we characterize by explicit inequalities the esti- 
mators in ,,/¢'5 which are Bayes and display (Example 5) ,~5  estimators 
which are not. 

We are concerned, first of all, with the class 

3 

rn=(I 

By Johnson's theorem and Theorem 2.1, it will suffice to characterize 

Bs(Ms)  = {c~ ~ ,~g~: Vs(8) e Ms},  s = 2, 3, 4 .  

We begin with Kozek's observation that 

LEMMA 3.1. 

Bs(Ms)  = , ~ ,  s = 2, 3 .  

PROOF. Let 8 =  (&,&)~,gg2.  (2.4), (2.5), Lemma 2.3 and (2.8), 
toge ther  with defini t ions for (2.10), t a k i n g  n = 1 t h r o u g h o u t ,  yield 
_&l(~)  = 8o ~u, 321(8) : ;(o ~), A ' 8 '  - ~)~(~;~ ~ ' ~ ' -  ~ "  ' , _ 2 , 2 t  ] - -  O'0 A0 0, Z /2 ,210]  - -  80 A1. T h e  21 s) a r e  
defined by (2.5). By Lemma 2.4 with n = 1, A_2,2(8)>_ 0 (equality holds if 
and only if 2o - 81 - 80 0), and the 3 remaining determinants are positive. 
By Theorem 2.2, our lemma holds when s =  2. Thus, if n = 1, every 
estimator in ,/~2 is Bayes. 

Now let 8 = (60,81,82)e,//¢'3. Following the same route, b u t  n o w  

t a k i n g  n = 2 t h r o u g h o u t ,  one finds that 

d3,1(8) = d~ 2), 
X(2)]12)](1 } 

d3,2(8)  = u o  z~o ,'~o , 

z~(2),,2 ~(1)~(1)~  
~ 3 . 3 ( 8 )  = tOO ] O1 AI AI ,  

33 , ,  ( d )  = 2o 21 , 

3 3 , 2 ( 8 )  = a~02~ 2~ '~ , 
(2) (2) (1) 

33,3(8) = 80 20 21 ( 1 -  81)  

1 - 20 
2o. 

By L e m m a  2.4 with n = 2, both  order  1 de te rminants  are positive. 
d3,2(8) -> 0 (equality holds here if and only if 2(o u = 0, equivalently, if and 
only if 20 = 21 = 0. Note, therefore, that A3.2(8) = 0 implies that _A3,3(8) = 
33.3(8) = 0). 33.2(8) > 0, _A3.3(8) _> 0 (equality if and only if21 = 82 - & = 0), 
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3 3 , 3 ( d )  ~ 0 (equality if and only if 20 = 6 1  - g o  = 0 ) .  Thus, by Theorem 2.2 
our lemma holds when s = 3; i.e., if n = 2, every est imator in Jg3 is Bayes. 

By the discussion following Theorem 2.2, it is apparent  that  the 
formulae above enable us to determine precisely which estimators in ,~'~ 
and ,//g3 are Bayes only with respect to a distr ibut ion of finite support ,  and 
which are Bayes with respect to uncountably many prior distributions. 

LEMMA 3.2. Let 6 = (do, dl, 62, 63) e ,~g4. Then 

d4,1(~)  = _K,(6), 

d4,2(6) -- K2(6). 2~0 2), 

d4 ,3 (~ )  = K 3 ( ~ ) "  2~ 1), 

d,, ,(d) = K4(d) • (2022d2(1 - dl) - 2~23d0), 

2,. ,(6) = g [ ( 6 ) ,  

24.2(6) = K2(6), 

G,~(6)= .G(6) .  ~ , ,  

where Ki, K'~, i = 1, 2, 3, 4 are the strictly positive functions on ,~4 which are 
defined below. 

_Kl(6) = 6 (3)0 , g l ( 6 )  = 20 (3) 

~" uO A0 , ~ , 

/~(3},~2X(2)~(2} u0 A0 A1 ~ 1 -  62) 
K3(6)=U,o ] "~ '~, , K3(6)= ( 1 - ~ o " ) ( 1 - ~ , )  ' 

(X(3)~2~(3) ~(2)~(2}t! 
O0 ] A0 U1 A1 I1 --611} ) 

_K. (,~) -- 
(1 - 2 1 ' ) ) ( 1  - 2 0 ) ( 1  - 2 0 ( 1  - ~ 2 )  ' 

(X(3)-~2 X(2)3(2) ~( 1)/1 
uo j t,1 ~] a2 U - d 2 )  

K4(6) = 
(1 - 2 ( o ' ) ) ( 1  - ~ 1 )  

PROOF. Factor izat ion of the Hankel  determinants  proceeds in a 
s t ra ightforward manner  as in Lemma  3.1, but  now taking n = 3, through- 
out. The strictly positive nature of the coefficients Ki, Ki follows directly 
f rom L e m m a  2.4. 

LEMMA 3.3. Let O e ,~:4. If2[ = 0 (equivalently, i f& = d2) or if 

(3.1) 21 > 0 and 202262(1 - t~l) = 602223 ,  

then d is the Bayes estimator o f  0 with respect to exactly one prior 
distribution for  0 and this prior distribution has finite support. Specifically, 
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if 2 1 = 0  and 

,~0=0,  ,~2 = 0 ,  

20 > O, 22 = O, 

2o=0 ,  22>0 ,  

2 0 > 0 ,  22 > O, 

it & degenerate at the 
constant value of  6 ; 

it is the lower principal 
representation of  
(V4,1(6), V4,2(6)) ; 

it is the upper pr&cipal 
representation o f  
(Y4,1 (6), 124,2(6)) ; 

it is the upper principal 
representation of  

v4,2(6), v4,3(6)) ; 

if  (3.1) holds, it is the lower principal representation of  (V4~I(6),'1)4,2(6), 
V4,3(6)). 

I f  on the other hand, 

(3.2) )tl > 0 and 202262(1 - 61) > 602~23, 

then 6 is the Bayes estimator o f  0 with respect to each of  the uncountably 
many prior distributions for 0 whose first 4 moments coincide with v4(6). 

Finally, i f6 does not satisfy any of  the above conditions, then it is not 
a Bayes estimator for 0 and must o f  necessity belong to the class specified 
by the following theorem. 

THEOREM 3.1. 

~/~;4\B4(M4) = {fi ~ ~/~4 202262(1 - 61) < 212360} . 

PROOF. By Lemmas 3.2 and 2.4, 

/1i > 0, J i  _> 0, i = 1,2, 3; 34 --> 0; everywhere on ~-~¢4 . 

Moreover,  as the classification in Lemma 3.3 indicates, one or the other 
condition in Theorem 2.2 is satisfied for each 6 e ~ 4  such that/14(6) _> 0. 
Of course, neither condition is satisfied if A4(fi) < 0. Therefore, 

,,~'4\B4(M4) = {6 E ~/~4:d4(6 ~) < 0}. 

The result now follows from the expression for g4(&) given in Lemma 3.2. 

The minimal complete class for n = 3 may now be characterized 
explicitly as follows. 
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THEOREM 3.2. 6 e R 4 is admissible if  and only i f  it takes the fo rm 
(0, a, b, c) or (a, b, c, 1)for some triple a, b, c such that 

O<_a<_b<_c<_l, 

or else belongs to 

( 3 . 3 )  B4(M4) = {3 E ~ 4 : ( 3 1  - -  60)(1 --  61)(33 --  62)32 ~ 60(32 --  61)2(1 - -  6 3 ) } ,  

The inequality in (3.3) is o f  course the inequality o f  Kozek ((1982), Remark 
1). 

Example 1. 

6 = ( a , b , b , b ) ,  0 < a < b <  1.  

Here,  21 = 0, 20 = b - a, 22 = 0. Therefore ,  6 is admissible.  It is Bayes (only) 
with respect  to the lower  pr inc ipa l  r e p r e se n t a t i on  of  (v4,1(g),v4,2(6)). 
Specifically,  g is Bayes only with respect  to the pr ior  d i s t r ibu t ion  whose  
suppor t  is at 0 and b with mass  a/[1 - (b - a)(b z + 3(1 - b))] at the lat ter  
point.  

Example 2. 

3 = (e,e, 1 - e, 1 - e), 0 < e < l / 2 .  

Here,  2o2232(1 - 61) = 0. But  ~o2~23 = (e(1 - 2e)) z > 0. Hence,  by T h e o r e m  
3.1, 6 e ~Zg-4\B4(M4), i.e., 6 is inadmissible.  

Example 3. 

6 = (e, 2~, 3e, 4e), 0 < e < 1 / 4 

satisfies (3.2), so is admissible  and Bayes with respect to each of  the 
uncoun tab ly  m a n y  dis t r ibut ions  whose  first 4 momen t s  coincide with v4(6). 

Example 4. 

3 = (a ,b ,  1 - b , l  - a ) ,  0 < a < b <  1 / 2 .  

Here,  2t = 1 - 2b > 0, and 

2 0 2 2 6 2 ( 1  --  61) = [ ( 1 -  b)(b a)] 2 ~ [ a ( 1  - 2 b ) ]  2 ~-- 6 0 2 2 2 3 ,  
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according as 

i.e., according as 

Note that 
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(1 -- b)(b - a) ~ a(1 - 2b) ; 

b O  - b)  a ~  
2 -  3b 

b(l  - b) 
0 <  < b ,  

2 -  3b 

Thus, by Lemma 3.3 if 

1 
all b < - - .  

2 

b(1 - b) 
(3.4) 0 < a < 

2 -  3b ' 

then ~ is the Bayes estimator with respect to the infinitely many prior 
distributions whose first 4 moments coincide with 

( I 1 - b + a  l ~ b  ( l - a ) ( l - b ) )  
v4(6)= ~ - , 2 ( 1  b + 3 a ) ' 2 ( l -  + 3 a ) ' ~ i - b + - - 3 ~  " 

Note that the condition (3.4) implies v4(~) ~ int M4. 
If 

b(1 - b)  

2 -  3b 

then 3 is the Bayes estimator only with respect to the prior distribution 
given by the lower principal representation of 

1 1 - b + a  1 - b  ) 
(v4.,(3),v4~2(6),v4.3(3))= --f, 2(1 b + 3 a )  ' 2(1 - b + 3 a )  " 

This prior distribution is uniform with two-point support at 

,[ t'-b-a)l'21 -~ l_+ 1----b-+3a " 

If the third possibility, 
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b(1 - b) 
< a < b  

2 -  3b 

holds,  6 is not  a Bayes est imator,  hence is not  admissible. In particular,  
(1/4, 1/3, 2/3, 3/4) is neither Bayes nor admissible. 

Finally, as an addit ional application of Theorem 2.2, we give an 
explicit characterization for Bs(Ms). 

When n = 4, an est imator 

6 : (t~0,... , (~4) E ~ ( 5  

is a Bayes est imator  of 0 if and only if it satisfies both  of the following 
inequalities. 

- & l ) ( l  - - & 3 ) 6 3  _> 6 1 ( 6 3  - 6 2 ) 2 ( 1  - 6 , ) ,  

(61  - -  6 0 ) ( 1  - -  ¢~1)(63 - -  6 2 ) 6 2  ~ 6 0 ( 6 2  - -  6 1 ) 2 ( 1  - -  6 3 )  . 

Classification of these estimators as in Lemma  3.3 is easily carried out. 

Ex ample  5. 

O= (a, b, b, c, c) e ,//g5 

is not a Bayes estimator of 0. 
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Appendix 

We give proofs here for Lemmas  2.1, 2.2, 2.5 and Theorem 2.1. The 
proofs of Lemmas  2.3, 2.4 and 3.3 are straightforward and so are not 
included. 

PROOF OF LEMMA 2.1. Let c ~ M,÷~. By definit ion of M,+I, there is 
a probabil i ty measure on [0, 1] which assigns positive probability to the 
open interval (0, 1), such that  

ei =fo ~ Oidp(O), i -- 1, 2, . . . ,  n + 1.  
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It follows that  of necessity 

0 < c n , l < c ~ < . . . < c l <  1. 

But then 

Bn + 1 (e)(n) -- cn +1/ cn < 1 . 

For  i = 1,2 .....  n -  1, the following assertions are easily seen to be equiv- 
alent. 

On+l(C)(i) <-- Bn+i(c)(i + 1). 
(n-i) ( n - i - l )  (n- i lc(n- i  11 

Ci+l Ci+l ~ Ci i+2  

c(n- i  1) ( n - i - l ) 1  (n i I) (n-i) (n - i - I )  
i+1 - -  Ci+2 ] C i + 1  ~ Ci Ci+2 

( n - i - l )  2 (n - i - l )  ( n - i - I )  
ci+l ) <~ ci+2 Ci 

The last inequality follows f rom the Cauchy-Schwarz inequality. Finally, 

B,+~(e)(0) =f0' 0(1 - O)ndp(O) / fo  I (1 - O)ndp(O) > O, 

because p is not solely supported by the endpoints  of [0, l]. 

PROOF OF LEMMA 2.2. We must  show that the equality 

(A.1) B*+l(C) * = B~+l(d) 

for points c , d  in M*+I implies that  c = d. Let p , q  be arbitrarily given 
integers such that  

p>_ 1, q>_O, p + q < n +  l ,  

and denote by x(p q) the condit ion that 

(A.2) c~pq' / c;q'~ = d~q' / d~q-)~ . 

(q) _ (q+l )  
A little algebra shows that  condi t ions  Kp+t ana Kp together  imply 
K~p q). Also, if xl k) is true for all integers i, k such that  i_> 1, k _> 0, i + k = 
n + 1 - j ,  for some integer j_< n - 1, then the same condit ion holds if j is 
replaced b y j  + I. 

By (2.1), the hypothesis (A. 1) is equivalent to the above condit ion with 
j =  0. Thus, induction shows that  (A.I) implies the truth of xl k) for all 
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integers i, k such that i_> 1, k ___ 0, i + k _< n + 1. In particular, it implies 
that xl °) holds for i =  1,2, . . . ,n  + 1. By (A.2), this is equivalent to the 
equalities 

c,+lld,+l = c,,ld, . . . . .  c l ld l  = co~do = 1 , 

which is the desired conclusion. 

PROOF OF LEMMA 2.5. By (2.13) and Lemma 2.4, the statement of 
Lemma 2.5 is true w h e n j  = 0. Let J be a non-negative integer, J___ n, and 
suppose this statement holds when j = J -  1. We show that it must then 
also hold for j = J. Indeed, for i -- 0, 1,..., n - J (deleting the first subscript 
for v, which is always n + 1, as a notational convenience), 

t J) 
1de +1 ( 3 ) / F I J ) ( ~ )  

(J-  l),.ex {J-l)  [J - l )  
: 12i+I tO)  --  Vi+2 ( ~ ) ] / [ ] " I J - l ) ( ~ )  -- 1"i+1 ((~)] 

(J - i )  tV(J+- I )~ , ,  (J- l )  IV(J- = (Vi+i (c~)lvlJ-1)((~))[1 - - t  i 2 to) lVi+ l  ( ~ ) ) ] / [ 1  - t i+i l)(~)lvlJ-l>((~))] 

--  - - b y  i n d u c t i o n  h y p o t h e s i s  

PROOF OF THEOREM 2.1. As a notational convenience, the subscript 
n + 1 which should be understood as attached to M ,  M * ,  B, B* ,  , / ~  and v 
will be deleted throughout  this proof. 

By Lemma 2.2, B ( M )  C ,//g. Hence 

(A.3) v ( B ( M ) )  C v( , / /g)  . 

By Corollary 2.1, B* is well defined at v(cl) for each ~ e ~  so that 
v(6) e M* for each ~ e ~ .  Equivalently, 

(A.4) v ( d t )  C M * .  

To show that v -I = B*lvt./e~, it will suffice in view of Corollary 2.1 to 
show that 

v(B*(c) )  = c, for each c e v ( ~ ) .  

Thus, let c e v(,/~).  There must then exist ~$ e ~ such that c -- v(6) .  By 
Corollary 2.1, it then follows that B*(c) = B*(v( f i ) )  = 6. But then v(B*(c) )  = 

= c .  

To show that B-1 = vl ~M~, we must show that 
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v (B (c ) )  = c, V c ~ M and B(v(cS)) = ~5, V c~ ~ B ( M )  . 

Thus, let c ~ M. By Lemma 2.2, B(c)  ~ ~/g'.. Hence, by Corollary 2.1 

B*(v(B(c))) : B(c ) :  B*(c). 

But then by Lemrna 2.1, 

v ( B ( c ) )  = c .  

Now, let c~ ~ B(M);  then there exists c ~ M such that c~ = B(c) .  But then 
v(c~) = v ( B ( c ) )  = c. Hence, B(v(c~)) = B(c )  = 6. 

We now know that 

v ( B ( M ) ) -  M.  

Thus, combining (A.3) and (A.4), we have 

M C v b / ~ )  C M * .  
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