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Abstract. Motivated by the idea that different causes of failure of a 
given system could lead to different failure distributions, a mixture of 
two-component distributions, one of which is the two-parameter Inverse 
Gaussian (IG) and the other the two-parameter Weibull (W), is proposed 
as a failure model. The IG-W mixture model covers several types of 
failure rates (FR's). It is shown that depending on the parameter values, 
the IG-W mixture model is capable of covering six different combina- 
tions of FR's, as one of the components has an upsidedown bathtub 
failure rate (UBTFR) or increasing failure rate (IFR) and the other 
component has a decreasing failure rate (DFR), constant failure rate 
(CFR), or IFR. A study is made for the mixed FR based on these six 
combinations. 

Key words and phrases: Inverse Gaussian distribution, Weibull distribu- 
tion, mixture, failure rate. 

1. Introduction 

The density function of a mixture of any two components  with density 
functionsJq(t) and A(t) is given by: 

O.1) f ( t )  = p f l ( t )  + qf2(t) , 

where p is the mixing proport ion,  0 _<p < 1 and q = 1 - p .  In particular, 
f ( t )  is the IG-W mixture density function ifJ~(t) and j~(t) are the density 
functions of  the IG(/l, 2) and W(a, c) distributions having the respective 
forms: 

(1.2) )q( t )=  2nt3] exp 2/u2 t , t>O,  ( / u > 0 , 2 > O )  
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Since the component distributions are distinct from each other, the 
mixture distribution is identifiable. For details on the identifiability of 
mixtures of distributions, see for example Everitt and Hand (1980), AL- 
Hussaini and Ahmad (1981) and Ahmad and AL-Hussaini (1982). 

The reliability function R( t )  corresponding to the mixed model (1.1) is 
given by: 

(1.4) R( t )  = p R l ( t )  + qR2( t )  , 

where, for j-~ 1, 2, Rj( t )  is the reliability function corresponding to j~(t). 
The FR function r(t) of the mixed model (1.1) is given by: 

f ( t )  = p f ~ ( t )  + qf2( t )  
(1.5) r(t) = R( t )  p R ~ ( t )  + qR2(t)  = h(t)r~(t)  + (1 - h( t ) ) r2( t ) ,  

where 

1 qR2(t) 
(1.6) h(t)  = 1 + g(t)  ' g ( t ) -  p R , ( t )  ' 

and, for j  = 1, 2, rj(t) is the FR corresponding toil(t). Also, it follows that 

(1.7) r'(t) = h(t)r~(t) + (1 - h(t))r~(t) - h(t)(l - h( t ) ) (r f f t )  - r2(t)) 2 . 

Refer to Barlow and Prochan (1965) for a discussion of the failure rate 
properties of a mixed model. 

2. Special properties of the FR of the IG-W mixture model 

The IG(p, 2) distribution was shown by Chhikara and Folks (1977) to 
have an UBTFR if 2 is not large relative to/~. In the latter case (i.e., if the 
shape parameter 2/I.t gets large), the IG distribution was shown by Tweedie 
(1957) to be approximately truncated N ( p ,  p3 /2 ) .  In this case, the distribu- 
tion has IFR. 

It is well known that the W(a, c) distribution has DFR, if c < 1; CFR, 
if c = 1 and IFR, if c > 1. 

The above discussion shows that the IG-W mixture model will be 
adequate for situations where one cause of failure has an UBTFR or IFR 
and the other cause of failure has a DFR, a CFR or an IFR. The resulting 
six combinations of FR's that can be covered by the IG-W mixture model 
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are therefore given by: ( IFR,  DFR) ,  ( IFR,  CFR),  ( IFR,  IFR),  (UBTFR,  
DFR) ,  (UBTFR,  CFR)  and (UBTFR,  IFR).  

To study the behaviour  of the F R  r(t) of the IG-W mixture  model ,  we 
propose the following limit values of r(t) and r'(t) which will be needed and 
can be shown to hold true. 

PROPOSITION 2.1. For r(t) and r'(t), given by (1.5) and (1.7), we 
have 

(2.1) li_mo. [r(t)] = 

oo, c <  1, 

q/a ,  c =  1, 

0, c > l ,  

(2.2) 

(2.3) 

(2.4) 

, 

!ira [r(t)] = I /a ,  

,1/2/z 2 , 

- -  OO,  

- p q / a  2, 

1!~_ ÷ [ r ' ( t ) ]  = + ~ ,  

2q /a  2, 

O, 

lim [r'(/)] = 0 .  

c < l ,  

c = l  

c > l  

and 

o r  

c < l ,  

c = l ,  

1 < c < 2 ,  

c = 2 ,  

c >  2, 

2 1 
~-~2>-_ - , 

c~ 

3. Behaviour of the FR of the IG-W mix ture  model 

The values of the five parameters  involved in the mixture do affect the 
behaviour  of the F R  curve. In particular,  the F R  curves are studied when 
c <  1, c = 1 and c >  1. 

3.1 c < l  
F r o m  (2.1) and (2.2) of Proposi t ion 2.1, it was shown that  if c < 1, 

then r(t) --. + oo as t --- 0 + and r(t) ---, 0 as t --, o o .  Since rift) < 0 for all t (the 
W(a, c) distr ibution has D F R  if c < 1), it follows from r'(t), given by (1.7), 
that: 

(a) I f p  is chosen so that  h(t)rf(t) is dominated  by the other two terms 
in r'(t), then r ' ( t )< 0 on (0,oo) and the mixed IG-W model  has D F R  
(decreases f rom + oo as t --* 0 ÷ to 0 as t --- o¢). 
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(b) The F R  curve decreases f rom + ~ (as t ~ 0 ÷) to a point,  say to. If 
p is chosen so that  h(t)r((t) dominates  the other two terms in r'(t) on (to, t*), 
then r '( t)> 0 on (t0, t*), where t * <  t~, t~ being the point  at which rl(t) 
attains its max imum.  This can happen  since the IG distr ibution has an I F R  
on (0, tl). Since r~(t) < 0 on (t~, ~) ,  r'(t) < 0 on (t~, ~ )  and the FR  of the 
mixed model  decreases to 0. On the interval (t*, t~), rift) -- 0 as t --" t~ and 
so the term h(t)rfft) is domina ted  by the other two terms in r'(t) so that  
r'(t) --" 0 on (t*, tO. Summarizing,  if p is chosen so that  h(t)rf(t) dominates  
the other two terms in r'(t) on (t0, t*), then the FR  of the mixed model  
decreases f rom + ~ to a m in imum value to on (0, to), increases on (to, t*) 
and decreases again on (t*, ~ )  to 0. 

3.2 c = l  
F r o m  (2.1) and (2.2), r(t) --* q / a  as t --* 0 + and r(t) --. rain {2/2/12, l /a}  

as t ~ ~ .  It may be observed that  when e = 1, then r~(t) = 0. Therefore, 

(3.1) r'(t) = h(t)rf(t) - h(t)(1 - h(t)) ( rift) - la )2. 

Two possible cases arise: 
(a) If 2/2/12 < q/a ,  where q is large and a is small, then we have two 

possibilities: 
(i) 2/2/12 ~ q/a.  In this case, the first term of (3.1) will be smaller 

than the second term and so r'(t) < 0 on (0, ~) .  Therefore the IG-W mixed 
model  will have a D F R  (decreases f rom q~ a as t--" 0 ÷ to the asymptot ic  
value of 2/2fl  2 as t --- ~).  

(ii) 2/2/12< q/a,  but the two values are close to each other. In this 
case, the FR of the mixed model  decreases on the interval (0, to) f rom the 
value q~ a to a point  to (to being close to zero). With such a choice of p ,  
h(t)rf(t) will be greater than the second term in (3.1) on the interval (to, tO, 
where tl is the point  at which r~(t) attains its max imum and so r(t) increases 
on (to, t~). On (t~,~) the FR  r(t) decreases again to the asymptot ic  value 
2/2/z 2. 

(b) If 2/2/12 > q/a ,  we shall always have a FR  r(t) having a similar 
shape as that  obtained in the possibility (ii) of (a) above, except that  its 
asymptotic value will be min {2/2/.t 2, I /a}  as t ~ ~ .  

3.3 c >  1 
F r o m  (2.1) and (2.2), r( t ) - - '0  as t - - 0  + and r( t)-- '2/21t  2 as t--.oo. 

Suppose  that  t * =  min {t*,t*}, where t* and t* are the modes  of the 
IG(/t, 2) and W(a, c) density functions, respectively. F rom (1.5), both f l( t)  
andf2(t)  in the numera tor  of r(t) increase on (0, t*), whereas the denomina-  
tor decreases on the same interval. Therefore, r(t) increases on (0, t*). 
Rewrite r'(t), given by (1.7), as follows: 
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(3.2) 

Since rift) --" 2/2/z 2 as t --- ~ and when c > 1, r2( t )  ---, ¢~ and h(t) --" 1, there 
exists a t3 > t* such that  r'(t) < 0 on (t3, ¢~). That  is, r(t) decreases on (t3, ~ )  
reaching the asymptot ic  value of 4/2//2 as t --- oo. On the interval (t*,/3) tWO 
cases arise: 

(a) If either 2 is close to one and c is large or 2 is large and c is close 
to one, then for large values of p ,  there exists a t~, t* < t~ < 13 such that  r(t) 
cont inues to increase on (t*, t0 ,  decreases on (t~, 12), tl < t2 < t3 and then  
increases again on (t2, t3). The decrease of r(t) on (tl, t2) is due to the large 
difference between rift) and r2(t) on this interval, which causes the third 
term in (3.2) to dominate  the other two terms and hence r'(t) < 0 on (t~, t2). 

Summariz ing,  we find in these cases that  r(t) first increases on (0, tl), 
decreases on (tl, t2), increases again on (t2,/3) and finally decreases to the 
asymptot ic  value of 4/2//2 o n  (t3, oO).  

(b) For  modera te  values of both  2 and c, r(t) continues to increase on 
(t~, t3). Therefore,  r(t) increases on (0, t3), and decreases on (/3, ¢~) to reach 
the asymptotic value of 2/2//2 . 

If either 2 is close to one and c is large or 2 is large and c is close to 
one, then for small values of p,  r(t) takes a shape similar to that  described 
for moderate  values of both  2 and c. 

Figure 1 illustrates the mixed F R  with componen ts  having (UBTFR,  

1.5 

r ( t )  

Case (2): (~u = 1, 2 = I,  c = 0.5, a = l , p  = 0.5) 

' . /  
"~ , / f ~ i  - "  - ,  Case (3): (~ = l, 2 = l, e = O.5, a = 1, p = 0.8) 

x ,  

Case (1): (#  = l, 2 = 1, c = 0.5, a = l , p  = 0.2) 

0.5 

Fig.  1. 

! i ; 

1 2 3 

M i x e d  F R  w i t h  c o m p o n e n t s  h a v i n g  ( U B T F R ,  D F R ) .  

t 
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D F R ) :  IG(1,  1), W(0.5,  1) fo r  d i f ferent  values  o f p .  It  m ay  be observed  tha t  
Case (1) of  Fig. 1 is an example  of  a D F R  for  the mixture ,  yet  one  o f  the 

two c o m p o n e n t s  does no t  have a D F R .  
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