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1. Introduction 

Let S be an arbitrary set (e.g., a subset of Rd). A spatial birth-and- 
death process on S is, loosely speaking, a continuous time Markov chain 
with states in the space of all finite point configurations in S, and so that a 
transition can only be a birth of a new point or a death of an existing point 
(for a formal and more general description and definition, see Preston 
(1977) and Section 2 in the present paper). The object of this paper is to 
study the rate of convergence to equilibrium for such processes. 

Spatial birth-and-death processes are interesting for many reasons. 
Obviously, they might be used as models for many dynamic spatial 
phenomena (cf. MOiler and SOrensen (1989)). Their relevance in spatial 
statistics lies in their close relationship to Gibbs processes (Preston (1977)) 
and their use in simulation of spatial point patterns (Kelly and Ripley 
(1976) and Ripley (1977)). Simulated realizations can be seen in Ripley 
(1977, 1981), Diggle (1983) and Baddeley and M~ller (1989). 

The present paper is organized as follows. Unique existence and 
convergence of spatial birth-and-death processes are discussed in Section 2. 
In Section 3 we give sufficient conditions for geometrical convergence of a 
general spatial birth-and-death process to equilibrium, to the best of my 
knowledge, similar results have been given only in the special case of a 
hard core birth-and-death process (see Lotwick and Silverman (1981)). The 
results in Sections 2 and 3 are related to well-known results for simple 
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bir th-and-death processes (i.e., when the process counts only the number  of 
individuals alive). 

2. Short diversion into spatial birth-and-death processes 

In this section we briefly discuss some results for spatial birth-and- 
death processes. Most  of the results can be found in Preston (1977), but 
they are included in the present section for the sake of completeness and 
since they provide a better unders tanding of the condit ions and results in 
Section 3. 

We start with a description of a spatial bir th-and-death process. For 
n - - 0 ,  1 .... , suppose (£2,,.~r,) is a measure space such that  the f2,'s are 

disjoint sets and f20 consists of a single element denoted 0. Let I2 = ~) f2n 
n=0 

and let .~r  be the a-algebra on f2 generated by (.~',), n _> 0. Now, assume 
there is a cont inuous  time homogeneous  Markov  chain {X(t): t _> 0} with 
state space i2 and such that  if X( t )  = x ~ f2,, then an immediate transit ion 
after t ime t can only be to a state in either £2,+ ~ or I2,-1. Then {X(t): t _ 0} 
is called a spatial bir th-and-death process. This process is characterized by 
two measurable functions fl, 6:I2 -- [0, oo) with 6(0) -- 0, and probabili ty 
kernels K~"I: f2n x .~',+1 --" [0, 1], n _> 0, and KJ"): I2, × t~Jr'n- 1 ~ [ 0 ,  1], n _> 1 
as follows. Suppose X( t )  = x e I2,, and let r be the waiting time to the first 
t ransit ion after t ime t. Then,  given that  X( t )  = x, r is exponential  distri- 
buted with mean 1/a(x)  (taking 1/0 = oo) where a(x)  = fl(x) + 6(x),  X ( t  + r) 

O~,t with probability f l ( x ) /a (x ) ,  and 

(2.1) 

(2.2) 

K~")(x ,F)  = P ( X ( t  + r) ~ F I X ( t )  = x, X ( t  + r) E fJ.+~), 

K~"I(x,F) = P ( X ( t  + z) ~ F I X ( t )  = x,  X ( t  + r) ~ (2~-~) . 

The results in this paper  do not  depend on the choice of the probabili ty 
kernels K~ n~ and K~ hI. The funct ions fl and 6 are called the birth rate and 
the death rate, respectively. 

The above-introduced terminology might be illuminated by the follow- 
ing cons t ruc t ion  of ( f 2 , ~ r )  f rom a given measure  space ( S , , ~ ) .  Let 
, ~ ,  = . ~  ~) ... ~) ~ be the product  a-algebra on S~ = S x ..- x S (n times), 
g2~ the set of all point  configurat ions {x~,..., x,} in S with n (not necessarily 
distinct) points, and ~r~ the a-algebra induced by the mapping  ogn: S~ --- f2~ 
defined by ~o~(xl,..., x,) -- {xl,..., xn}. Then transitions ~2, -~ f2,+1 or f2~ -- 
£2~-~ correspond to either adding a new point  (a "birth") or deleting an 
existing point  (a "death"),  respectively. Especially, if S consists of a single 
point,  £2, may be identified with {n}, so the process {X(t): t _> 0} is a usual 
bir th-and-death process having the non-negative integers as state space. We 
call such a process a simple bir th-and-death process and denote the birth 
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rate by fin = fl({n}) and the death  rate by 6(n) = 8({n}). Simple birth-and- 
death processes have been studied by a number  of authors (see, e.g., van 
D oorn (1981) and the references therein). 

Suppose two measurable functions fl,& (2---[0,~o) and probabili ty 
kernels K~n): On x ~ n + l  ~ [0,  1], n > 0, and K~n): I2n x , ~ n - 1  -'~ [0,  1], n _> 1 
are given. In order to ensure the unique existence of a spatial bir th-and- 
death process {X(t): t ___ 0} with birth rate fl, death rate 6, and K~ n) and KJ n) 
equal to the right hand side of (2.1) and (2.2), respectively, condit ions on fl 
and 6 must  be imposed.  This is due to the possibility that  an infinite 
number  of transitions can occur in a finite t ime with a positive probability. 
In fact, the process exists uniquely if and only if Kolmogorov 's  backward 
equat ions  for the process have a unique solution. It was Preston's  idea to 
compare  these backward equations with those of a simple bir th-and-death 
process with rates 

(2.3) ft, = sup fl(x), fin = inf 6(x) (6o = O) 
X E a'2n x ¢: ~Qn ' 

assuming fin < ~ for all n. Using a coupling argument ,  Pres ton (1977) 
proved that  if there exists such a simple process {x(t): t_> 0} and this is 
unique,  then the spatial bir th-and-death process {X(t): t _> 0} exists unique- 
ly and for all t > 0 and m = 0, 1,... holds 

m 

(2.4) ~ Q,(x, £2,) >_ n~oqt(j n) 
n = 0  = ' , 

whenever x E 12;, j > i ___ 0, where 

(2.5) Qt(x, F)  = P(X(t)  E F I X(0) = x), F ~ ,~", 

(2.6) q,(j, n) = P(x(t)  = nix(0) = j ) ,  

(cf. Pres ton (1977), Propos i t ion  6.1 and formulae (6.1)-(6.3)). Reuter  and 
Ledermann  (1953) (see also Karlin and McGregor  (1957a)) give sufficient 
condit ions for the unique existence of the simple process: there exists no > 1 
such that  either 

(2.7) ft, = 0 for all n _> no 

o r  

(2.8) ft, > 0 for all n > no and ~ wn = ~ ,  
n = n o  

holds, where 
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1 & 6.--'6.o+1 6.'"6..  
. 

In the following it is therefore assumed that either (2.7) or (2.8) holds. 
Now, let ), be an arbitrary initial distribution of the spatial birth-and- 

death process, so 

Qt(F) =fQ,(x,  F)?(dx), F ~ ,~" 

is the distribution of X(t). The following theorem gives sufficient condi- 
tions under which lim Qt(x,.  ) and hence lira Q,(. ) exists. 

t ~oo t ~ 

THEOREM 2.1. Suppose that 6, > 0 for all n >_ 1 and that one o f  the 
following conditions holds: 

(2.9) 

(2.10) 

there exists no >_ 0 such that ft, = 0, for all n > no. 

fin > 0 for all n > 1 and we have 

(a) ~ fll...fl.-i 
n=2 61 " ' "  a n  < ~ '  

(b) &"" & 
n=l fin 

Then for all F ~ ,~ ,  

(2.11) v(F) = lim Qt(x, F) 
t ~  

exists and does not depend on x ~ ~ ,  and v is the unique invariant 
probability measure (or equilibrium distribution)for the spatial birth-and- 
death process; i.e., 

(2.12) v( F) = f Qt(x, F)v(dx) , 

for all F e ~Z. 

We conclude this section with some remarks on Theorem 2.1. 
(i) The theorem is due to Preston ((1977), Proposition 7.1 and 

Theorem 7.1); note that in the case where fl0 = 0, the condition (a) in (2. I0) 
seems to have disappeared in Preston's paper. The proof of Theorem 2.1 is 
based on well-known properties of simple birth-and-death processes and 
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the fact that the simple process with birth rate ft, and death rate 6, 
converges more slowly to the state 0 than the spatial process (cf. (2.4)). 

(ii) The theorem includes both the case where the state 0 is a 
reflecting barrier, i.e., fl0 > 0, and the case where 0 is absorbing, i.e., fl0 = 0. 
In the latter case, the process is called a truncated spatial birth-and-death 
process. 

(iii) The invariant distribution for the simple birth-and-death process 
with birth rate ft, and death rate 3, exists and is unique under the 
conditions of Theorem 2.1, and its density with respect to the counting 
measure is given by pro,, n=0 ,1 ,2 , . . . ,  where the Itn are the potential 
coefficients defined by 

(2.13) n0  = 1,  n .  "'" & ,  

for n_> 1 and where p = 1 re, (Karlin and McGregor (1957b, 1965)). 

Combining (2.4) with (2.11), it follows that the invariant distribution for 
the simple process dominates the invariant distribution for the original 
process in the following sense: 

(2.14) ~ v(O,,)<_p ~ ~,, for all m_>0. 
n = m  ?~=m 

(iv) The conditions in (2.10) guarantee that the backward and 
forward equations for the simple process have a unique solution (Karlin 
and McGregor (1957a)), and in this case and when fl0 > 0, (a) holds iff the 
simple process is positive recurrent (Karlin and McGregor (1957b)). As 
remarked by Preston (1977), it would be better in the transient case to 
compare the original process with a simple birth-and-death process with 
birth rate ]~,-- xinf fl(x) and death rate ~, = s u~, 8(x). Notice also that the 

conditions (2.7) and (2.9) are identical; and under (a), condition (2.8) with 
no = 1 and condition (b) in (2.10) are equivalent. Thus, under the condi- 
tions of the theorem, the spatial birth-and-death process exists and is 
uniquely defined. 

3. On the rate of convergence to equilibrium of general spatial birth- 
and-death processes 

Let the situation be as in the previous section and consider a spatial 
birth-and-death process on S. Theorem 3.1 and Corollary 3.1 give new 
results for the rate of convergence of the process in general. Comments on 
the theorem and its corollary are appended below. The proof of the 
theorem is given at the end of this section. 
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THEOREM 3.1. Suppose the conditions o f  Theorem 2.1 hold, and let 
and x be any probabil i ty  measures on ((2, ,~;) which satisfy the fo l lowing  

conditions both f o r  Z = ~' and z = x: 

(3.1) Z ( t ~ Q " )  = 1 . : o  

(3.2) .:2x z (~ . )  /~1 ... /~.-~ 

t.'f (2.9) holds ,  

< ~ tf (2.10) holds .  

Then there exist real constants c > 0 and 0 < r < 1 such that 

(3.3) sup fQ,(x,F)?(dx) - f Q , ( y , F ) x ( d y )  <_ e l .  
F~;~" 

Moreover,  in the truncated case (i.e., when (2.9) holds) c and r can be 
chosen independently o f  ~ and x. 

COROLLARY 3.1. Let the situation be as in Theorem 3.1, and let v be 
the invariant distribution f o r  the spatial birth-and-death process. 

If(2.9) holds then there exist c > 0 and 0 < r < 1 such that 

(3.4) sup v ( F ) -  f Q , ( x , F ) 7 ( d x )  I < c / ,  
F ¢ , ~  

for  all initial distributions ~ which satisfy (3.1). 
If  (2.10) holds with flo = 0 and y satisfies (3.2), then there exists c > 0 

such that 

(3.5) fQ,(x,O)e(dx) = 1 + O(e-C'). 

Suppose (2.10) holds with flo > 0 and y satisfies (3.2). I f  

(3.6) 
.--2 V -61 ~ ~. < ~ 

and 

(3.7) ft, <- ~n+ l f o r  all sufficiently large n 

hold, then there exists c > 0 such that 

(3.8) 
F ~ , ~  
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PROOF OF COROLLARY 3.1. Assume Theorem 3.1 is true. Since v 
satisfies (3.1) when (2.9) holds, (3.4) follows from (3.3). I f / 7 o = 0 ,  then 
v(0) -- 1, so (3.5) is seen to be equivalent to (3.3). Suppose (2.10), (3.6) and 
(3.7) hold and fl0 > 0. By (2.13) and (2.14) 

? l = m  # i = m  

for all m >_ 0 and (3.6) and (3.7) give 

l ',/-< < = ,  l l vi- . <_ l l , 

oo 

for all sufficiently large n. Combining these results, we obtain .~2v(12.)/ 

< ~ ,  i.e., v satisfies (3.2). Hence (3.8) follows from (3.3). [] 

Remarks. (i) For truncated spatial birth-and-death processes it is, 
of course, only interesting to consider initial distributions which satisfy 
(3.1). Lotwick and Silverman (1981) proved (3.4) in the special case of a 
hard core birth-and-death process. In fact, their proof applies as well for a 
general truncated spatial birth-and-death process (see Lemma 3.5 below). 

(ii) Condit ion (3.2) is trivially satisfied when the support of Z is 
bounded in the sense that Z(f2,) -- 0 for all sufficiently large n. This holds 
in particular if Z is a point measure, i.e., 

sup I Q , ( x , F ) -  Q , ( y ,F) I  = O(e-") , 

for x, y e 1-2. Furthermore,  if either the invariant distribution v satisfies (3.2) 
or if (3.6) and (3.7) hold, then 

sup Iv(F) - Q,(x, F)I = O(e-") ,  
F e . ~  

for x e £-2. Observe also that (a) in (2.10) holds under (3.6). In fact, 
conditions (3.6) and (3.7) are often satisfied in applications (cf. M¢ller 
(1987)). 

(iii) As noted in the proof of Corollary 3.1, the results (3.3) and (3.5) 
are equivalent when 0 is an absorbing state and (2.10) holds. Especially, for 
each x ~ I-2 there exists c > 0 such that 

(3.9) Qt(x, 0 ) =  1 + O(e -ct) when fl0 = 0 .  

(iv) In the proof of Theorem 3.1 we compare the spatial birth-and- 
death process with a simple birth-and-death process with birth rate ft, and 
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death rate 6n. Under (2.10) it is well-known that the simple process is 
exponential ergodic, i.e., there exists a c > 0 such that 

(3.1o) q~(m, n) = p~z, + O(e-~t), 

for all m, n with m, n _> 0 if fl0 > 0 and m _> 0, n _> 1 if fl0 = 0, where we have 
used a notat ion as in (2.6) and (2.13) (see Callaert (1971, 1974) and van 
Doorn  (1981). In fact, for a simple process which is either recurrent and 
with flo > 0 or where the state 0 is certain and absorbing, condition (2.10) is 
necessary and sufficient for exponential ergodicity). Moreover,  the simple 
process is irreducible on {0, 1,... } when fl0 > 0 and fin, ~n > 0 for all n >_ 1, 
so if (3.10) holds for a particular choice of m , n  and with c replaced by 
Cmn > 0, then there exists c > 0 such that (3.10) holds for all m, n _> 0 (since 
exponential  ergodicity is a solidarity property for an irreducible Markov 
chain with discrete state space (Kingman (1963))). Combining this with 
Callaert ((1974), Theorems 1 and 3) it follows that under the conditions of 
(2.10), the result (3.9) implies (3.10) when fl0 = 0; and if fl0 > 0 and (3.6) 
holds we have again a stronger result than (3.10), since by (3.8) 

sup [ q r ( m , A ) -  
a c {0,1,...] 

P .~arc" ] =  O(e-") ,  

for m > 0. Observe also that the conditions (3.2) and (3.6) are equivalent 
for a simple process with fl0 > 0. 

In the remaining part of this section we prove Theorem 3.1. It follows 
from the next lemma that it suffices to consider the waiting time until two 
independent simple processes are both in the state 0. 

LEMMA 3.1. Let {X(t): t >_ 0} and { Y(t): t > 0} be two identical distri- 
buted spatial birth-and-death processes with birth rate fl and death rate ~. 
The initial distributions o f  the two processes are denoted by 0 respective 
¢~. Similarly, let {x(t): t > 0} and {y(t): t > 0} be two simple birth-and-death 
processes with the same birth rate fin = sup fl(x) and the same death rate 

X E I2~ 

0n = inf ]~ ~(x) and with initial distributions 0 and ~ given by 

O(n) = O(f2.), ~(n) = q~(£2.) for  all n >_ O . 

Furthermore, define the stopping times 

T = inf {t > 0: X(t) = Y(t) = 0}, 

~: = inf {t >_ 0: x(t) = y(t) = 0} 
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(taking inf O = oo). Suppose  the backward equations f o r  the simple proces- 
ses have a unique solution (recall that this is the case under the conditions 
o f  Theorem 3.1). Then f o r  all F ~ .~ ,  

1 

< Pe×~(T> t) <_ Po×~(r > t ) ,  

where under the probabil i ty  measure Pe×~ the spatial processes {X(t): t > 0} 
and  {Y(t): t _  0} are independent ly  distr ibuted,  and  where under the 
probabil i ty  measure Pe×~ the simple processes {x(t): t -> 0} and  {y(t): t _> 0} 
are independently distributed. 

PROOF. The proof  of the first inequality is analogous to the p roof  of 
L e m m a  2.6 in P i tman  (1974): By the strong Markov  proper ty  of the 
process Z(t) = (X(t), Y(t)), 

Po×~(X(t) ~ F, T <_ t) = Pe×,(Y(t)  ~ F, T < _ t) , 

and hence 

I fQ,(x, F)O(dx)-fQ,(x, F)~(dy) [ 
= IPo×~(X(t) ~ F)  - Po×,(Y(t)  ~ F)I 

= IPo×,(g(t)  ~ F, T >  t) - Po×~(Y(t) c F, T >  t)l 

<_ 2Po×~(T> t) .  

The last inequality in L e m m a  3.1 is a consequence of Preston ((1977), 
Proposi t ion 6.1 and (6.1)-(6.3)), since we get 

Pe×~(T> t lX(0) = x, Y(0) = y) 

<_ eo×~(z> tlx(0) = m, y(0) = n ) ,  

for all x ~ f2m and y ~ On. 

LEMMA 3.2. Theorem 3.1 is true in the truncated case, i.e., when 
(2.9) holds. 

PROOF. With a no ta t ion  as in L e m m a  3.1, let z be the double simple 
process z = {z(t): t _> 0} where z(t) = (x(t),y(t)).  Then for all (m, n) # (0, 0), 
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Po~,~, (first transition for z occurs before time t and 

is a death [z(0) = (m, n)) 

= [1 - exp { - (am + an)t}] - -  
6m + 6n 

am q-- (~n 

> [1 - exp { - am+,t}] ~_m÷n 
[~m+n 

= K ( m  + n, t), say,  

= max ([3i + [3.i), 3m i.j: i+j= m where a,, = [3m + 6m, [~m i,j: i+j=m : min (6i + 6j) and a,, = 

/~m + ~,,. Since ~m > 0 for all m _> 1, we have K ( m ,  t) > 0 for all m _> 1. The 
remaining part of the proof  is now analogous to the proof of Theorem A in 
Lotwiek and Silverman (1981). [] 

Not surprisingly, the proof of Theorem 3.1 is much easier in the 
t runcated case than in the case of (2.10). In the latter case we shall use the 
spectral representation of the transition probabilities qt (m,  n) of the simple 
birth-and-death process with birth rate [3n and death rate 6n. We start by 
recalling this spectral representation when (2.20) holds and [3n > 0, 6n > 0 
for all n ___ 1. 

For  [30 > 0 define the polynomials Rn(U), n = 0, 1 .... for all u _> 0 by 
the recurrence relations 

Ro(u) = 1 ,  

- uRo(u)  = - ([30 + 6o)Ro(u) + floRl(U), 

- uRn(u)  = 6nRn-l(U) - ([3n + 6n)Rn(U) + [fnRn+l(u), n_>2 .  

(In the literature "R,"  is usually denoted by "Q,", but since "Q: '  denotes 
the transition kernels of the spatial birth-and-death process, we use the 
present notation in order to avoid confusion.) When fl0 = 0 we define the 
polynomials R * ( u ) ,  n = O, 1,..., u > 0 as above but with ft, replaced by 
[fn ~ = [ f n + l  and ft, replaced by fi* =6n+l. Moreover,  let re* denote the 
potential coefficient defined with respect to fl*, fi*, i.e., 

zr* = 1 ,  

~*  = P *  -.. ~ * - 1 / 6 "  ... 6 "  =/~1 . - . / ~ , l &  ' 6,+1, n_>l  . 

Then it has been shown by Karlin and McGregor  (1957a) that under (2.10) 
the polynomials R, (or R*) are orthogonal  with respect to a unique 
measure ~ (or ~,*) on [0, ~) ,  that is 
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(3.11) 

(3.12) 

rr,, Rm(u)R.(u)~(du) = l{m = n} if 

rc R*(u)R*(u)qJ(du) = 1 {m = n} if 

and the spectral representation of qt(m, n) is given by 

(3.13) 

(3.14) 

qt(m, n) = lr, e-U'R,~(u)R,(u)~(du) if 

:f: qt(rn + 1, n + 1) = Ir e-U'R*(u)R*(u)~,*(du) if 

for all m, n _> 0. Fur thermore ,  

f l o > O ,  

= O ,  

(3.15) qt(m + 1,0) = 31 qs(m + 1, 1)ds if fl0 = 0 ,  

f l o > O  , 

= 0 ,  

(3.18) ~, y , / ~  < oo if /80 > 0 
n=l 

(3.19) ~ y , , /~*-~ < ~ if fl0 = 0 .  
n=l 

By L e m m a  3.1 it suffices to prove that  (2.10) and (3.18)-(3.19) imply that  

(3.20) Z P(v > tlx(0) - m, y(0) = 0)y,~ = O(e -c,) 
m=l 

for some c > 0, where the simple processes {x(t): t _> 0} and {y(t): t _> 0} are 
independent .  Below we exhibit the condit ional  moments  of the waiting 
t ime z with respect to 

G~(t) = P(z <_ tlx(0) = m, y(0) = 0), m >__ 1 . 

(Callaert (1971, 1974) and van Doorn  (1981)). 
Now, to prove (3.3) in Theorem 3.1, assume wi thout  loss of generality 

that  y satisfies (3.2) and x is the point  measure x ( F ) =  1{0 e F}.  Let 
y, = y(f2,), i.e., (3.2) states that  

(3.16) V((0, ul)) = 0 and ~u(0) -- p e (0, 1) if fl0 > 0 ,  

(3.17) ~,*([0, u*)) = 0 if fl0 = 0 

for all m _> 0. Finally, we recall that  under  (3.12) there exist real constants 
ul > 0 and u~* > 0 such that  
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LEMMA 3.3. A s s u m e  (2.10) holds.  Then G,n(. ) is a d i s t r ibu t ion  on 
[0, ~)  a n d  the m o m e n t s  

a~ k) = tkGm(dt),  m,  k = 1,2, . . .  , 

exist  a n d  are g iven by 

(3.21) 

(3.22) 

f= R*-,(u) a~ kt=k!ol  , uk+l ~u*(du) when  f l o = O ,  

k 

arm k) = k! j~I Ck-j Mjt~) when  flo > O, 

where 

M)~,__ _~f[ 1- R~(u) 1 ~ ~ 1- R~(u) ~,(du)~,(do) u; ~,(du) + y L ,  L, ~ + o); 

C o = l ,  

cp = ~, (il + ... + ip)! K~, ... K / ,  p >_ 1 ,  
, ...... i.~lo, l,.,.,pt i1! "" ipl 
i~ + 2i2 +. . .  +pip =p 

and  where  

2 f= v(du) 1 f= f= = , u; + - 7  J"' J., ~,(du)~,(dO)(u + 0) 1 

PROOF. First, let flo = 0. Since 

oo 

Gin(t) = q , (m,  O) = 1 - n ~= -I q t (m,  n) , 

it follows from (3.14) that lim Gin(t) = 1, so G,,(" ) is a distribution function 
t - -OO 

on [0,~).  By (3.14), (3.15) and (3.17), 

fu °~ 1 - e -ut 
= - -  R * - l ( u ) q l * ( d u ) .  (3.23) Gin(t) 61 : u 

Define the Laplace transform 

X, .  ( s )  = e - S t G , .  ( d t )  , 



RATE OF CONVERGENCE OF BIRTH-DEATH PROCESSES 577 

for s >_ 0. By (3.23) 

, l Rm*-l (U) 
)(,m (S)  = 61 l* 1 + (s/u) u (du) , 

and hence for all small s > 0, 

~o  

z,(s) = ~, Zo(_ s )kf .  ,~ R*m-,(~) uk+l qJ*(du) , 

whereby (3.21) follows. 
Next, let flo > 0 and define the Laplace transforms 

fj (3.24) ~Om(S) = e-StGm(dt),  m >_ 1 ,  

fo r e  -s t  m (3.25) Xm(S) = q,(  , O)q,(O, O)dt, m >_ O,  

for s > 0. By a standard enumeration of paths it is found that 

t 0 (3.26) q , (m ,  0)q,(0, 0) =fo q,-~( , O)2Gm(ds) 

From (3.24)-(3.26), we get 

(3.27) Zm(S) ---- 9m(S)Xo(S).  

By (3.13) and (3.15), q t ( 0 , 0 ) > 0  for all t>_0, i.e., X0(s) > 0  for all s > 0 .  
Hence combining (3.13), (3.16), (3.25) and (3.27), we obtain 

l f ?  u + s  
1 - ~'m(S) = 

1 + - ~ f ~  s 
' U + S  

1 t "~ c oo s 
- - ~ u ( d u )  +-~ L, L, u + o + s ~u(du)~u(do) 

+ 

l f ~ f ~  {1 - R , . (u) l~ , (du)~ , (do)  

±r l + ~ ¢ ( d u )  + f s ~,(du)~,(do)  
' u + s  p 2~u ' 'u '  u + o + s  

for all s > 0. Since s~ (u  + s) --" 0 boundedly on 0 < u < oo as s --- 0, we have 
for all small s > 0 
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~m(S) -- 1 = ( _ s )  j 1 ~ 1 - R m ( u )  
J , uj ~u(du) 

. r - r - .  .m(U. ]} 
+ p=.u,.. ,  ~ + o) 7 ~(du)~u(do) 

[ 2 : :  , 
x - 1) i - -  ~u(du) 

i= ' U + S  

l ( = f  ~ s 
+ 7 J"' J"' u + v + s 

i 
~,(du)~u(do) } 

= N1 × N2, say ,  

where  

oo  

NI : ~:, ( - s) jM/m) 
j =  

and 

N2 = ( - s) j - -  
i=0 j 

: , = o  = - s ) j K j  

oo 

= pE__o(_ - s )%.  

qJ(du) l f ~  f ~ , 1] 
u] + -~J,, G, ~u(du)~u(dO)(u + o): 1]' 

Hence,  for  all small  s > 0, 

k 
(3.28) ~o,.(s) = 1 + ~=1 ( - S)k:~=lCk-jMj(m)" 

=G Thus  p m ( 0 ) =  1, i.e., fo m(dt) = 1 by (3.24), so G , , ( ' )  is a d i s t r ibu t ion  

func t ion  on  [0, ~) .  Finally,  (3.22) fol lows f r o m  (3.24) and (3.28). [] 

LEMMA 3.4. Let the situation be as in Lemma 3.3. Then there exist 
real constants a > 0 and b > 0 such that for  all m, k = 1 , 2 , . . ,  

(3.29) a~ k) < _ k!abk / ~ when flo = O, 

(3.30) a~ k) <_ k!abk(1 + 1/Vr~-m~) when flo > O. 

PROOF. Observe  first tha t  C a u c h y - S c h w a r t z ' s  inequal i ty  and  (3.11)- 
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(3.12) give forj, k ,m  = 0, 1,..., 

IS: I ' R*(u) ~u*(du) < ~ ,k+l (3.31) ,. uk+-------r-- _ when flo = 0 
V re,~ ul 

(3.32) I f 5  Rm(u) 1 when flo > 0 ,  

~ ~ R m ( u )  1 
(3.33) f~, f", (u + o) j ~u(du)~(do) <_ Vc~(2ul)j  when flo > O. 

Now, for flo = 0, (3.21) and (3.31) give (3.29) with a = a l / u *  and 
b = 1/Ul*. 

Suppose flo > 0. Then, since Ro(u)-- 1 and no-- 1, (3.32) and (3.33) 
give 

2 1 )1 
~<_ 7 + ~  ~<_d,/.~, 

for a l l j  > 1, where dl = 2/p + 1/2p 2 > 5/2. Hence by definition of cp, 

2dl)P ( i l + ' " + i p ) ! _ <  _ _  , 
(3.34) cp <_ (dl/Ul)Pi ...... ip~{0,1,...,p} i~I "- ifl Ul 

it+2h+ ...+pip=p 

for a l lp  _> 0, since the sum in (3.34) is equal to 2 p-1 fo rp  _> 1. Furthermore, 
by (3.32) and (3.33), 

(3.35) Mj(m)_ < 1 + 1 + ~-~_< 1 + ~  d2/u{, 

for all j_> 1, where dE = (1/p + 1/2/92). Combining (3.34) and (3.35), we get 

ck-j Mj Iml < 1 + 
j:, - .~ ~ Z T i  

<_ 1+ d2 - -  , 
Ul 

for all m, k _> 1, since 2dl > 5. Now, (3.30) follows from (3.22) with a = dE 
and b = 2d1/u1. [] 

Finally, we prove that (3.20) holds under (2.10) and (3.18)-(3.19). 
Suppose (2.10) holds. Ifflo -- 0, then (3.29) gives 
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o~ k 

l k ( l  -- Gin(t)) <-fo s Gm(ds) <_ k ! a b k / v r ~ - ~  , 

k, m = 1 ,2 , . . . ,  and hence with a0 = m a x  {a, 1 }, 

tk(1-G,,(t))<_k!aob~(l+l/~X/-~m*-l), 

k = 0, 1,..., m -- 1,2,..., i.e., 

et/2b(1 -- G,,(t))<_ 2a0(1 + 1 / ~ ) ,  

Similarly, if fl0 > 0, then (3.30) gives 

et/Zb(l -- G m ( t ) )  ~ 2ao(1 + 1 / V ~ m ) ,  

oo 

Hence, when ym --> 0 and m~__oym = 1, 

oo 

(1 - Gm(t))ym < Ke -'/2b 
- - 0  - -  

where 

m =  1,2, . . . .  

m =  1,2, . . , .  

I,+ ,o:0 
m = l  

K = 2 a 0  l+~=tym/  if f l 0 > 0 .  

If (3.18)-(3.19) hold, then K < ~ and (3.20) holds by (3.36). Thus the proof 
of Theorem 3.1 is completed. 
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