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Abstract. Simultaneous estimation of normal means is considered for 
observations which are classified into several groups. In a one-way 
classification case, it is shown that an adaptive shrinkage estimator 
dominates a Stein-type estimator which shrinks observations towards 
individual class averages as Stein's (1966, Festschriftfor J. Neyman, (ed. 
F. N. David), 351-366, Wiley, New York) does, and is minimax even if 
class sizes are small. Simulation results under quadratic loss show that it 
is slightly better than Stein's (1966) if between variances are larger than 
within ones. Further this estimator is shown to improve on Stein's (1966) 
with respect to the Bayes risk. Our estimator is derived by assuming the 
means to have a one-way classification structure, consisting of three 
random terms of grand mean, class mean and residual. This technique 
can be applied to the case where observations are classified into a two- 
stage hierarchy. 

Key words and phrases: Bayes estimator, normal means, sum of squared 
error loss, shrinkage estimator, Stein estimator. 

1. Introduction 

Let Y = (Y~,..., Yp)' have a p-d imens ional  mult ivariate  normal  distribu- 
t ion 

(1.1) Y ~ Np(/~, I ) ,  

with u n k n o w n  mean  # = (gl , . . . , / tp) '  and the ident i ty  covariance mat r ix  L 
An es t imator /~(Y)  = (fil(Y),...,ftp(Y))' of/~ is evaluated by the risk func- 
t ion 

ROi, #) = E~II ~ - ~112 , 
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p 

where II~(Y) - ~112 = i__~ 1 ( ~ i ( Y )  - ].,/i)2 and Ev stands for averaging over the 

sample space with respect to the distribution (1.1). 
James and Stein (1961) showed that i f p  _> 3 the maximum likelihood 

estimator Y is dominated by the estimator 

oso = (1 - (p - 2)/II YII2)y. 

Several drawbacks of ~so have been pointed out and many efforts have 
been made to improve them. One major drawback is that the region of the 
parameter space where the risk of ~so (or some other estimators of a 
similar type) is significantly smaller than that of Y is quite limited (see 
Stein (1981) and Berger (1982)). 

Improvements over Y when observations are classified into several 
groups are considered below. Stein (1966) discussed Stein-type estimators 
for designs admitting a completely orthogonal analysis of variance: com- 
plete k-way classifications, Latin squares and Greco-Latin squares. Two- 
way classification case was studied in detail. He showed that if sample sizes 
are very large, the Stein-type estimator applied separately to each orthogo- 
nal subspace is approximately better than the estimator which shrinks 
observations towards the general average. Takeuchi (1980) proposed an 
estimator very similar to Stein's (1966) when observations are classified as 
one-way or two-way. 

Haft (1978) considered the estimator of normal means in situations 
where means are close to each other. He assumed that means have normal 
distributions with intraclass correlation structure, in which diagonal ele- 
ments of the same value are larger than nondiagonal elements of the same 
value, and derived a Bayes estimator. Replacing hyperparameters in it by 
the mode of posterior density, he obtained a minimax estimator, which is a 
modification of a Stein-type estimator, which shrinks observations towards 
the grand average. 

From another viewpoint, Efron and Morris (1973) considered the 
estimation of normal means which are divided into two groups with 
different prior variances. They showed that the Stein estimator applied 
separately to the two groups is better than the estimator applied to the two 
combined if the prior variances are largely different, and is worse if the 
prior variances are almost the same. Based on this consideration, they 
proposed a compromise estimator and improved the Bayes risk of the two 
Stein estimators in a wide region of the ratios of prior variances. Berger 
and Dey (1983) considered the estimation of normal means which are 
divided into k groups with k different prior variances. It was shown that a 
Stein-type estimator applied to the combined group often dominates, with 
respect to the Bayes risk for normal or fiat-tailed priors, the estimator 
applied separately to each group. 
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George (1986a, 1986b, 1986c and 1986d) considered situations where 
only conflicting or vague prior information is available. For  example,  when 
more than one of a broad class of minimax shrinkage estimators might  be 
effective, he proposed new minimax estimators,  called multiple shrinkage 
Stein estimators, which are derived f rom posterior means of mixture 
priors. An est imator of this class is an adaptive convex combina t ion  of 
shrinkage estimators which gives more weight to the est imator  which 
shrinks most.  

The main objective of this paper  is to propose a class of new 
est imators in the est imation of components  of p when observations are 
classified into A groups of size B, and to show their goodness.  Let Y~j be 
independently and normally distributed; 

(1.2) Yij  ~ N ( l t i j ,  12); i = 1,..., A; j = I, . . . ,  B .  

If the class means fii.'s are almost  the same, the Stein-type es t imator  which 
shrinks Yffs towards the grand average, 

( / ( ) )  ,u,j = E. + 1 - ( A S -  3) E ( r , . j -  E.) r . . ) ,  
J 

where  Y.. = ]~ Y. Yij/AB will have smal le r  risk t han  the S te in - type  
i j 

estimator which shrinks Y,/s towards individual class averages, 

so ( /( )) ,llij = Yi. q- 1 - 1 b ~i ~j ( Y i j -  Yi.) 2 ( Y / j -  Yi.) ,  

where Yi. = ]~ Y i j / B  and 0 < 1/b < 2 ( A ( B -  1) - 2). On the other hand,  if 
J 

fii.'s are largely dif ferent , / i  sc will have smaller risk t h a n / i  st. We construct  
an adaptive shrinkage est imator  which behaves l ike/ i  sr when fii.'s are close, 
and l ike/ i  sc when they are different. 

To derive such an estimator,  assume a one-way classification structure 
of t~; 

(1.3) ,uij=,u+oti+eij; i = 1  .... ,A; j =  1 , . . . ,B;  

where / z -  N(og, try), ai ~ N(0 ,  02), eij  ~ N(O, tr2e) and these are indepen- 
dently distributed. A limit of the Bayes es t imator  as tru 2 --* ~ is derived. We 
estimate 1/(Btr~ + tr2e + 1) and 1/(tr2e + 1) in the limit est imator by suitable 
statistics satisfying the order  relationship. The est imator /i l* of (2.12), 
which is an adaptive convex combinat ion  of /i sr and /i s~ obtained by 
different estimates of hyper-parameters of variances, is proposed in Subsection 
2.2. This es t imator  is different f rom George's which is a convex combina-  
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tion of shrinkage estimators based on unbiased estimates of risk reductions. 
But it is similar to Stein and Takeuchi's #ss, of (2.13) which may be 
regarded as an empirical Bayes estimator for the above prior distribution. 
It is shown that if A __>_ 4 the estimator #1, dominates/1 sa as ~ss, does. The 
estimator #1, is minimax even if A = 2 or 3, the case where #ss,  cannot be 
constructed. Further it is shown tha t / i  ~* improves on It ss* with respect to 
the Bayes risk. 

In Section 2, the estimator /i 1. is proposed and analyzed as stated 
above. In the case where A and B are small, we calculate Monte Carlo 
estimates of risk functions of positive part versions of #l , ,  #ss,,  #st and/ i  sc 
for different combinations of between and within variances. It is observed 
t h a t / i  1. is slightly better than the others if between variances are larger 
than within ones, and #ss, is the best if within variances are larger than 
between ones. 

In Section 3, we estimate components of # when observations are 
classified into A classes, each of which can be divided into B subclasses 
consisting of C components.  Similarly to Section 2, an adaptive minimax 
estimator is obtained, which is a convex combination of Stein-type estima- 
tors which shrink observations towards the grand averages, towards indi- 
vidual class averages or towards individual subclass averages. Furthermore 
we estimate components of # in a special case where observations are 
classified into two classes, each of which can be divided into two subclasses 
of different sizes. This is the case where Stein and Takeuchi's estimator 
cannot be constructed. The estimator (3.6) is proposed and applied to the 
estimation of American baseball team batting averages, which was discussed 
by George (1986b). The sum of squared error loss, called actual losses, for 
the estimator (3.6), George's, which combines three estimators (3.7), (3.8) 
and (3.9) to be a competi tor  to the estimator (3.6), and the others are 
compared. The estimator (3.6) has a smaller actual loss than the others. 

2. One-way classification case 

Let Yij be distributed as (1.2) and let its mean/x U be distributed as 
(1.3). We also consider the case where/xij has the structure 

(2.1) ~lij = a i  ~- eij , 

where a i  ~ N(O, tr2), eij ~ N(O, a 2) and these are independently distributed. 
The assumption on lu is a special case discussed by Lindley and Smith 
(1972) to derive the Bayes estimator under a linear multiple regression 
model for the means. 

2.1 Shrinkage towards zero 
Suppose that (1.2) and (2.1) hold. Write (2.1) in the matrix form, 
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(2.2) /~ = X a  + e ,  

where a = ( C t l , . . . ,  aA)' and X is an A B  × A design matrix with 1 for the (i,j) 
elements, B ( j  - I) + 1 < i <_ Bj, and 0 for the other elements. For simple 
derivation of the Bayes estimator, construct an AB-dimensional orthogonal 
matrix P, of which the first A column vectors are normalized columns of X 
and the remainder columns are arbitrary. Consider the orthogonal transfor- 
mation 

Z = P ' Y  and 0 = P' / l ,  

where Z = (Z~,..., ZAB)' and 0 = (01,..., OAB)'. The prior distribution of 0 is 

(2.3) 0 ~ NAB(O, X,), 

where Z'I is a diagonal matrix, of which the first A diagonal elements are 
Ba 2 + a2e and the others are a2e. The Bayes estimator under squared error 
loss is 

0 ; = /  - + a 2 +  if l<_i<_A (2.4) -B (l 1/(Ba~ e ]))Zi, 

(1 1/(a~ + 1))Z~, if A + I < - i < _ A B .  

The marginal distribution of Z is 

(2.5) z - NAB(0, Z2), 

where Z'2 is a diagonal matrix, of which the first A diagonal elements are 
A AB 

2 i~=i Ba~ + aZe + 1 and the others are ae + 1. Put Sll = Z] and $12 = Z Z]. 
'= i=A+I 

Suppose that some estimators 6~(&~, &~) and ~22($1~,&2) can be used for 
1/(Ba~ + a~ + 1) and 1/(a2e + 1) in (2.4), respectively. The following compo- 
nent estimator is obtained; 

O~ = /  if l < i < A  (2.6) " s a  (1  - ~ ( S l  1, S12))Z, ,  

( (1 - #~(&l, &2))Zi, if A + 1 <_ i <_ A B .  

,,2 
Replacing aft.,.) and (~(.,.) in OsB by 1/a&m and 1/b&2 (a and b are 
positive constants to be suitably chosen), respectively, we obtain Stein's 
(1966) and Takeuchi's (1980) estimator ~ss with components 

0i = /  - if l < _ i < A  (2.7) "s s  ( l  1 / a S l l ) Z i ,  , 

( (I I/bS12)Z~, if A +  1 <_i<_AB. 
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It is trivial that  #ss dominates  ~sG= p,l~sG if 0 < 1/a < A -  2 and 0 < 
1/b < 2 ( A ( B -  1) - 2). However, against the order relationship I/(Ba~ + a 2 + 
1) < l / (a  2 + 1), it happens that  1~aS,, > 1/bS~2 in #ss. Observing 1/aS~ > 
l/bS,2 suggests a violat ion of (2.1) or (2.3). According to ideas on 
estimates in Barlow et al. (1972) satisfying the order relationship, we obtain 
the estimator 

( 2 . 8 )  = 

(1 - 1 / aS, ,)Zilcos,,>bs,.3(Z) 

+ (1 - ( l / a  + t / b ) / ( S , ,  + 

if 1 < i < A ,  

(1 - 1/bS,~)Z, Itos,,~,,s,~(Z) 

+ (1 - ( t /a  + 1/b)/(S1~ + S~2))Zilt~s,,<bs,](Z), 

if A +  I <_i< A B ,  

where 

= / l '  if aSll>-bS,2,  
l[as,,>_bS,2](Z) ( 0, otherwise.  

Inverting Osn, we get 

(2 .9 )  fis~ = p ( S l l ,  S12)( l  - ~ ( S l l ,  S12))Yij  

+ (1 -p(SLt ,  SI2))(Y,. + (1 - ~(SH, S,2))(Y~i- Yi.)), 

A 
where p(SI~ S,2) = #21($1~,S~2)/~(S,~,$12). Note that  S~ = B ~ y 2  and 

i=1 

S,2 = ]~ ]~ ( Y~i - ~,.)2. The est imator ~1 = p~l  is a convex combina t ion  of 
t j 

/~sG and a Stein-type est imator which shrinks Y,;s towards zero. The 
est imator ~i 1 is the same as #ss = pOSS in the case p(., .) -< 1, and is the same 
as the Stein est imator ~so in the case p(., .) > 1. 

To get condi t ions on the constant  a such that  the risk of the est imator  
is smaller than  that  of/~s~, we use the following lemma which is well 

known and can be verified by integrating by parts. 

LEMMA 2.1. Let Z be a standard normal random variable. I f  f ( . )  is 
absolutely continuous, then Eo{f ( Z)( Z - 0)} = Eo{f'( Z) ]. 

THEOREM 2.1. Suppose that A >_ 3. Then the risk o f  O 1 is uniformly 
smaller than that o f  ~ s6 if O < l / a < 2(A - 2). 
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PROOF. By the orthogonal transformation ~sG = p,oSG 

0 s~ = I Z~, if 1 _< i _< A ,  

( (1 - 1/bS~2)Z~, if A + 1 <_ i<_ AB,  

it suffices to show that A(O) =- R(O sa, O) - R(O l, 0) > 0 under the condition 
of the theorem. 

A(O)= Eo{ ( Z 2Zi(Zi-Oi) 1 
i= l aS11 aZS11 ) I os, 
( ~s 2clZi(Zi- Oi) cl /t.s,,<bs,21(Z) 

Sll + SI2 

-Ee{( ~,s 2Zi(Zi-Oi) 
i:A÷ l bS12 

1 
b2S12 ) Itas,,<bs,~](z) } , 

where cl = l /a+ 1lb. Applying Lemma 2.1 to the first, third and fifth 
terms of the above expression, we have 

=E.{ l____~ 2(A - 2) - 1 )  

Cl 
"~- a l l  a t- S12 

(2(AB- 2 ) -  c l ) -  ~Sl~ ) Ic~s,,<bS,~J(Z) } 

1--~ ( 2(A - 2) - l ) I[~s.~_bS,2](Z) 
aSll a 

+ cl 

a l l  -~ s12 
( 2A - l ) It~s"<bS'2J(Z) } 

where c2 = 2(A(B - 1) - 2) - I/b, which is positive i f0 < 1/a < 2(A - 2). 

Even if A = 1 or 2 the e s t ima to r /~  is minimax under the following 
conditions, although the est imator oss cannot  be constructed in that case. 
This estimator is a convex combination of Stein-type estimators which 
shrink Y//s towards zero or towards the average YI. if A = 1. 

THEOREM 2.2. Suppose that A >_ 1. Then ~1 is minimax if O < 1/ a + 
1/b < 2(AB-  4) andO < 1/b < 2 ( A ( B -  1 ) -  2). 

Note. The MLE Y is minimax with constant risk AB. The risk o f / i  l 
is uniformly smaller than that of  Y under the above conditions on a and b, 
and approaches AB as PI/~II ---~.  Therefore/~l is minimax. Throughout  this 
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paper, an est imator dominat ing  Y is minimax by the same reason. 

PROOF. Applying L e m m a  2.1 to three terms of d(O)=-R(Z ,O) -  
R(01, 0) in a similar way as Theorem 2.1, we have 

1( ' (2 A 2, 1) c2) . . . . .  + It,s,,~bs,~l(Z) A(O) Eo aSll a 

+ Cl 

Sit + $12 
( 2 ( A B -  2) - cOItas,,<bs,2l(Z) } 

(2(AB - 4) - c~)Itas,,>_bs,2](Z) 
1 

>_ Eo aS~----~ 

+ cl 

S l l  ~-- S12 
( 2 ( A B -  2) - Cl)It~s,,<bS,~](Z) } , 

where c~ and cz are defined in the p roof  of Theorem 2.1, which is positive if 
the constants a and b satisfy the conditions. 

Remark 2.1. The above theorems hold for a positive part version of 
/~. The positive part version of / i  t improves on /~ .  

The est imator  ~ss of (2.7) would be a natural  compet i tor  to the 
es t imator  ~1 of (2.8). It is not  known  if ~1 improves ~ss with respect to the 
risk. However,  it is shown that  the Bayes risk of 0~, that  is, E~II~  ~ - 0112, is 
uniformly smaller than that  of ~ss in a special case of the following 
theorem. EB denotes expectat ion under  the prior  distr ibution (2.3). Before 
stating the result, we need the following lemma. 

LEMMA 2.2. Let U be a linear space with an inner product (x,y) and 
a norm I[x[I = (x ,x)  l/z and let Vbe  a closed convex set o f  U. For any ~ ~ V 
and any x ~ U -  V, let y be the projection o f  x onto V: [ I x - y l l  = 
i n f ( l l x -  o11: oe V). Then [1~-xl l  > II~-ylL.  

Remark 2.2. If U = R" and V = {o = (ol,..., v,): vl _< 02 <- ..- < o,}, then 
the projection y of x onto  V is an "isotonic regression" (Barlow et al. 
(1972)). The lemma means that  the isotonic regression has a smaller mean 
squares error than the observations. 

THEOREM 2.3. Let OSBR be an estimator obtained by replacing 
#~(S~, S~2) and ~22($1~, S~2) in ~sn of  (2.6) with (~($11, $12)$1! + ~(S~1, S~2) 
• $12)/($11 + $12) in the case #~(Sll, $12) > #~($11, $12). Then the Bayes risk o f  
~snR is uniformly smaller than that o f  #sn. 



SIMULTANEOUS ESTIMATION OF CLASSIFIED MEANS 493 

PROOF. First, we calculate the Bayes risk of OsB. 

E IIO 011 = A(1 - 1/(Ba 2 + a2, + 1))+ A ( B -  1)(1 - 1/(a~ + 1)) 

+ Ez{(1/(Ba 2 + a 2 + 1) #~)2S,~ + (1/(0 .2 + 1) ,2,2,~ , e - -  - -  cr2) ~12/ , 

where 62 = 82($I~, S~2); i = 1, 2, and Ez indicates expectation under the 
marginal distribution (2.5). The expression in the braces is a distance 
between (1/(Ba 2 + cr2~ + 1), 1/(a 2 + 1)) and ~2 ~2 (al, o'2). Hence by Lemma 2.2, 
the expression is reduced by replacing (~ ,  ~22) with its isotonic regression, 
(~ ,  0~), 6~ = (6~S~ + #~S~2)/(S~, + S~2), if ~ > #~. 

Remark 2.3. Replacing 6~(Sll, Sl2) and #2($1 S12) in Ose 1, of (2.6) 
by min (1, 1/aS11) and min (1, 1/bSt2), respectively, we get the positive part 
version of 0 ss. From Theorem 2.3, we can construct the estimator improving 
on the positive part version of Oss with respect to the Bayes risk. 

Remark 2.4. For priors different from (2.3), the estimator (2.7) may 
have smaller Bayes risk than the est imator  (2.8). Suppose that  0 -  
Nan(0, L'), where S is a diagonal matrix, of which the first A diagonal 
elements are z-~ and the others are r 2 2. The estimator (2.7) seems to be better 
than (2.8). 

2.2 Shrinkage towards the grand average 
Suppose that (1.2) and (1.3) hold. That is, 

where lAB= (1,..., 1)' and X is the same as (2.2). Construct an AB- 
dimensional orthogonal matrix P, of which the first A columns form an 
orthonormal basis of the subspace spanned by the columns of [laB: X ]  and 
the remainder columns are arbitrary. Consider the orthogonal transfor- 
mation 

Z = P ' Y  and 0 = P ~ .  

It may be reasonable to assume that the prior on ~ is vague. Hence we get 
a limit of the Bayes estimator as a~ --, ~;  

(2.10) 0,8. = 

Zi, if i =  1, 
2 

( 1 -  1 / ( a ~ r ~ + ~ r e +  1))Zi,  if 2 < _ i < _ A ,  

(1 - 1/(o'~ + I))Z~, i f  A + 1 <_ i <_ A B .  
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The marginal  d is t r ibut ion of  Z is 

i ~ NAe(O 3, $3), 

where  0 3 = ( ~ f ' ~ ( . O ,  0 , . . . ,  0)  t and -r3 is a d iagonal  matr ix,  of  which the first 
2 d iagonal  e lement  is ABa~ + Ba 2 + ae + 1, the second A - 1 d iagonal  ele- 

ments  are Ba 2 + a 2 + 1 and the remainders  are a2e + 1. Suppose  that  some 
t~ 2 , es t imators  #2(Sfi, $12) and 2($11,$12) can be used for  1/(Ba~ + a2e + 1) and 

1/(a2e + 1) in (2.10), respectively.  The fo l lowing c o m p o n e n t  es t imator  is 
obtained;  

(2.11) 0 sB* = 

Zi, if i = 1 , 

(1 - #~(Sfi, S12))Zi, if 2 --- i < A ,  

(1 - #2(S;1, S~2))Z~, if A + 1 < i <_ A B ,  

A 
where  Sfi = ~ Z2i and S12 is defined in (2.6). Similarly to Subsec t ion  2.1, 

i=2 
the fol lowing reasonable  es t imator  is considered;  

Oi (2.12) -1. 

Zi, if i =  1,  

( 1 - 1 / aS(1)ZiI[as;,>_~s,~l(Z) 

+ (1 - (1/a + 1/b)/(Sf l  + Sl2))Ziltas;,<bS,~l(Z), 

if 2 < _ i < A ,  

(1 - 1/bS12)Ziltas;,>as,,.l(Z) 

+ (1 - (1/a + 1/b)/(Sf i  + S12))Ziltas;,<bS,21(Z), 

if A + I <_i<_AB, 

where  a and b are posit ive constants  to be sui tably chosen. Invert ing #sn,, 
we have 

^ SB~ ^2 p 
/~ij = p(S;~,  $12)(Y. .  + (1 - a l ( S ~ ,  S12)) (Yis  - Y..))  

+ (1 --  p ( S { 1 ,  S12) ) (Yi .  + (1 - t72(S(i ,  S12))( Yij - Y i . ) ) ,  

where  p( . , . )  is defined in (2.9). The es t imator  /i 1 . =  p ~ l ,  is a convex  
combina t ion  of ~sa and the Stein-type es t imator  which shrinks Yij's towards  
the grand average. 

Condi t ions  on the cons tan t  a such that  the risk o f / i  1. is smaller than 
that  of  ~sa in the case A _ > 4  are given. Also even if A = 2 or 3 the 
e s t ima to r / i  1. is min imax  under  the fol lowing condit ions.  
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THEOREM 2.4. Suppose that A > 4. Then the risk o f  fl ~* is uniform- 
ly smaller than that o f  fi s~ ifO < 1/a < 2(A - 3). 

THEOREM 2.5. Suppose that A > 2. Then FI 2.  is  minimax i f  O < 1/ a + 
1/b < 2 ( A B -  5) andO < 1/b < 2(A(B-  1 ) -  2). 

Remark 2.5. The Bayes risk of/ i  2* is uniformly smaller than that of 
Stein and Takeuchi's (2.13) which is defined in Subsection 2.3. 

2.3 Simulations o f  ~ l* and other Stein-type estimators 
We obtain Monte Carlo estimates for the case A = 4 and B = 3, of the 

risk of the positive part version of each of the following estimators;/i l*,/~sr 
and ~SG which are defined in Section 1, and Stein and Takeuchi's estimator 
f~ss, obtained by 

(2.13) fiss, = y.. + (1 - 1 /aS f i ) (Y i . -  Y..) + (1 - 1/bS12)(Yq - Yi.) ,  

where 0 < 1/a < 2(A - 3) and 0 < l i b  < 2(A(B-  1) - 2). It is trivial that 
ft ss* dominates /i s~. The risk of each estimator for each choice o f / l  is 
estimated by the average loss II~a-/~FI 2 based on 10,000 independent 
samples of Y--  N22(/1, I) (the normal random deviates are generated from 
the FACOM SSLII routine RANN2). 

As estimators Sfi and $22 follow the noncentral chi-squared distribu- 
tions with A - 1 and A ( B -  I) degrees of freedom, respectively, we put 
trB = (B ~i (fti. - ft..)2/ (A - 1)) 1/2 and ave = ( ~, ]~ (llq - fti.)2/ A(B - 1)) 2/2, where 

l j 

noncentralities of Sfi and $12 are (A - 1)a~] and A ( B -  1)trY, respectively. 
We estimate the risk values of the above four estimators for sixteen choices 
of/4, varying trB = 0.0, 1.7888(0.4472) and trw = 0.0, 1.2(0.3). The values of 
1/a and 1/b in/~1, are A -  3 and A ( B -  1 ) -  2, respectively. The values 
1/a = A - 3 and 1/b -- A ( B -  1) - 2 are the midpoints of possible values of 
1/a and 1/b in ~ss,, respectively, whose risk is known to be minimum at 
these values. 

Table 1 shows that if trB > trw the estimator/~1, is slightly better than 
the others. It is observed that the estimator ~ss, is better than the others 
when trB is small and trw is large. 

3. Two-stage hierarchical classification case 

Let components of Y be classified into A classes and let each class be 
divided into B subclasses consisting of C components. Let Y,jk be indepen- 
dently and normally distributed; 

(3.1) Y/jk--N(/zqk, lZ); i = I , . . . , A ;  j --1,..., B; k = l , . . . , C .  
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• ~,, oss,. OsT Table 1. The risk values of positive part versions of ~ , and/~sG for A = 4 and B = 3. 

0.0000 0.3000 0 .6~0  0.9000 1.2000 

0.0000 

0.4472 

0.8944 

1.3416 

1.7888 

3.9 4.5 5.8 7.4 8.5 
3.9 4.5 5.9 7.3 8.4 
2.3 2.9 4.4 6.3 7.8 
5.3 5.9 7.3 8.7 9.8 

4.1 4,7 6.1 7.6 8.7 
4,2 4,7 6.1 7.6 8.6 
2.8 3.4 4.8 6.5 7.9 
5.3 5.9 7.3 8.7 9.8 

4.6 5.2 6.5 8.0 9.0 
4.7 5.2 6.6 8.0 9,1 
4.~ 4.6 5,7 7.1 8.3 
5.3 5,9 7.3 8.7 9,8 

5.0 5.6 6.9 8.4 9.4 
5.0 5.6 7.0 8.4 9,5 
5.8 6.1 6.9 7.9 8.7 
5,3 5.9 7.3 8.7 9.8 

5.2 5.8 7.1 8.6 9.6 
5.2 5.8 7.1 8.6 9.6 
7.3 7.5 8.0 8.6 9.2 
5.3 5.9 7.3 8.7 9.8 

The four lines in each entry correspond to the risk values o f /~* ,  I~ ss*, t~ sr and t~ sa, respectively. 
The standard error of each estimate is less than 0.05. 

An adaptive shrinkage estimator will be obtained. It is shown that this 
estimator dominates a Stein-type estimator which shrinks Yijk's towards 
individual subclass averages, 

( lzijk = Yi~. + 1 -  1 c Z Z ( Y , j k -  Yii.)" ( Y i j k -  Y~J.) 
• " j k 

where 0 < 1/c  < 2 ( A B ( C  - 1) - 2). Also it is shown that it is minimax even 
if A is small. To derive such an estimator, assume a two-stage hierarchical 
classification structure of/~; 

(3.2) ,Uijk = Oti + ~ i j  -~ eijk o r  ~lijk = 1l + Oti + flij + eijk , 

where a; -- N(0,  o'i), fi;j --  N(0,  o-}), e;jk -- N(0,  a2e),/1 ~ N(~o, ~ )  and these 
are independently distributed. 

3.1 Shr inkage  t o w a r d s  zero 
Suppose that (3.1) and the first of (3.2) hold. From the matrix form of 

(3.2), construct an A B C - d i m e n s i o n a l  orthogonal matrix P. Consider the 
orthogonal transformation 
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Z = P ' Y  and 0 = P ' # ,  

• ., .4nc). The Bayes estimator under where Z = (Z~,. . ,  Z,~Bc)' and 0 = ( 0 1 , . .  0 ' 

squared error loss is 

O i =  (3.3) ^8 

(1 - 1/(BCa 2 + Ca} + a~ + 1))Zi, 

(1 - 1 / ( C d  + a2e + I))Z~, 

(1 - 1/(a:, + 1))Z,, 

if l<_i<_A,  

if A + I < i < _ A B ,  

if A B + I < i < _ A B C .  

The marginal distribution of Z is 

Z ~ NA.c(O, S t ) ,  

where Z'~ is a diagonal matrix, of which the first A diagonal elements are 
BCa~ + Co-} + o'2e + 1, the second A ( B - 1 )  diagonal elements are Ca~ + 

A A B  

O'e q- 1 and the remainders are o-e + 1. Put $2~ = Z~, $22 = ~ Z ] and 
A B C  "= i= A + 1 

,,2 $23 = 5", Z2/. Suppose that some estimators t~2($21, $22, $23), trz(S21, $22, 
i=AB+ 1 

$23) and 6~($21, $22, $23) can be used for 1/(BCa 2 + Ca} + a2¢ + 1), 1~(Ca} + 
a2e+ 1) and 1/(0"2~+ 1) in (3.3), respectively. The following component  
estimator is obtained; 

(3.4) 

(1 - s2 , 

0 s" = ( t  s2 , s23))z,, 

(1 

if l < _ i <  A , 

if A + I <_i< A B ,  

if A B +  I <_i<_ABC. 

2 Since 1/(BCtr 2 + a} + ~r~ + 1) < 1~(Co'} + ae + 1) < 1/(a~ + 1), the compo- 
nent estimator corresponding to the estimator (2.8) in Subsection 2.1 is 
considered; 

(1) If 1/aS21 <- I/bS22<_ I/cS23, 

(1 - 1 / aS21)Zi, if 1 < i _< A ,  

(1-1/bS22)Zi ,  if A + I <_i< A B ,  

(1-1/cS23)Z~, if A B + I < _ i < A B C .  

(2) If 1/cS23 <_ 1/bS2z and l/aS21 < ( l i b  + 1/c)/(S2z + $23), 

0~= / (1 - 1/aS21)Zi, if 1 <_i<_A, 

( 1 - ( I / b + l / c ) / ( S 2 2 + S 2 3 ) ) Z i ,  if A + I < _ i < A B C .  
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(3) If 1/cS23 <- 1/bS22 and ( l ib  + 1/c)/($22 + $23) < 1/aS2~, 

t ~ = ( 1 - ( l / a +  l / b +  1/c)1($21+ $22+ S23))Z~, i= 1,. . . ,ABC. 

(4) If 1/bS22 <_ 1/aS21 and (1/a + l/b)/(S21 + $22) -< 1/cS23, 

O ~ = l ( 1 - ( l / a +  1/b)/(Szl+S22))Zi, if I < _ i < A B ,  

(1 - 1 / cS23)Zi, if AB + 1 <_ i < ABC.  

(5) If 1/bS22 <- 1/aS21 and 1/cS23 <- ( l /a  + 1/b)/($21 + Sz2), 

0~=(1 - ( l / a +  l / b +  1 / c ) / ( $ 2 1 + $ 2 2 + $ 2 3 ) ) Z i ,  i= I , . . . ,ABC. 

The coefficients a, b and c are positive constants to be suitably chosen. 
Inverting ~sn, we have 

^ S B  - -  2 /t,jk = ((~/~)(1 - (~) Y,jk + (1 ~2~/0~)((1 - ~)Y,  jk + ~2~..) 

^ 2  ^ 2 -  ^ 2  + ((~/~2 (~/~33)((1 -- ~2) Yijk + Crz~73Yij./o'l) 2 - -  

where #] = 6]($21, Sz2, $23); i =  1, 2, 3. Note that $21 = BC ]~ Yi.Z., $22 = 
i 

C E ~ ( Y,/. - Yi..) 2 and $23 = ~ ~ ]~ ( Yijk -- Yo.) 2. The es t imator / i  I = p#l is 
i j  " " k  

a convex combina t ion  of Stein-type estimators which shrink Y~jk's towards 
zero, towards the class average Yi.. or towards the subclass average Ygj.. 

Condit ions on the constant  a such that  the risk o f / ~  is smaller than 
that  of #sc in the case A >__ 3 are given. Also even if A = 1 or 2, t h e n / i  I is 
minimax under  the following conditions. 

THEOREM 3.1. Suppose that A >_ 3 and B >_ 2. Then the risk o f#  1 is 
uniformly smaller than that o f  lasc tf  0 < 1 / a < 2(A - 2) and 0 < 1 / b < 
2 ( A ( B -  1) - 2). 

THEOREM 3.2. Suppose that A >_ 1 and B >_ 2. Then #~ is minimax if 
0 <  l /a + 1/b + 1/c < 2 ( A B C -  6), O < I/ b < 2 (A(B-  l ) -  2) andO < l/c < 
2 ( A B ( C -  l) - 2). 

Remark 3.1. The Bayes risk o f / i  I is uniformly smaller than that  of 
Stein and Takeuchi 's corresponding to (2.7) in Subsection 2.1. 

3.2 Shrinkage towards the grand average 
Suppose that  (3.1) and the latter of (3.2) hold. A limit of the Bayes 

es t imator  as o .2 - - -~  is derived and the hyperparameters  are est imated by 
suitable statistics. We get 
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^SB* f l i jk  = ( t~21 / a~ ) (Y . . .  + (1 - ( ~ ) ( Y i j k  -- Y. . , ))  

+ (1 t~/~2)((1 t~)Y,.. + t72 ,..) 

~2 ~2 ~2 ^ 2 - -  + - - + 

where #~ = #](Sfi, $22, S23); i -- 1, 2, 3; and S~ = BC ~ (Yi.. - y...)2, S22 and 

$23 are defined in (3.4). Suppose tha t / i  ~* corresponds to / i  1. The estimator 
/i ~* is a convex combination of Stein-type estimators which shrink Yijk's 
towards the grand average, towards individual class averages or towards 
individual subclass averages. We obtain similar results to those in Subsection 
3.1. 

3.3 Estimating American baseball team batting averages 
We estimate/J when components  of Y are classified into two classes, 

each of which can be divided into two subclasses of different sample sizes. 
It is applied to estimating American baseball team averages (a problem 
discussed by George (1986b)). 

Let Y~sk be independently and normally distributed; 

Y,j, ~ N(~jk ,  12); i = 1, 2; j = 1, 2; k = 1,..., C~, 

under the assumption (3.2). Put  C = 2(Cl  + C2). Construct a C-dimensional 
orthogonal matrix P and consider the orthogonal transformation 

Z = P ' Y  and 0 = P ' # ,  

where Z = (Z~ .... ,Zc) '  and 0 = (01 , . . . , 0c ) ' .  We get a limit of the Bayes 
estimator as a~ ~ oo; 

(3.5) 05 -- 

Zi, if 

(1 - 1/(2Da~ + Da} + 0"2 -~- 1))Zi, if 

(1 - l/(C~a} + a2e + 1))Z/, if 

(1 - 1/(C2a} + a 2 + 1))Z,-, if 

(1 - 1/(a2e + 1))Z,', if 

i = 2 ,  

i = 3 ,  

i = 4 ,  

5<_i<_C, 

where D = 4C1 C2/C. The hyperparameters in (3.5) may be estimated by the 
following statistics; 2Da~ by aZ2; Oa~ by bl(Z23 + Z42); C1o-~ by b2(Z 2 + Z42); 

C 
Cza~ by b3(Z ] + Z]) and aze + 1 by c ]~ Z 2-. The coefficients a, bl, b2, b3 and 

i=5 

c are positive constants to be suitably chosen. Therefore, we get 
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(3.6) O* = 

Zi, 

(1 - 1/(aS31 + blS32 + cS33))Zi, 

(1  - -  1/(b2S32 + cS33))Zi, 

(1 - 1/(b3S32 + ¢S33))Zi, 

(1  - 1 / cS33)Zi, 

if i-- 1 , 

if i = 2 ,  

if i =  3 ,  

if i-- 4 ,  

if 5<i<_C,  

C 
where $31 Z~, $32 = Z 2 = 3+  Z42 and S33 = ~ Z2/. Notice tha t  Stein and 

i=5 

Takeuchi 's  est imator  cannot  be constructed f rom (3.5). Inverting 0", we 
have / i *=  P0*. The es t imator / i*  is minimax under the following condi- 
tions. 

THEOREM 3.3. Suppose that C > 9  and 1 / c = C - 6 .  Then #* is 
minimax if a >_ 1/(C - 9), bl > 1/(C - 4), b2 > 1/(C - 9) and b3 >- 1/(C - 4). 

In George (1986b) the batting averages of all 26 baseball teams 
through their first 300 official at bats of the 1984 season are listed. He 
regarded the est imator based on the team batt ing averages through the first 
300 official at bats as the predictor  fi, and the team batt ing averages over 
the remainder  of the season as the true values/ , .  Arcsine t ransformat ions  
of the averages are approximated  by normal  distributions. American and 
National  Leagues were regarded as the classes and East and West as the 
subclasses. Here we consider the following three positive part  versions; the 
estimator which shrinks Y,'Ss towards the grand average, 

(3.7) f i i s . r+=Y. . .+ (1 - (1 / k23 / (~ i  ~ ( Y i j k - Y . . . ) 2 ) ) ) ( Y i j k - Y . . . ) ,  

where a A b -- rain (a, b), the est imator which shrinks Y,Ss towards class 
ave rage s, 

and the est imator which shrinks Yijk'S towards subclass averages, 

(3.9) f t i s c + = y i j . + ( 1 - ( 1 / k 2 0 / ( ~ i ~ ( Y , j k - Y i / . ) e ) ) ) ( Y , j k - Y i i . ) .  

Further  we consider three estimators of George 's / i  E~ using c = 1, 2, 5 in the 
calibration (2.7) in George (1986b) which combine the above estimators 
/isr+, #s6÷ and #sc+. The sum of squared error loss 11~-/,112, called actual 
losses, are computed  for #st÷, / is6÷ #sc÷, the MLE Y and a positive part 
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version of /~* with 1/c--1/20 and the following lower limits of the 
constants a, bl, b2 and b3; a = 1/17, bl = 1/22, b2 = 1/17 and b3 -- 1/22 in 
Theorem 3.3. The results are shown in Table 2. However, the smallest loss 
(c -- 5) among three George's is presented in Table 2. Notice that a positive 
part version of/i* has the smallest loss. 

Table 2. Actual losses for positive part versions offi*,/~sr, ~as~, osc, ~E~ and Y. 

116 - #112 4.21 4.24 4.94 7.30 4.38 26.53 
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