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Abstract. Consider the problem of estimating the common mean of two 
normal populations with different unknown variances. Suppose a random 
sample of size m is drawn from the first population and a random sample 
of size n is drawn from the second population. The paper gives a family 
of estimators closer than the sample mean of the first population in the 
sense of Pitman (1937, Proc. Cambridge PhiL Soc., 33, 212-222). In 
particular, the Graybill-Deal estimator (1959, Biometrics, 15, 543-550) is 
shown to be closer than each of the sample means if m > 5 and n > 5. 
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1. Introduction 

Let (X1,..., X,~) and (Y1,..., Yn) be independent  r andom samples f rom 
two normal  populat ions with a c o m m o n  u n k n o w n  mean # and unknown  

m rn 
variances 0 -2 and 02 2, respectively. Also, let X = E Xi/m, $1 = Z, (X~- 

i=1 i=1 

X)2/rn and let Y, $2 be defined similarly. Based on X, Y, Sl and $2, we 
want  to estimate the c o m m o n  mean p. 

This problem of estimating the c o m m o n  mean and the related problem 
of recovery of interblock informat ion  have been studied in several papers. 
For  a brief bibl iography the reader is referred to Bhat tacharya (1980). 
Graybill and Deal (1959) considered the combined est imator 

(1.1) / ~ D = (  m - 1  x + n - I S - - - ~  ~ ~ ) / ( m - l S ~  ~- n----~21)' 

and showed that  fiGD has a smaller variance than  both  X and Y if and only 
if m > 11 and n > 11, which was, later, corrected by Khatri  and Shah 
(1974) as (m > 11, n > 11), (m = I0, n ___ 19) or (m > 19, n = 10). This means 
that  the combined est imator  does not always dominate  the uncombined  
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estimator for sample sizes smaller than 10. Intuitively, however, it seems 
that the combined estimator is superior to the uncombined one for smaller 
sample sizes, if we choose another criterion for comparing estimators. 

The criterion we employ here is the Pitman closeness, which is defined 
as follows: For two estimators/~1 and/~2 of p,/~1 is said to be closer than/~2 
in the sense of Pitman (1937) if and only if 

P{(fi, -1.0 2 <- (fi2 - ,u) 2) >- 1/2,  

uniformly with respect to unknown parameters. The Pitman closeness was 
used by Sugiura (1984) for estimating the normal covariance matrix, and 
was discussed by Peddada and Khattree (1986) and Rao et al. (1986). 
Theorem 2.1 of Sen (1986) gives the condition on variance for one 
estimator being closer than another. If ~ and ~ are known, it follows from 
his theorem that the maximum likelihood estimator (mtr12X + n ~ 2 Y ) /  
(mtr-~ z + ntr22) is always closer than both )( and Y. However, since tr~ and 
a22 are unknown, we cannot use his result. 

In this paper, we obtain a family of estimators which are closer than )( 
in the sense of Pitman, and present the interesting example that the 
Graybill-Deal estimator/~GD is closer than both )( and Y if m >__ 5 and n ___ 5 
as is shown in Example 2.1. This demonstrates that the Graybill-Deal 
estimator has a desirable property for smaller sample sizes. 

For estimation of a mean vector of a p-variate normal distribution 
with unknown variance, Sen et al. (1989) recently showed that the James- 
Stein type estimator dominates the usual one relative to the Pitman 
closeness criterion if p _> 2. This result can be proved based on the 
monotonieity of a probability with respect to the noncentrality parameter. 
For our purpose, the same argument as in the proof is useful. Our model, 
however, is different from the Stein problem, and the monotonicity with 
respect to the variance ratio ~ / ~  is essential in our proof. 

2. Main result 

For nonnegative constants a, b and c, consider the estimators of the 
form 

a 

(2.1) I?t~(a 'b 'c)=X+ I + R q b ( S , , S 2 , ( X -  ~)2) ( Y - ) ( ) ,  

where R = {bS2 + c()~ - ]~)2}/S1 and ~b is a positive valued function. These 
are unbiased estimators of/ t ,  and were proposed by Kubokawa (1987b). 
Then we get 

THEOREM 2.1. Assume that 
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(2.2) 
( m -  1)a 

4~(St, $2, ( 2  - ~)2) > 2(n - 3)b ' 

for  m >_ 2, n _> 4 and 0 < a <_ 4/3. Then/~(a,  b, c) given by (2.1) is closer 
than 7t in the sense o f  Pitman. 

When a = 1 and c = 0, in particular, the consideration of symmetry 
yields 

COROLLARY 2.1. When a = 1 and c = 0, assume that 

(2.3) m - I  
2(n - 3) 

2(m 3) 
<_ b4 (St, ( 2  - <_ 

n - - 1  

for  m, n > 4. Then/~(1 ,b ,0)  is closer than both R and Y in the sense o f  
Pitman. 

Note. We can choose b4~($1, $2, ( X -  ~)2) which satisfies the condi- 
tion (2.3) if and only if 

( 3 m -  l l ) ( 3 n -  11) >__ 16, 

which is equivalent to (m = 4, n -> 9), (m _> 5, n _> 5) or (m > 9, n = 4). 

Some examples of closer estimators based on Theorem 2.1 are given 
below. They were discussed by Kubokawa (1987b) under a quadratic loss 
function. 

Example 2.1. Define ~b to be 1+ d/{bS2 + c ( X -  ~)2} in (2.1) for 
d > 0. This gives the estimator 

f t t(a,b,c,d) = 2 + 
aS1 

St + bS2 + c(X, - ~)2 + d 
( Y -  . ,~) ,  

which includes the estimator/~l (1, (m - 1)/(n - 1), 0, 0) ( =/~Go) of Graybill 
and Deal (1959); ftl(a,(m - 1)/(n + 2),(m - 1)/(n + 2),0) of Brown and 
Cohen (1974); /~l(1, b, 0, 0) and /~t(1,b,b,0) of Khatri and Shah (1974); 
/~1 (a, b, 0, 0) and/~1 (a, b, b, 0) of Bhattacharya (1980) and/21 (a, b, c, 0) with 
b _> c _> 0 of Kubokawa (1987a). Then, Theorem 2.1 presents that fit (a, b, c, d) 
is closer than 2( if 

m > 2, n_> 4, 0 < a _ < 4 / 3  and b>_ ( m -  1)a/{2(n-  3)}. 



480 TATSUYA KUBOKAWA 

For the second sample, this condition always requires the size n >_ 4, 
although, in the sense of minimizing variance, n _> 3 is sufficient when 
c > 0. This fact results from neglecting the information about (X - Y)2 in 
the proof of Theorem 2.1. Corollary 2.1 also gives that Graybill-Deal 
estimator ~GI~ is closer than both .g and Y if m > 5 and n > 5. 

Example 2.2. Setting $ = max [(a - 1)S1/{bS2 + c(X - ~)2}, 1] yields 

{ / 1~2(a,b ,c)=X+min 1, S ~ + b S 2 + c ( X _  ~)2 ( Y - X ) ,  

which is closer than X if the same condition as in Example 2.1 holds. 

Example 2.3. Setting 4~ = max [{bS2 + c(X - Y)2}/$1, 1] gives 

aS? 
~3(a, b, c) = 2 + rain S~ + {bS2 + c(.,17 - I7)2} 2 ' 

aS, ] 
S1 + bS2 + c(. V, - ~)2 

which is closer than )(  for the same condition as in Example 2.1. 

To prove Theorem 2.1, we need the following lemma. 

LEMMA 2.1. Let X be a positive random variable such that E[X-  i] 
is finite. Then for  0 <_ p <_ 1, 

l { ,} 
E[{(1 - p )  + p X }  -1] > rain 1, E[X- ']  " 

PROOF. Observe that  rain {1, 1/E[X-I]}  <- (1 - p )  + p / E [ X  -1] = 
E[{(1 - p )  + p X } X - ' ] / E [ X - ~ ] .  Since {(1 - p )  + p X }  -~ and {(1 - p )  + 
p X  }X-~ are monotone in the same direction with respect to X, 

1 > 
E[{(1 - p) + p X  }X -11 

E[{(1 - p )  + p X }  -1] - E [ X  -1] ' 

which establishes Lemma 2.1. 

PROOF OF THEOREM 2.1. 
ness, we shall prove that 

From the definition of the Pitman close- 
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(2.4) P{(/2~(a, b, c) -/0 2 s ($ - ~)2} _> I/2, 

uniformly. Note that  ( /~(a,  b, c) - / 0  2 _< (2( -/~)2 if and only if 

(2.5) 
1 +R~b 
_ _  ( ? _  $)2 + 2(X" - u ) ( ? -  $ )  <_ o. 

From the condit ion (2.2) and the fact that R > bS2/S~,  the inequality (2.5) 
holds if 

(2.6) 
a 

1 + A S z / S 1  
( ~ _  $)2 + 2(Y - u ) ( Y -  $ )  - 0,  

where A = (m - 1)a/ {2(n - 3)}. Here, let X = ($- /1) /VC-~l /m,  Y =  ( Y -  /1)/ 

~ - ~ ,  T~ = m S l / a  2 and T2 = nS~/a~. It is easy to see that  X, Y, T1 and T2 
are mutual ly  independent  r andom variables such that  X and Y have 
s tandard normal  distributions,  and TI and T2 have chi-square distr ibutions 
with m - 1 and n - 1 degrees of freedom, respectively. Let ~ = n ~ / ( m a ~ )  
and Z = r + A T2/T1. Then the inequality (2.6) is rewritten by 

(2Z - az)x/~X 2 + 2(a t  - Z ) X Y -  ax /~  y2  > O, 

which is equivalent to 

(2.7) 
a z -  Z - av"-r Y - " 

There exists an or thogonal  matr ix P such that  

a . :  
az - Z - ax/~ = diag (21, 22), 

where 

3.1 = {(2Z - ar  - a )v / r  + [(2Z - ar  - a)2r + 4Z211/2}/2, 

22 = {(2Z - az - a)x/-~ - [(2Z - ar  - a)2z + 4Z2]1/2}/2. 

Since (X, Y)' has a bivariate normal  distr ibution N2(0,1), so does P ( X ,  Y)', 
being independent  of the r a n d o m  variable Z. Lett ing (U1, U2)' = P ( X ,  Y) ' ,  
we can express (2.7) as 21U~ + 22U 2 _> 0, or 2~U 2 + 2122U 2 >_ O, which 
yields 
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U#/U?<_(G+ x/--~+ 1 )  2 , 

where 

a(l + r) } 
G= vC-r 1 -  2(r + AT2/ T1) " 

In this way, (2.4) holds if 

h(r) a~f P{V<_ (G + V ~  + 1) 2} --> I / 2 ,  

uniformly, where V is a random variable having an F-distribution with 
degrees of freedom (1, 1). Lettingfi,  l@) be a density of V, we can represent 
h(r) as 

[So' ] h(r) = E fi,,(o)do , 

where the expectation E [ .  ] is taken with respect to the random variable 

[So ] Tz/T1. The dominated convergence theorem gives that h(r) ~ E fi,~(o)dv 

= 1/2 as r ~ 0, so that it is sufficient to show that h'(r), the derivative with 
respect to r, is nonnegative. Then 

h ' ( r ) = C o E [  (G + v/-G-~ + 1)-~ ] 1 + ( G + ~ )  2 (G+ qr-~+ 1)(1 + G/V/--~+ 1)G' , 

where Co is a positive constant and 

G' = {222 - a(1 + 3r)Z + 2at(1 + r )} / (4v~Z2) ,  

for Z = r + A T 2 / 7 " I .  Noting that I + ( G + x / ~ + I )  2=2(G+Vr-G-~+ 1) 
• ~ + I, we have 

(2.8) 
[ o,] 

h ' ( r ) = - - ~ - E  G2 + 1 

Co 

- 2 , ~ ( 1  + 0 

E [  2 Z 2 -  a(1 + 3r )Z+ 2r(1 + z)a 
7C- -4~+  2 ~  + ;)- ] 

For a _< 4/3, observe that 

2Z 2 -  a(1 + 3T)Z+ 2z(1 + r)a 1 [ a( l  + r) ] 
(2.9) 4Z 2 - 4arZ + a2r(1 + r) >- --4 [ 2 Z ] " 
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Then f rom (2.8) and (2.9), it follows tha t  h'(z)  >_ 0 if E[2  - a ( l  + r ) / Z ]  >_ 0 
or 

(2.10) a < 2 i n f {  1 } - 3>0 E [ ( I + r ) / Z ]  for  a<_4 /3 .  

L e m m a  2.1 gives that  

inf{ ' / { A } > m i n  I, 
3>0 E[(1 + r ) / Z ]  - E[T, /T2]  " 

Since E[T1/T2] = (m - 1)/(n - 3) and A = (m - 1)a/{2(n - 3)}, the r.h.s, of  
(2.10) is b o u n d e d  below by min (2, a), which is greater  than  or  equal  to a 
for a < 4/3.  Therefore the p roof  is complete.  

Remark .  Theorem 2.1 does not  include a condi t ion  on c because it is 
proved wi thou t  using in fo rma t ion  of  (,~ - ~)2. W h e n  c > 0, ano ther  tech- 
nique of  the p roo f  may  be desirable to provide more precise condit ions.  
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