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Abstract. Blough (1985, Ann. Inst. Statist. Math., 37, 545-555) develop- 
ed a multivariate location region for a random p-vector X. The dimension 
of this region provides information on the degree of symmetry possessed 
by the distribution of X. By considering all one-dimensional projections 
of X, it is possible to ascertain the dimension of the location region. 
Projection pursuit techniques can therefore be used to study symmetry in 
multivariate data sets. An example from an Entomology investigation is 
presented illustrating these methods. 

Key words and phrases: Multivariate symmetry, location region, projec- 
tion pursuit. 

1. Introduction 

Establishing the location of an asymmetric probability distribution is 
difficult due to the fact that there are many reasonable measures of 
location for such distributions. Doksum (1975) addresses this issue in the 
univariate case, and Blough (1985) extends those results to the multivariate 
case. In the latter, for a given p-variate distribution function F, a closed, 
convex location region in ..~P (or some proper lower-dimensional subspace) 
is constructed, any point of which is a reasonable location parameter for F. 
Reasonable measure of location here refers to parameters which satisfy 
certain axioms of location (see Doksum (1975)). 

As Doksum, Blough and more recently MacGillivray (1986) show, the 
size of the location region can be used to characterize a distribution in 
terms of symmetry. It is the purpose of this paper to develop a definition of 
multivariate symmetry and show how this relates to the structure of the 
location region. This is done in Section 2. Section 3 deals with the 
detection of symmetry in an underlying p-variate distribution based on a 
random sample from that distribution. This is accomplished by the tech- 
nique of projection pursuit. An example from an Entomology investigation 
is given in Section 4. 

461 



462 DAVID K. BLOUGH 

2. Multivariate symmetry 

We begin by defining order of symmetry for p-variate probability 
distributions. Let X be a random p-vector, F its corresponding distribution 
function. Also, let K~ be the p × p matrix given by 

= [ko]  = 

0 if i ~ j ,  

1 i f  i = j ~  l,  

- 1 i f  i = j =  I. 

DEFINITION 2.1. A random p-vector X (or equivalently F)  is said to 
be symmetric of degree d if there exists a vector O = @,  02,..., Od, 0, . . . ,  0)' e 
~?P and an orthogonal transformation T such that 

T ( X  - O) has the same distribution as K~K2... Kd( T ( X  - O)) . 

Thus geometrically, symmetry of degree 1 means X is symmetric about a 
(p - l)-dimensional hyperplane. More generally, X symmetric of degree d 
means X is symmetric about d mutually orthogonal ( p -  1)-dimensional 
hyperplanes, and thus X is symmetric about their ( p -  d)-dimensional 
intersection. We note also that if X is symmetric of degree p, then X is 
symmetric about a point (namely, O). In this case, X is termed centro- 
symmetric. 

A brief review of the construction of the location region is necessary. 
Consider first the univariate case. Let F be the univariate distribution 
function of the random variable X. Doksum (1975) defines the following 
quantities: the location functional 

1 
mr(u)  =-~- [F - l (u )+  F-'(1 - u)], 

{ '/ _Ov=inf mr(u) :O-<u<-~-  , 

OF = sup mdu):  0 <- u __ ~ . 

1 
0 < u < - -  

- - 2 ' 

The univariate location interval for F is then 

--  [ 0F ,  0 F ] .  

Notice that in the case that F is symmetric about a point 0, IF reduces 
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to just the single point 0. Now consider a bivariate random vector X with 
distribution function F. Let By denote the location region for X. Blough 
(1985) constructs BF in the bivariate case in the following manner. Let R~ 
denote a counterclockwise rotation of the plane through an angle a, and let 
F~ denote the distribution function of R,,X. Then BFo is a location rectangle 
obtained by taking the Cartesian product of the two univariate location 
intervals of the marginal distributions of F,. That is, 

BFo = &o X b,o, 

with F~a and F2~ being the first and second univariate marginal distribution 
functions of Fo, respectively. By rotating back to the original coordinate 
system and intersecting all such location rectangles, the location region 
results: 

BF:  n R-,,(Bpo). 
a ~ (0, 2~] 

Thus, BF is a closed convex set in the plane. 
In higher dimensions, Br can be constructed similarly; that is, by 

considering all rotated univariate marginal distributions. Let T be an 
orthogonal transformation of ,_~P. Let Fr be the distribution function of 
TX, where X is a p-variate random vector. BF~ is a location hyperrectangle 
obtained by taking the Cartesian product of the p univariate location 
intervals of the marginal distributions of Ft. Thus, 

with Fir being the i-th univariate marginal distribution function of Ft. 
Then 

BF = 0 T-I(BFT), 

the intersection being over all orthogonal transformations T of ..~.P. (That 
the construction of Be in dimensions higher than two parallels the bivariate 
case is discussed in the Appendix.) Hence, BF is a closed convex set in ._~3 p. 

How does the structure of BF relate to the degree of symmetry in X? 
All information regarding the structure of Br is found in its width function 
W(a), where a ~ ._~-P is a unit vector (Blough (1985)). In particular, if a0 is a 
direction of symmetry, W(ao)= 0. This implies BF is at most ( p -  1)- 
dimensional. Hence, if X is symmetric of degree d, it possesses d mutually 
orthogonal directions of symmetry, and so BF is at most ( p -  d)-dimen- 
sional. Also then, if X is centrosymmetric, BF is 0-dimensional; that is, BF 
consists of only the point of symmetry (O). 
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Theoretical and empirical determinations of the structure of Br in 
relation to symmetry will now be developed. 

3. Detection of symmetry in multivariate samples 

The foregoing development enables one to characterize completely the 
degree of symmetry in a p-variate distribution. Theoretically, all such 
information is contained in the width function of the location region. Thus, 
to obtain information from a random sample on the degree of symmetry of 
the underlying distribution, the techniques of projection pursuit are readily 
employed. 

3.1 Symmetry via projection pursuit 
Methods of projection pursuit were first developed by Kruskal (1969, 

1972), and implemented by Friedman and Tukey (1974). An excellent 
review of the literature on projection pursuit (PP) is given by Huber (1985). 
Application of PP techniques with numerous examples can be found in 
Friedman (1987). 

Determination of symmetry can be addressed by the application of PP 
methods. We will employ one-dimensional projections of each observed 
p-variate data point. Initially, the data will be "sphered" (Friedman (1987)) 
to remove location, scale, and correlation dependencies. It remains to 
define the projection index. To this end, consider the linear combination 

a'X with a'a = 1, a ~ ~i~ y . 

Let Fo be the (univariate) distribution function of a'X. All information 
regarding the shape of Br is contained in all such projections. This results 
from the following: 

(1) By construction, BF= A T-I(BFT), where the intersection is 
taken over all orthogonal transformations T of ~ P ,  and 
where BFT is the location hyperrectangle of TX. 

(2) The boundaries of BFT depend on the distribution function Fr 
only through its univariate marginals. For details, see Blough 
(1985). 

Hence, since each row of TX is a projection as well as a univariate 
marginal distribution of TX, the result follows. Let mr,(u) be the univariate 
location functional for Fo: 

mV.(U) = I [F~l(U ) + F~l( 1 _ u)], 
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for 0 < u _< 1/2. If F is symmetric of degree 1, then BF is (p - l)-dimen- 
sional and thus there exists ao ~ ,.~P and 01 ~ ,~1 such that 

(1) m~,(u) = 01 for all u in [0, 1/2], and 

(2) the width function W(ao) = O. 

In fact, a0 will be orthogonal to the hyperplane of symmetry. Hence, PP 
will seek to find the direction in which the width of the location region is 
minimized. This motivates the use of the following (affine invariant) 
projection index: 

Q ( a ) =  sup m F , ( u ) -  inf inF.(u). 
0<u <_ 1/2 0_<u_<1/2 

In a direction of symmetry a0, Q(ao) = 0. The larger Q(a) is, the more F 
deviates from symmetry in direction a. 

Given a random sample (xl,xz, . . . ,xn),  the sample analog of the 
projection index is 

1 
Q(a) : max -7-[(a'x)lil + (a'x)(n-i+l)] 

l<_i<_n '~ 

I 
- rain 5 -  [(a'x).) + 

where (a'x)li)is the i-th order statistic from the projected sample (a'x~, a'x2,..., 
a'xn). Once a direction a0 is found which minimizes 0(a), a test for 
symmetry (see Doksum et al. (1977)) can be applied to test the hypothesis 
that Fao is symmetric. If accepted, further projection pursuit can be 
undertaken to determine a possibly higher degree of symmetry (see below). 

3.2 Structure removal 
If the hypothesis that F,o is symmetric is accepted, higher orders of 

symmetry may be investigated by structure removal. That is, since BF has 
been found to be at most (p - 1)-dimensional, we will seek to transform Br 
orthogonally so that the first coordinate of all points in BF is the same. 
This will make the ( p -  1)-dimensional hyperplane of symmetry perpen- 
dicular to the first coordinate axes. Projection pursuit will then continue 
on the last (p - l) coordinates. 

Thus, we seek an orthogonal transformation H such that for some 

Hao = ± 2el , 
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where el = (1,0,0, . . . ,0) '  ¢ ,~P, a0 = (aol,ao2,. . . ,aop)'  ~. ,..~d .p. This can be 
accomplished with the Householder matrix H given by 

H = I -  2 h h ' ,  

where 

). = - (sign of a01), 

h i  = 1 ---~-- , 

aoi 
hi - 22hl ' i = 2, 3,. . . ,p 

(see, for example, Kennedy and Gentle (1980)). 
Now transform the data to (HXl, Hx2,..., Hxn) and consider only the 

last (p - 1) coordinates of each transformed data point. Apply projection 
pursuit to this data. This procedure can be repeated until the hypothesis of 
symmetry in a direction which minimizes the current Q is rejected, or until 
the hypothesis of a centrosymmetric distribution is not rejected. 

At each step, necessarily orthogonal candidate directions of symmetry 
will be obtained. More specifically, let Ol = al* e U p be the first candidate 
direction of symmetry. That is, initially, Q(a) is minimized at a*. If the 
Doksum-Fenstad-Auberge test for symmetry of For fails to reject the 
hypothesis of symmetry, we proceed to step 2; otherwise, declare F 
asymmetric and stop. In step 2, let HI*--H1 be the p × p  Householder 
matrix such that 

Hi*a* = H l a *  = + 2ei  , 

where ej is the j-th unit vector in ,.~P. Transform the data via HI* to 
(H~'x l ,  H ' x 2  . . . .  , H * x n )  and consider the last ( p -  1) coordinates of each 
such point. Let a* e ,,~P-1 be the direction in which ~(a) is minimized. If 
the Doksum-Fenstad-Auberge test in this direction fails to reject the 
hypothesis of symmetry, proceed to step 3; otherwise, declare F symmetric 
of degree and stop. (0) 

Let m = HI* a~ . Then v~ and v2 are orthogonal: 

(0) (0) 
o(o2 = a * ' H *  a* = e(  a* = 0 .  

In step 3, let Ha be the (p - 1) × (p - 1) Householder matrix such that 
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0 

1 0 . - - 0  

0 

//2 

0 

( ° ) a* = + 2e2.  

' H *  "-'*x "-'* "*--  Transform the data  to ~ 2 H~ 1, ,12 -~1 .~2,..., H*HI*x~) and consider only 
the last (p  - 2) coordinates of each such data  point.  Let a3* ~ ._~p-2 be the 
direction in which 0(a)  is minimized for this data. Test for symmetry.  If 
rejected, proceed to step 4; otherwise, declare x symmetric  of degree 2 and 
stop. (° / Let v3 = H * I I *  0 . Then v~, v2 and v3 are mutually orthogonal:  

a] 

I °) t°/(°) o{o3 _*, ~,* u *  e 'H*  = u l  n l , 1 2  0 = 1 2 0 = e {  0 = 0 .  
a~ a~ a~ 

Also, 

'1) t~ 3 = ( 0  _ * , ~ u * u * u *  t12 )-r/l  F/I /12 

0 /. o) 
= (0 101 (0) a*')H* 0 : e ~  0 : 0 .  

a* a~" 

Thus,  at stage k, we have D1, o2,..., Ok mutual ly  or thogonal  directions of 
symmetry.  The procedure continues by t ransforming each observat ion xi to 
the vector H~-tH~'-2. . .H*H*xi  and considering the last ( p -  k + 1) co- 
ordinates. Here 

= , with //j* = -+ 2ies. 
0 /-/j- 1 a* 

In the original coordinate system, 

{0 l t oj-- nl*n~*...~-*l ~ , 
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for j  = 1,2,. . . ,p with H0* = Ipxp. 
This procedure is designed to determine the degree of symmetry in a 

p-variate distribution. If we progress through p steps, failing to reject the 
hypothesis of symmetry each time, we can conclude that the distribution is 
centrosymmetric. Thus, one application of this procedure is to test for 
centrosymmetry in a distribution. An example of this is presented in the 
next section. 

4. Example 

An investigation conducted by an entomologist at the University of 
Arizona consisted of collecting data from two adjacent cotton fields, each 
of which was irrigated by a different method. Field 1 received above 
ground drip irrigation, and Field 2 received underground drip irrigation. 
The average daily vapor pressure deficit (VPD) was measured on each field 
at three elevations: ground level (low), top of crop canopy (high), and 
midway between the two (midheight). Observations were obtained from the 
center of each field for 41 days during the summer of 1986. The primary 
goal in this investigation was to study the effects of irrigation method on 
the field environment, since the environment is known to affect insect 
infestation in cotton fields. To stabilize the variance, base 10 logarithms of 
the original VPD values were taken. 

A spatial time series model was fit to this 6-variate time series model 
by way of the Kalman filter. An assumption needed for the filter is that the 
innovations (residuals) are 6-variate normally distributed. In particular, 
this implies the distribution of innovations should be centrosymmetric. We 
use the techniques of Section 3 to assess this assumption. It should be 
noted that the variance-stabilizing transformation mentioned above might 
also remove skewness in the data. Hence, by testing for centrosymmetry, 
we are in effect checking the appropriateness of taking logarithms. 

The one-step ahead residuals from the model fit are given in Table 1. 
Prior to PP, the data were "sphered". Optimal projections were obtained 
by using the programming language GAUSS on a personal computer with 
a quasi-Newton optimization routine. The "coarse stepping" minimization 
algorithm suggested by Friedman (1987) was used prior to quasi-Newton 
minimization. 

The results are as follows: 

o; = ( - 0.017, - 0.019, - 0.007, 0.000, 0.999, 0.000), 

o~-- (0.133, - 0.052, 0.157, - 0.082, 0.002, 0.974), 

o; = (0.188, - 0.395, 0.868, 0.157, 0.001, - 0.173), 

o~-- (0.129, 0.447, 0.031, 0.881, 0.011, 0.075), 
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T a b l e  I.  V a p o r  p r e s s u r e  de f ic i t  d a t a :  t i m e  se r i es  r e s i dua l s .  

O B S  

A b o v e  g r o u n d  U n d e r g r o u n d  

d r i p  i r r i g a t i o n  d r i p  i r r i g a t i o n  

l o w  m i d h e i g h t  h i g h  l o w  m i d h e i g h t  h i g h  

1 0,331 0 .323  0 ,157  - 0 ,174  - 0 ,233 - 0 ,257  

2 0 ,084  0 .138 - 0 .357  - 0 .330 - 0 .358  - 0 .340  

3 0 .255  - 0 .200  - 0 ,377 0 .439  0 .389  0 .289  

4 - 0 ,824  0 ,325 0 ,046 0 .005 0,033 0 .105 

5 0 .365  - 0 .584  - 0 ,155 0 ,090  0 . 1 6 t  0 .153  

6 - 0 . 1 9 6  - 0 . 0 8 2  - 0 . 1 5 1  - 0 , 1 4 7  - 0 , 1 3 7  - 0 . 1 1 6  

7 0 .209  - 1.156 0 ,007 - 0 .932  - 0 .983 - 1.091 

8 0 .428  - 0.071 0 ,035 - 0 .092  - 0,091 - 0 .150  

9 0.201 - 0 , 2 8 1  0 ,056  - 1,144 - 1,595 - 1,542 

10 0 .029  0,671 - 0 ,144  0 .508 0 .905 0 .354  

11 0 .237  - 0 .289  0,011 0 ,728 0 .623 0 .813  

12 0.091 0 .552  0.145 0 ,176  0 .197 0 .328  

13 0 .017  0 .242  0 ,006 0 .086  0.105 0 .214  

14 0 ,189  0 ,218 - 0 .030 0 .058 0 .088  0 ,168  

15 0 .098  0 ,102  0 ,049 0 .120  0 .083  0 .082  

16 0 .034  0 .164  - 0 .073 - 0 .124  - 0 .107  - 0 .064  

17 0 .049  - 0 .068 0 ,050 - 0 .004  - 0 ,048 - 0 .090  

18 - 0 .118 - 0.091 0 .196 0 ,378  0 ,363 0 .369  

19 0 ,106  - 0 ,455  - 0 ,104  - 0 .433 - 0 ,399  - 0 .387  

20 - 0 ,026  - 0 .386  - 0 ,345 0 .057  0 .044  - 0 .016  

21 - 0 .204  - 0 .316  - 0 ,359 - 0 ,684 - 0,771 - 0 .988  

22 0 .046  - 0 .137 - 0 ,080 0 ,062 0 .059  0 ,017  

23 0 .072  - 0 ,174  0 .326  0 .243 0.351 0 .463 

24 0 .227  0 .306  0 ,306  0 ,639  0 ,678 0 ,800  

25 - 0 .009  0 .092  0 .149 - 0 .243 - 0 .228 - 0 .213  

26 0 .119  0 .600  - 0 .010 0 ,146  0 .136  0 .133 

27 - 0 .057  - 0 .207 0,077 - 0 ,026  - 0 .028 - 0 .019  

28 - 0 .010  0, I 9 8  - 0 ,025 - 0 ,383  - 0 .392  - 0 ,433 

29 - 0 .002  0 .043 0 .044 0 .149  0 .126  0 .102  

30 0 .106  - 0 .206  0 .022 0 .172  0 .175 0 .190  

31 - 0 . 1 3 9  0 .146  - 0 . 1 1 5  - 0 , 0 9 9  - 0 . 1 1 8  - 0 . 1 3 4  

32 - 0 .053  - 0 .779  - 0,091 - 0 .309  - 0 ,363  - 0 ,464  

33 - 0 .027  - 0 .269  - 0 .109 - 0,001 - 0 ,076  - 0 .063  

34 0 .035  0 .025 0,141 0 .215  0 .246  0 .279  

35 0 ,057  0 .312  0.175 0.071 0 ,065  0 .084  

36 0 .124  1.033 0 ,293  - 0.011 0 ,005  0 ,012  

37 - 0 .025 0 .140  - 0 .267 0,171 0 ,138 0 ,092 

38 - 0.081 0 .057  - 0 ,056 - 0 ,509  - 0 .548 - 0 .618  

39 - 0 .034  - 0 .472  - 0 .195 0 .002  - 0 .007  - 0 .032  

40 - 0 . 3 3 9  0 .006  - 0 . 4 9 2  - 0 . 1 4 1  - 0 . 0 5 3  - 0 . 0 9 1  

41 0 .033 0,251 0 ,149 - 0 ,518 - 0 .584  - 0 ,864  
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O ; - - ( -  0.544, 0.647, 0.462, -0 .266 ,  0.006, 0.012), 

o~-- (0.796, 0.471, 0.080, - 0.348, 0.022, - 0.125), 

H*= 

- 0.017 - 0.019 - 0.007 0.000 0.999 0.000 

0.999 0.000 0.000 0.018 0.000 

0.999 0.000 0.006 0.000 

0.999 0.000 0.000 

0.017 0.000 
(sym) 0.999 

1 0 0 0 0 0 
- 0.055 0.156 - 0.082 0.133 0.974 

0.977 0.012 - 0.020 - 0.144 

0.994 0.010 0.075 

0.983 - 0.123 
(sym) 0.101 

t - 6 *  = 

1 0 0 0 0 0 
I 0 0 0 0 

- 0 . 8 0 8  - 0.188 - 0 . 1 3 6  0.541 

0.980 - 0.014 0.056 
0.990 0.041 

(sym) 0.838 

- -  

1 0 0 0 0 
1 0 0 0 

1 0 0 
- 0 . 8 3 7  - 0 . 1 8 7  

0.981 
(sym) 

0 

0 
0 

- 0 . 5 1 5  

- 0.052 

0.856 

1 0 0 0 0 0 
I 0 0 0 0 

1 0 0 0 
1 0 0 

- 0.451 0.893 
(sym) 0.451 

I-t*= 

1 0 0 0 0 
! 0 0 0 

1 0 0 
1 0 

1 
(sym) 

0 

0 
0 
0 
0 

- 1.000 
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Figure 1 shows the plots of the function of symmetry Q in each of the 
six candidate directions obtained from PP. We select an overall a = 12%, 
so that by Bonferroni, each test is conducted at the 2% level; thus the 98% 
confidence bands in each graph (these are the "B-Bands" of Doksum et al. 
(1977)). Since a horizontal line fits between the confidence bands in all six 
directions, we accept the centrosymmetric hypothesis. 

Although the Bonferroni method guarantees an overall level of 12% 
for these 6 tests, it does not provide protection against the "selection effect" 
of testing for symmetry in directions suggested by the data. In as much as 
projection pursuit is primarily a data exploration technique, the resultant 
possible bias in a formal test procedure cannot be avoided. 

If interest lies in testing directly for centrosymmetry, a modification of 
the above procedure allows for this. In this case, consider maximizing the 
projection index Q(a). In the case of centrosymmetry, Q(a) is identically 0. 
An appropriate test would then reject the null hypothesis of centro- 
symmetry if the maximum Q were large. In order to assess the significance 
of this test statistic, it is necessary to derive a reference distribution of 
maximum Q values obtained under the null hypothesis of centrosymmetry. 
In lieu of analytical derivation of this distribution, it can be obtained via a 
Monte Carlo study of the results of maximizing Q when applied to a 
known centrosymmetric distribution. This approach is discussed in general 
by Friedman (1987). 

As an example, we will apply this modified procedure to the above 
Entomology data. Since these represent time series residuals obtained by 
fitting a time series model under the assumption of normally distributed 
error terms, it is natural to take the 6-variate normal distribution as the 
null distribution. This was done and the following Monte Carlo study was 
conducted: 100 6-variate normal random samples, each of size 41 were 
generated. More specifically, since location, scale, and dependency struc- 
ture of the null distribution do not affect the projection index, each 
observation consisted of 6 independent, randomly generated univariate 
standard normal variables. A histogram of the 100 resulting values of the 
maximum Q is presented in Fig. 2. When the maximum Q was computed 
for the Entomology data, the value 1.036 was obtained. With respect to the 
histogram of the null distribution, this is not significant. Hence, we again 
find no evidence of asymmetry in the underlying distribution. 

5. Conclusion 

A non-parametric technique for determining the degree of symmetry 
possessed by a multivariate distribution has been developed. The method is 
based on projection pursuit with a projection index obtained from a test 
for symmetry developed by Doksum (1975). The intimate links between 
this index, the dimension of the location region developed by Blough 
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Fig. 1. Empirical  symmetry  funct ions  (sol id lines) with 98% conf idence  bands  (dashed lines). 
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Fig. 2. Histogram of 100 maximum ~ values obtained by sampling from the 6-variate 
normal distribution 100 times. 

(1985), and the degree of symmetry in the distribution are what make the 
projection pursuit techniques viable. 
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Appendix 

The location region for a p-variate random vector X with distribution 
function F can be constructed in a manner completely analogous to that 
used in the bivariate case developed by Blough (1985). The details of one 
point in the construction do warrant further discussion, however. We need 
to show that a location functional Ox is equivariant under orthogonal 
transformations. To this end, let R be a p × p orthogonal matrix. We wish 
to prove that if Ox is in the location region A constructed via Method I in 
Blough's paper, then 

ROx = ORx. 

Now there exists an orthogonal matrix P such that R = P'QP where Q is of 
the block-diagonal form 
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1 "1) 

- 1  

- 1  

cos a~ sin a~ ) 

-sina~ cosa~ 

cosar s ina , )  

- s i n a r  cos at 

for some r (see, for example, Herstein (1964), pp. 306-307). Hence Q = 
P R P ' .  Now geometrically, P X  represents a change of basis. Let ~tpx be the 
location functional for X in this new basis corresponding to Ox in the old 
basis; that is, 

Ox = P-Xyex  = P ' y e x .  

Then 

ROx = P ' Q p O x  = P 'Q) 'Px  = P'yQPX 

(applying the results of Doksum and Blough, since Q 
represents, geometrically, one-dimensional reflections and 
two-dimensional rotations) 

= P'~eRl,'ex = P'TJ, Rx = ORx. 
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